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ABSTRACT
Matrix approximation is one of the most effective meth-
ods for collaborative filtering-based recommender systems.
However, the high computation complexity of matrix fac-
torization on large datasets limits its scalability. Prior so-
lutions have adopted co-clustering methods to partition a
large matrix into a set of smaller submatrices, which can
then be processed in parallel to improve scalability. The
drawback is that the recommendation accuracy is lower as
the submatrices only contain subsets of the user-item rating
information.

This paper presents WEMAREC, a weighted and ensem-
ble matrix approximation method for accurate and scal-
able recommendation. It builds upon the intuition that
(sub)matrices containing more frequent samples of certain
user/item/rating tend to make more reliable rating predic-
tions for these specific user/item/rating. WEMAREC con-
sists of two important components: (1) a weighting strategy
that is computed based on the rating distribution in each
submatrix and applied to approximate a single matrix con-
taining those submatrices; and (2) an ensemble strategy that
leverages user-specific and item-specific rating distributions
to combine the approximation matrices of multiple sets of
co-clustering results. Evaluations using real-world datasets
demonstrate that WEMAREC outperforms state-of-the-art
matrix approximation methods in recommendation accuracy
(0.5–11.9% on the MovieLens dataset and 2.2–13.1% on the
Netflix dataset) with 3–10X improvement on scalability.
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1. INTRODUCTION
Collaborative filtering (CF), which predicts users’ item

ratings based on the ratings of other users with similar taste,
has been shown to preform well in many recommender sys-
tems [1]. Among existing CF solutions, matrix approxima-
tion has become increasingly popular. It formulates the rec-
ommendation problem as missing entry prediction using ex-
isting entries in a user-item rating matrix, i.e., attempting
to predict the missing entries in a partially observed matrix.
Given m users and n items, the user-item rating matrix
M ∈ Rm×n is typically of low-rank, then M can be approx-
imated by a r-rank matrix M̂ = UV T , where U ∈ Rm×r
is the set of user features, V ∈ Rn×r is the set of item fea-
tures, and r � min(m,n). Then, the rating of the i-th
user on the j-th item can be predicted by the inner product
UiV

T
j . Using matrix approximation, the user/item feature

vectors are reduced to lower dimensions, which helps to ad-
dress the “data sparsity” issue, a challenge to memory-based
CF methods [1, 24]. Recent studies have shown that matrix
approximation based CF methods outperform many other
CF solutions [10, 17, 22, 28].

However, existing matrix approximation based CF meth-
ods exhibit poor scalability due to the high computation
complexity of matrix factorization on large user-item rat-
ing datasets [10, 22, 16, 11, 28]. Recent work adopted co-
clustering methods [8, 29, 26] to partition the large user-item
rating matrix into a set of smaller submatrices, which can
then be processed in parallel to improve system scalability.
However, this usually leads to lower recommendation accu-
racy. Co-clustering tries to find coherent submatrices each of
which contains a subset of users who share similar interests
on a subset of items. In the ideal case, recommendations
based on such submatrices can be as accurate as recommen-
dations based on the original large matrix while requiring
much less computation overhead. However, the submatrices
obtained by co-clustering methods are not perfect, as a small
fraction of user-item ratings may not follow the distribution
of majority ratings. As a result, recommendation accuracy
on such user-item ratings will degrade, affecting the overall
recommendation accuracy. Our study shows that, for the
MovieLens dataset with 1 million ratings, the recommenda-
tion RMSE (root mean square error) increases from 0.8645
to 0.9 when the co-clustering setting varies from 1 × 1 to
5 × 5. Therefore, a better matrix approximation solution
that achieves both high accuracy and high scalability for
recommendation is needed.

In this work, we have developed WEMAREC, a weight-
ed and ensemble matrix approximation method for accurate
and scalable CF-based recommendation. The intuition is



that, (sub)matrices only contain partially-sampled informa-
tion of user/item/rating; if a submatrix contains more sam-
ples for a certain user or item or rating, this submatrix can
probably make more reliable predictions on the specific user
or item or rating. This applies not only to the submatri-
ces generated from a single co-clustering process, but also
to the multiple sets of submatrices generated using different
co-clustering constraints. Since these submatrices contain
different user-item rating information, an intelligent combi-
nation of these submatrices can yield better recommenda-
tion quality while still enjoy the benefit of high scalability
due to parallel processing the co-clustering submatrices.

