WEMAREC: Accurate and Scalable Recommendation through Weighted and Ensemble Matrix Approximation

Chao Chen^{*}, Dongsheng Li^t, Yingying Zhao^{*}, Qin Lv^{*}, Li Shang^{**}

^{*}Tongji University, China ^t IBM Research, China ^{*} University of Colorado Boulder, USA

Introduction

Matrix approximation based collaborative filtering

- Better recommendation accuracy
- High computation complexity: O(rMN) per iteration
- Clustering based matrix approximation
 - Better efficiency but lower recommendation accuracy

Outline

Introduction

- WEMAREC design
 Submatrices generation
 Weighted learning on each submatrix
 Ensemble of local models
- **Performance analysis**
 - Theoretical bound
 - Sensitivity analysis
 - **Comparison with state-of-the-art methods**

Conclusion

WEMAREC Design

Divide-and-conquer using submatrices

- Better efficiency
- Localized but limited information

Key components

- Submatrices generation
- Weighted learning on each submatrix
- Ensemble of local models

Step (1) – Submatrices Generation

Challenge

• Low efficiency e.g., O(kmn) per iteration for k-means clustering

Bregman co-clustering

• Efficient and scalable

O(mkl + nkl) per iteration

• Able to detect diverse inner structures

Different distance function + constraint set => different co-clustering

• Low-parameter structure of the generated submatrices *Mostly uneven distribution of generated submatrices*

Step (2) – Weighted Learning on Each Submatrix

Challenge

• Low accuracy due to limited information

Improved learning algorithm

• Larger weight for high-frequency ratings such that the model prediction is closer to high-frequency ratings

 $\widehat{M} = \underset{X}{\operatorname{argmin}} \| W \otimes (M - X) \| \text{ s.t., } rank(X) = r, W_{ij} \propto \Pr[M_{ij}]$

To train a biased model which can produce better prediction on partial ratings

Rating	Distribution	RMSE without Weighting	RMSE with Weighting
1	17.44%	1.2512	1.2533
2	25.39%	0.6750	0.6651
3	35.35%	0.5260	0.5162
4	18.28%	1.1856	1.1793
5	3.54%	2.1477	2.1597
Overall accuracy		0.9517	0.9479

Case study on synthetic dataset

Step (3) – Ensemble of Local Models

Observations

- User rating distribution —— User rating preferences
- Item rating distribution —— Item quality

Improved ensemble method

• Global approximation considering the effects of user rating preferences and item quality

$$\widetilde{\mathbf{M}}_{ui} = \sum_{t} \frac{Q_{ui}^{(t)}}{\sum_{s} Q_{ui}^{(s)}} \widehat{M}_{ui}^{(t)}$$

• Ensemble weight

$$Q_{ui}^{(t)} = 1 + \beta_1 \Pr\left[\widehat{M}_{ui}^{(t)} | M_u\right] + \beta_2 \Pr\left[\widehat{M}_{ui}^{(t)} | M_i\right]$$

Outline

Introduction

WEMAREC

- **Gamma** Submatrices generation
- **U** Weighted learning on each submatrix
- **Ensemble of local models**

Performance analysis

- Theoretical bound
- **Gensitivity analysis**
- **Comparison with state-of-the-art methods**

Conclusion

Theoretical Bound

Error bound

• [Candés & Plan, 2010] If $M \in \mathbb{R}^{m \times n}$ has sufficient samples $(|\Omega| \ge C\mu^2 nr \log^6 n)$, and the observed entries are distorted by a bounded noise Z, then with high probability, the error is bounded by

$$\left\|M - \widehat{M}\right\|_{F} \le 4\delta \sqrt{\frac{(2+\rho)m}{\rho}} + 2\delta$$

 Our extension: Under the same condition, with high probability, the global matrix approximation error is bounded by

$$D(\widehat{M}) \leq \frac{\alpha(1+\beta_0)}{\sqrt{mn}} \left(4\sqrt{\frac{2+\rho}{\rho}(klm)} + 2kl \right)$$

Observations

- When the matrix size is small, a greater co-clustering size may reduce the accuracy of recommendation.
- When the matrix size is large enough, the accuracy of recommendation will not be sensitive to co-clustering size.

Empirical Analysis – Experimental Setup

	MovieLens 1M	MovieLens 10M	Netflix
#users	6,040	69,878	480,189
#items	3,706	10,677	17,770
#ratings	106	107	10 ⁸

Benchmark datasets

Gensitivity analysis

- 1. Effect of the weighted learning
- 2. Effect of the ensemble method
- 3. Effect of Bregman co-clustering

Comparison to state-of-the-art methods

- 1. Recommendation accuracy
- 2. Computation efficiency

Sensitivity Analysis – Weighted Learning

Sensitivity Analysis – Ensemble Method

Sensitivity Analysis – Bregman Co-clustering

Comparison with State-of-the-art Methods (1)

Recommendation Accuracy

	MovieLens 10M	Netflix
NMF	0.8832 ± 0.0007	0.9396 ± 0.0002
RSVD	0.8253 ± 0.0009	0.8534 ± 0.0001
BPMF	0.8195 ± 0.0006	0.8420 ± 0.0003
APG	0.8098 ± 0.0005	0.8476 ± 0.0028
DFC	0.8064 ± 0.0006	0.8451 ± 0.0005
LLORMA	0.7851 ± 0.0007	0.8275 ± 0.0004
WEMAREC	0.7769 ± 0.0004	0.8142 ± 0.0001

Comparison with State-of-the-art Methods (2) – Computation Efficiency

Execution time on the MovieLens 1M dataset

Conclusion

WEMAREC – Accurate and scalable recommendation

- Weighted learning on submatrices
- Ensemble of local models
- Theoretical analysis in terms of sampling density, matrix size and co-clustering size

Empirical analysis on three benchmark datasets

- Sensitivity analysis
- Improvement in both accuracy and efficiency

Trade-off between Accuracy and Scalability

Detailed Implementation

Algorithm 1 Co-clustering-based Matrix Approximation

Input: All co-clustering submatrices $\mathcal{M}^{(t)} \subseteq M$ $(t \in [kl])$, rank r, learning rate v, regularization coefficient λ . **Output:** Approximated user-item rating matrix M. 1: for each $t \in \{1, \ldots, kl\}$ in parallel do // Computing weights 2: Compute the rating distribution on \mathbb{F} in $\mathcal{M}^{(t)}$. 3: for each observed entry (u, i) in $\mathcal{M}^{(t)}$ do 4: 5: $W_{ui} = p(x)$, if $M_{ui} = x$. end for 6: 7: // Updating model Initialize $U^{(t)} \in \mathbb{R}^{m \times r}$, $V^{(t)} \in \mathbb{R}^{n \times r}$ randomly 8: while not converged do 9: for each observed entry (u, i) in $\mathcal{M}^{(t)}$ do 10: $\Delta_{ui} = \mathcal{M}_{ui}^{(t)} - U_u^{(t)} (V_i^{(t)})^T$ 11: for each $z \in \{1, \ldots, r\}$ do 12: $U_{uz}^{(t)} = U_{uz}^{(t)} + v * (\Delta_{ui} * V_{iz}^{(t)} * W_{ui} - \lambda U_{uz}^{(t)})$ 13: $V_{iz}^{(t)} = V_{iz}^{(t)} + v * (\Delta_{ui} * U_{uz}^{(t)} * W_{ui} - \lambda V_{iz}^{(t)})$ 14: 15:end for 16:end for 17:end while 18: end for 19: for each $(u, i) \in [m] \times [n]$ do Locate (u, i) in its corresponding submatrix and let 20:the index of the submatrix be ξ . $\hat{M}_{ui} = U_u^{(\xi)} (V_i^{(\xi)})^T$ 21:22: end for 23: return M

Algorithm 2 WEMAREC_Ensemble (u, i)

Input: Resulting matrix approximations $\hat{M}^{(t)}$ $(t \in [z])$ from z different co-clusterings, u and i are the targeted user and item, respectively.

Output: The predicted rating of user u on item i: \tilde{M}_{ui} .

1: // Computing weights

2: for
$$t \in [z]$$
 do

3:
$$Q_{ui}^{(t)} = q(\hat{M}_{ui}^{(t)})$$

4: end for

5: return $\tilde{M}_{ui} = \sum_{t=1}^{z} \frac{Q_{ui}^{(t)}}{\sum_{s=1}^{z} Q_{ui}^{(s)}} \hat{M}_{ui}^{(t)}$