This work makes the following contributions: (1) iden-
tification of the unbalanced predication power on different
users/items/ratings due to the partial information that is
contained in (sub)matrices; (2) development of a submatrix-
based weighting strategy to capture rating-specific predic-
tion power and combine submatrices into the approximation
of a single user-item rating matrix; (3) development of an
ensemble matrix approximation method that uses different
co-clustering constraints to generate and combine multiple
sets of submatrices with different rating prediction power for
different users and items; and (4) evaluation using two large-
scale real-world datasets which demonstrates WEMAREC’s
improvement in recommendation accuracy and scalability
over state-of-the-art matrix approximation techniques.

The rest of this paper is organized as follows. Section 2
formulates the problem. Section 3 describes the proposed
WEMAREC method in detail. Section 4 analyzes the error
bounds of the proposed method. Section 5 presents the e-
valuation results. Section 6 discusses the related work, and
finally Section 7 concludes this work.

2. PROBLEM FORMULATION
This section provides necessary background for the ma-

trix approximation problem. It then presents case studies
to motivate the challenge faced by existing matrix approxi-
mation methods. The case studies presented in this section
are conducted on the MovieLens (1M) dataset and the stan-
dard singular value decomposition (SVD) algorithm is used
in matrix approximation.

2.1 Notations and Definitions
In this paper, upper case letters such as M,U, V denote

matrices. For matrix M ∈ Rm×n, we denote Mi∗ as the
i-th row vector, M∗j as j-th column vector, and Mij as
the entry in the i-th row and j-th column. We denote M
as a submatrix of M , i.e., both the rows and columns in
M are subsets of those in M . A r-rank approximation of
M is denoted as M̂ = UV T , where U ∈ Rm×r, V ∈ Rn×r
and r � min(m,n). In addition, [n] denotes the list of
{1, . . . , n}, Ω denotes the set of observed entries in the user-
item rating matrix M , i.e., ∀(i, j) ∈ Ω, Mi,j 6= 0. Then, |Ω|
is denoted as the total number of observed entries in M .

Three matrix norms are used in this paper. The Frobenius
norm is denoted as:

||M ||F :=

√∑
ij

M2
ij .

The nuclear norm is denoted as the sum of singular values:

||M ||∗ :=
∑
k

σk.
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Figure 1: The tradeoff between recommendation
accuracy and runtime efficiency when varying the
number of co-clusters.

The max norm is denoted as:

||M ||∞ = max{|Mij |}.

2.2 Existing Low-Rank Matrix Approximation
Two methods have been used for low-rank matrix approx-

imation M̂ of M , i.e., SVD and compressed sensing [5, 6].
The SVD method is based on minimizing the sum-squared
distance  Frobenius norm:

M̂ = arg min
X

‖ I ⊗ (M −X) ‖F s.t. rank(X) = r, (1)

where each Iij is the indicator function that equals to 1 if
Mij is observed and equals to 0 otherwise. The compressed
sensing method is based on minimizing the nuclear norm:

M̂ = arg min
X

‖ X ‖∗ s.t. ‖ I ⊗ (M −X) ‖F< ε. (2)

As shown in [22], the problem defined in (1) is a difficult
non-convex optimization problem and an iterative method
may converge to a local minimum. In contrast to SVD, the
problem defined in (2) is convex and can be casted as a
semi-definite program [6].

Rating Distribution
RMSE

(w/o weighting)
RMSE

(w/ weighting)
1 17.44% 1.2512 1.2533
2 25.39% 0.6750 0.6651
3 35.35% 0.5260 0.5162
4 18.28% 1.1856 1.1793
5 3.50% 2.1477 2.1597

Overall result 0.9517 0.9479

Table 1: Rating-specific RMSE when running SVD
without (w/o) or with (w/) weighting on a subma-
trix.

2.3 Motivating Examples
Next, we present case studies to demonstrate the accuracy

issue of existing co-clustering based matrix approximation
methods, and provide insights on why user-item rating dis-
tribution can be leveraged to improve the recommendation
accuracy.

2.3.1 Scalability vs. Accuracy
Co-clustering is an effective method to improve the scal-

ability of matrix approximation based CF methods [8, 29],
because these submatrices can be processed in parallel. In



addition, co-clustering tries to find coherent submatrices,
each of which containing a subset of users who share similar
interests on a subset of items. In the ideal case, users’ com-
mon interests in each submatrix can be accurately predicted.
Unfortunately, the submatrices obtained by co-clustering are
not perfect. Within each submatrix, a subset of user-item
ratings may not follow the distribution of majority ratings.
As a result, the corresponding recommendation accuracy of
those minority user-item ratings may be poor, which in turn
affects the overall recommendation accuracy.

To evaluate how the recommendation accuracy varies with
co-clustering granularity, we apply Bregman co-clustering [2]
on the MovieLens dataset. As demonstrated in Figure 1, as-
suming the co-clustering submatrices are processed in par-
allel, the scalability of matrix approximation increases when
the number of co-clusters increase from 1× 1 to 5× 5 (k ×
k). On the other hand, the recommendation error (mea-
sured as RMSE) increases from 0.8645 to 0.9 as the number
of co-clusters increases. Therefore, in order to utilize co-
clustering based scalable matrix approximation methods in
recommender systems, one must address the accuracy issue.

2.3.2 Accuracy vs. Rating Distribution
Although the submatrices obtained through co-clustering

are not informative enough to build accurate recommenda-
tion models for all users and all items in each submatrix,
they can still be utilized to build “weak” recommendation
models which can accurately predict the common interest-
s shared by users in the same submatrix. In this study, we
analyze (1) which part of information in each submatrix rep-
resents users’ common interests and thus can be utilized to
build “weak” recommendation models and (2) how we can
make these “weak” recommendation models more accurate
when predicting users’ common interests in a submatrix.

Table 1 shows the distribution of different ratings in a
submatrix obtained from Bregman co-clustering, as well as
the recommendation quality when applying standard SVD
algorithm on the submatrix. As shown in the third column,
the RMSE varies by the specific rating and lower RMSEs
(i.e., better recommendation accuracy) are achieved for rat-
ings that occur more frequently in the submatrix, such as
3 and 2 ratings. This makes sense because a learning mod-
el usually does a better job capturing samples that occur
more frequently in the train data. Based on this observa-
tion, we can train “weak” recommendation models from the
submatrices, which can at least make accurate recommen-
dations on users’ common interests, i.e., ratings that occur
most frequently in the corresponding submatrix.

Given the biased prediction power of the “weak” model-
s towards ratings that occur more frequently in a subma-
trix, we could potentially boost the recommendation accu-
racy by weighting the user-item ratings differently, assigning
higher (lower) weights to ratings that occur more frequently
(rarely) in the submatrix. The expectation is that we could
obtain more accurate recommendations on the majority of
the ratings and the overall recommendation accuracy can be
improved. The fourth column in Table 1 shows the recom-
mendation quality after adding such weights to differentiate
the user-item ratings. Clearly, we can see that the “weak”
recommendation model built by SVD with weighting can in-
deed make more accurate recommendations on the ratings
that occur more frequently (i.e., 2, 3 and 4) than the SVD
method without weighting. More importantly, the over-
all recommendation quality also increases after weighting,
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Figure 2: WEMAREC design overview. The orig-
inal user-item rating matrix M is described by z
low-rank matrices, which are based on z differen-
t k × l co-clustering settings. For all pairs (u, i) ∈
[m] × [n], the entry Mui is computed based the cor-
responding entries in the co-cluster-based subma-
trices (denoted as shaded regions). The equation
describes how to compute a unified matrix approxi-
mation M̃ from z co-clustering based approximations
{M̂1, M̂2, . . . , M̂z}.

i.e., RMSE decreases from 0.9517 to 0.9479. These results
demonstrate that rating-specific weighting has the potential
to boost the accuracy of more frequently-occurring ratings
and enhance the overall accuracy as well.

3. WEMAREC ALGORITHM DESIGN
In this section, we present the design details of WEMAREC

which can achieve both high recommendation accuracy and
high scalability for matrix approximation based CF method-
s. As illustrated in Figure 2, WEMAREC consists of three
key steps:
1. Co-clustering and submatrices generation. The
original user-item rating matrix is first divided into a set
of submatrices by Bregman co-clustering, so that the scal-
ability issue can be addressed by factoring all submatrices
in parallel. Also, different co-clusterings can be obtained
by varying the constraints in Bregman co-clustering, which
naturally offers us the ability to exploit the advantages of d-
ifferent co-clusterings to achieve better recommendation ac-
curacy.

2. Submatrices-based weighting and matrix approx-
imation. A new weighting strategy is proposed, which is
computed based on each individual submatrix and assigns
higher weights to ratings that occur more frequently in a
given submatrix. The weighted submatrices from the same
co-clustering setting are then used to generate a single ma-
trix approximation.

3. Ensemble of multiple matrix approximations. D-
ifferent co-clustering constraints can lead to different sub-
matrices and thus different matrix approximations. Since
each “weak” recommendation model can only make accurate
recommendations on some of the user-item ratings, an en-
semble strategy is proposed, which utilizes the advantages
of different “weak” models to realize a “strong” recommen-
dation model which can achieve high accuracy.

3.1 Co-clustering & Submatrices Generation
Co-clustering is a popular technique which allows simul-

taneous clustering of both the rows and columns in a given



matrix. By applying co-clustering methods on user-item rat-
ing matrix in recommender systems, users and items corre-
spond to a co-cluster (submatrix) are highly correlated, i.e.,
these users will have similar opinions on these items. More
formally, let submatrix M = {Mui | u ∈ U , i ∈ I} denote
the ratings of a subset of users U on a subset of items I. If
we properly choose a set of very similar users U and a set of
very similar items I, thenM can be reconstructed by fewer
number of parameters, i.e., lower rank. Such co-clustering
can be beneficial in two aspects: 1) these submatrices can be
approximated simultaneously via parallel computing so that
high scalability can be achieved and 2) each submatrix will
have lower rank than original user-item rating matrix, so
that low-rank matrix approximation can be computed more
efficiently for each submatrix.

In order to find such coherent submatrices in the user-
item rating matrix, we consider to simultaneously partition
all users and items into disjoint user clusters {U1, . . . ,Uk}
and item clusters {I1, . . . , Il}, and a co-cluster (U , I) corre-
sponds to one desired submatrix. Bregman co-clustering [2]
is adopted in this paper to achieve such partitioning. It
views the co-clustering as a lossy data compression prob-
lem, and attempts to obtain as much information as possible
about the original matrix with a few number of critical s-
tatistics for co-clusters, such as the row and column averages
of each co-cluster. Following common approaches in Breg-
man co-clustering, we should firstly choose a set of statistics
of original matrix that need to be preserved, e.g., the aver-
age rating of each user or the average rating of each item,
etc., and each statistic can be viewed as a constraint. We
denote C as the constraint set, and six of the most popular
non-trivial constraint sets are described as follows:

C1 = {{Ir}, {Ic}}, C2 = {{Îr, Îc}},
C3 = {{Îr, Îc}, {Ir}}, C4 = {{Îr, Îc}, {Ic}},
C5 = {{Îr, Îc}, {Ir}, {Ic}}, C6 = {{Ir, Îc}, {Îr, Ic}},

where Ir and Ic are the random variables of row and column
indices, which take values over {1, . . . ,m} and {1, . . . , n},
respectively. Îr and Îc are the random variables of row
and column clusters, which take values over {1, . . . , k} and
{1, . . . , l} in a k×l co-clustering. More specifically, C1 means
that the average values of each row and each column should
be preserved, C2 means the average values of all entries in-
side each co-cluster should be preserved, and similarly for
the other constraint sets. Besides the constraints, we also
need to select appropriate Bregman divergence to evaluate
a co-clustering, which is defined as follows: for z1, z2 ∈ R,
dφ(z1, z2) = φ(z1) − φ(z2)− < z1 − z2,5φ(z2) >, where
5φ is the gradient of differential function φ. Two popu-
lar Bregman divergences are I-divergence and Squared Eu-
clidean distance, defined respectively as follows:

dφ(z1, z2) = z1 log(z1/z2)− (z1 − z2), φ(z) = z log z (3)

dφ(z1, z2) = (z1 − z2)2, φ(z) = z2 (4)

Finally, the row and column clustering will be achieved by
an iterative meta algorithm, in which the row and column
cluster updates can be obtained from the optimal Lagrange
multipliers in parallel. The details of the meta algorithms
for achieving Bregman co-clustering can be found in [7, 8].
Since the meta algorithms are not the contributions of this
paper, details of these algorithms are omitted.

3.2 Submatrices-based Weighting and Matrix
Approximation

As described earlier, performing standard matrix approx-
imation on submatrices will not be accurate due to the fact
that each submatrix only holds partial information of user-
s/items/ratings. Therefore, we can only learn a “weak” rec-
ommendation model from each submatrix, which can make
accurate recommendation on a majority of ratings in the
corresponding submatrix. As demonstrated in the motivat-
ing examples (Section 2.3.2), by associating higher weights
to ratings that occur more frequently in a given submatrix,
we could potentially improve not only the recommendation
accuracy for the frequent ratings, but also the overall rec-
ommendation accuracy.

Based on the idea above, we propose a new method for
low-rank matrix approximation, which weighs the individual
user-item rating differently based on the rating distribution
in a submatrix. Specifically, we compute the probabilistic
distribution of different ratings in each submatrix and con-
struct a weighted norm by adding the probabilistic informa-
tion. Since the weight is a function of the rating distribution,
we can construct the weighting function p(x) : F → R with
Taylor’s formula as follows:

p(x) = f(Pr[x]) (5)

= C0 + C1 Pr[x] + rp (6)

≈ 1 + β0 Pr[x] (7)

Since Pr[x] ∈ [0, 1], the residual term rp, which is super lin-
ear to Pr[x], can be omitted. Without loss of generality,
we can assume that C0 = 1 by scaling all the parameters,
then there is only one unknown parameter β0 in the weight-
ing function. The value of β0 should be trained such that
optimal recommendation accuracy can be achieved. How-
ever, this is not straightforward, because recommendation
is one-step further after matrix approximation. Therefore,
we choose the optimal β0 by brute force search, in which
we check every β0 value in the linear function p(x). The
sensitivity analysis of β0 is presented in Section 5.2.

After defining the weighting function p(x), we present the
extended SVD and compressed sensing matrix approxima-
tion methods here, in which weight Wij is p(Mij) if the
entry is observed and 0 otherwise. It should be noted that
the standard low-rank matrix approximation methods, such
as SVD, can be regarded as special cases of the proposed
method by setting β0 = 0.

Extension of SVD :

M̂ = arg min
X

||W ⊗ (M −X)||F s.t. rank(X) = r. (8)

Extension of Compressed Sensing :

M̂ = arg min
X

||X||∗ s.t. ||W ⊗ (M −X)||F < ε. (9)

The two optimization problems describe how to estimate
M̂ from observed entries in an original submatrixM. Then,
missing entries in the original submatrixM can be obtained
from M̂, i.e., user ratings on unrated items can be predicted
from M̂ as in other matrix approximation methods.

After applying Bregman co-clustering on the user-item
rating matrix M , a k × l co-clustering (k is the number
of user clusters and l is the number of item clusters) can
be obtained. Then, we can perform the proposed low-rank
matrix approximation on each submatrix. Here, we present
a gradient decent learning algorithm for approximating the



user-item rating matrix based on the k× l co-clustering. As
described in Algorithm 1, the weight p(x) for each entry in
each submatrix is first computed. Then, the proposed low-
rank matrix approximation is achieved by a gradient decent
method with L2 regularization. At last, we combine all the
resulting submatrix approximations, so that the approxi-
mated matrix M̂ can be obtained by re-locating each entry
in the k × l submatrices.

Algorithm 1 Co-clustering-based Matrix Approximation

Input: All co-clustering submatrices M(t) ⊆ M (t ∈ [kl]),
rank r, learning rate v, regularization coefficient λ.

Output: Approximated user-item rating matrix M̂ .
1: for each t ∈ {1, . . . , kl} in parallel do
2: // Computing weights

3: Compute the rating distribution on F in M(t).
4: for each observed entry (u, i) in M(t) do
5: Wui = p(x), if Mui = x.
6: end for
7: // Updating model

8: Initialize U (t) ∈ Rm×r, V (t) ∈ Rn×r randomly
9: while not converged do

10: for each observed entry (u, i) in M(t) do

11: 4ui =M(t)
ui − U

(t)
u (V

(t)
i )T

12: for each z ∈ {1, . . . , r} do

13: U
(t)
uz = U

(t)
uz + v ∗ (4ui ∗ V (t)

iz ∗Wui − λU (t)
uz )

14: V
(t)
iz = V

(t)
iz + v ∗ (4ui ∗ U (t)

uz ∗Wui − λV (t)
iz )

15: end for
16: end for
17: end while
18: end for
19: for each (u, i) ∈ [m]× [n] do
20: Locate (u, i) in its corresponding submatrix and let

the index of the submatrix be ξ.

21: M̂ui = U
(ξ)
u (V

(ξ)
i )T

22: end for
23: return M̂

3.3 Ensemble of Multiple Matrix Approxima-
tions

As described in Section 3.1, a Bregman co-clustering con-
sists of three components: a constraint set C, a Bregman
divergence dφ, and the number of row clusters k and column
clusters l. For convenience, we denote a 3-tuple (C, dφ, k× l)
as a co-clustering. It should be noted that different 3-tuples
(C, dφ, k×l) could lead to different matrix approximation re-

sults M̂ because each entry in M̂ is generated based on the
corresponding co-cluster. In Section 3.1, we described six
constraint sets and two Bregman divergences, which means
that we can construct 6× 2 = 12 different M̂s by combining
different C and dφ given fixed k and l. Therefore, we propose
an ensemble method to intelligently combine the user-item
rating predictions obtained from multiple matrix approxi-
mations based on different co-clustering settings. Our goal
is to further enhance the recommendation accuracy.

To recover a global approximation M̃ from z low-rank ap-
proximations M̂ (t) (t ∈ [z]), we adopt the weighted mean of

M̂
(t)
ij as M̃ij . The weight for the ensemble method should

be determined by the confidences of both users and item-
s. And a predicted rating from a “weak” recommendation
model should be considered as more important if 1) the cor-

responding user frequently gave such rating to items before
and 2) the corresponding item was frequently rated by such
rating before. More formally, the i-th user (Mi∗) and the
j-th item (M∗j) can be viewed as discrete random variables
over a finite-field F with unique distributions Pr(x;Mi∗) and
Pr(x;M∗j), x ∈ F. Furthermore, the prediction of Mij = x
should be considered more confident if user i and item j
have (been) rated x many times in M . Therefore, the en-
semble weight q(x) : F → R can be regarded as a function
of Pr(x;Mi∗) and Pr(x;M∗j) as follows:

q(x) = f(Pr[x;Mi∗],Pr[x;M∗j ]) (10)

= C0 + C1 Pr[x;Mi∗] + C2 Pr[x;M∗j ] + rq (11)

≈ 1 + β1 Pr[x;Mi∗] + β2 Pr[x;M∗j ] (12)

Again, by omit the small residual term rq and scaling the
constant term to 1, we can obtain the final ensemble weight
as Equation 12. Then, the proposed ensemble method can
be performed as follows:

M̃ui =

z∑
t=1

Q
(t)
ui∑z

s=1 Q
(s)
ui

M̂
(t)
ui , (13)

where Q
(t)
ui = q(Mui). Based on Equation 13, we present Al-

gorithm 2 to describe how to predict missing values in user-
item rating matrix for recommendation. We can clearly see
that the global matrix approximation M̃ can be efficiently
computed because the computation for all entries in M̃ just
requires weighted averaging.

Algorithm 2 WEMAREC Ensemble (u, i)

Input: Resulting matrix approximations M̂ (t) (t ∈ [z])
from z different co-clusterings, u and i are the targeted
user and item, respectively.

Output: The predicted rating of user u on item i: M̃ui.
1: // Computing weights
2: for t ∈ [z] do

3: Q
(t)
ui = q(M̂

(t)
ui )

4: end for

5: return M̃ui =
∑z
t=1

Q
(t)
ui∑z

s=1 Q
(s)
ui

M̂
(t)
ui

3.4 Running Time Analysis
The proposed weighted and ensemble matrix approxima-

tion method (WEMAREC) is faster than many state-of-the-
art matrix approximation algorithms, although its overal-
l computational complexity is nearly z times larger than
solving a regularized SVD problem. The reasons why the
proposed WEMAREC method can run faster are as fol-
low: (1) Every co-cluster is independent from each other,
and matrix approximation on each co-cluster can be com-
puted in parallel; (2) standard low-rank algorithms have a
computation complexity of Ω(rmn) per-iteration, whereas
the proposed WEMAREC method significantly reduces the
computation complexity to Ω(r|U||I|) per-iteration because
user clusters and item clusters are not overlapping in Breg-
man co-clustering; and (3) the users inside each co-cluster
are highly similar, and so are the items. Therefore, lower
rank (r) is required to achieve accurate matrix approxima-
tion in the proposed method than other methods, which fur-
ther reduces its running time. Besides theoretical analysis,
we also analyze the scalability of the proposed WEMAREC
method in Section 5.



4. ERROR BOUND ANALYSIS
This section analyzes the generalization error bounds of

the proposed method. We use the root mean squared error
(RMSE), one of the most widely adopted accuracy measures
in recommender systems [1], as the evaluation metric:

D(M̂) =

√√√√ 1

mn

m∑
u=1

n∑
i=1

(M̂ui −Mui)2

where M ∈ Fm×n and Pr[max(F) ≥ M̂ui ≥ min(F)] = 1.
Then, the following proposition establishes the error bound
of the proposed weighted matrix approximation method, i.e.,
the RMSE of the weighted low-rank matrix approximation
method on each co-cluster is bounded, so that we can still
find optimum submatrix factorization for recommendation
by optimizing the extended optimization problems (Equa-
tion 8 and 9).

Proposition 1. For any M ∈ Fm×n, m,n > 2, δ > 0,
with probability at least 1 − δ over choosing a subset Ω of
entries in M uniformly,

D(M̂) ≤ DΩ(M̂) +

√
log δ

−2|Ω| (max(F)−min(F))2.

Proof. Since the entries of Ω are chosen independently
and uniformly, it is reasonable to assume each loss(M̂ui;Mui)

= (Mui − M̂ui)
2 is a random variable and satisfies

Pr[α2 ≥ loss(M̂ui;Mui) ≥ 0] = 1

which α = max(F)−min(F). Hence, based on the Hoeffding

Inequality, we have Pr[D(M̂)−DΩ(M̂) ≥ ε] ≤ e
−2|Ω|ε2

α2 . By

setting ε =
√

log δ
−2|Ω|α

2, we have

Pr[D(M̂)−DΩ(M̂) ≤

√
log δ

−2|Ω|α
2] ≥ 1− δ

i.e.,

Pr[D(M̂) ≤ DΩ(M̂) +

√
log δ

−2|Ω| (max(F)−min(F))2] ≥ 1− δ

Therefore, the errors of the new problems are bounded.

Next, we theoretically analyze the generalization error
bounds of the proposed co-clustering based matrix approx-
imation algorithm (Algorithm 1) and the ensemble method
(Algorithm 2). Since the error bound of SVD based low-rank
matrix approximation method has been well analyzed [19,
21], we focus on analyzing the error bound of compressed-
sensing based method (defined in Equation 9) by using sim-
ilar analysis techniques as in [5, 6]. As shown in [5, 6], we
can recover a rank r matrix M ∈ Rm×n(n ≥ m) with prob-
ability at least 1 − n−3, if the number of observed entries
is |Ω| ≥ Cµ2nr log6 n, where C is a constant and µ is the
strong incoherence parameter. However, this result is not
applicable in our case, because the matrix M is approximat-
ed by multiple low-rank submatrices. Hence, we develop a
new error bound based on a variant of the aforementioned
conclusion.

The following analysis makes the following assumptions:
(a) every submatrix M is a rank r matrix that satisfies the
strong incoherent properties, and (b) the observed entries

are uniformly distributed in submatrices such that the den-
sity of the observed entries % in every submatrix is consistent

with each other (i.e., % = |Ω|
mn

). Without loss of generality,
we assume n ≥ m, and denote α = max (F)−min (F), where
F is the set of ratings. We start by analyzing the error bound
of the co-clustering-based model M̂ in Proposition 2. Then,
based on Proposition 2, we proceed to derive an error bound
on the global approximation M̃ in Proposition 3.

Proposition 2. If the density of the observed entries % is
large enough such that |Ω| ≥ Cµ2nr log6 n, then with proba-

bility of at leat 1−δ, M̂ corresponding to a k×l co-clustering
satisfies

D(M̂) ≤ (1 + β0)α√
mn

(4

√
(2 + %)

%
(klm) + 2kl),

where δ = (2kln)−3.

Proof. For every user-item pair (u, i), an observation

Mui is equal to M̂ui+Z where Z is a random variable whose
absolute error is bounded by∥∥W ⊗ (M − M̂)

∥∥
∞ ≤

∥∥(1 + β0)(M − M̂)
∥∥
∞ ≤ (1 + β0)α.

By applying Theorem 7 in [5] to matrix completion problem
with bounded noise, we get with probability greater than
1 − υ−3 that every co-cluster-based approximation M̂ will
satisfy

∥∥W ⊗ (M−M̂)
∥∥
F
≤ (1 + β0)α(4

√
γ(2 + %)

%
+ 2) (14)

where υ = max (|U|, |I|),γ = min (|U|, |I|). For one k× l co-

clustering, there are kl different submatrices Mt, γ
(t), t ∈

[kl], and obviously
∑
t∈[kl] γ

(t) ≤ m. Using Cauchy-Schwarz

inequality, we get∑
t∈[kl]

√
γ(t) ≤

√
kl
∑
t∈[kl]

γ(t) ≤
√
klm. (15)

Therefore, we can bound the approximation error as follows:∥∥W ⊗ (M − M̂)
∥∥
F

(a)

≤
∑
t∈[kl]

∥∥Wt ⊗ (Mt − M̂t)
∥∥
F

(b)

≤
∑
t∈[kl](1 + β0)α(4

√
(2+%)
%

γ(t) + 2)
(c)

≤ (1 + β0)α(4
√

2+%
%

(klm) + 2kl)

(16)
in which (a) holds due to the triangle inequality of Frobenius
norm; and (b) holds due to (14); and (c) holds due to (15).
Since for all (u, i) pairs, Wui ≥ 1. Then, we have

D(M̂) =

∥∥M − M̂∥∥
F√

mn
≤
∥∥W ⊗ (M − M̂)

∥∥
F√

mn
. (17)

Combining (16) and (17), we established the error bound of

M̂ as stated above. In order to adjust the confidence level,
we take a union bound of the events

∥∥W ⊗ (M−M̂)
∥∥
F
≥

(1 + β0)α(4
√

γ(2+%)
%

+ 2) for each submatrix M(t), then we

have ∑
t∈[kl]

3
√
υ(t) ≤ 3

√
kl
∑
t∈[kl]

υ(t) ≤ 3
√

2kln.

i.e., the inequation in Proposition 2 holds with probabilities
at least1− δ (δ = 3

√
2kln).



Proposition 3. If Proposition 2 holds, then with prob-
ability of at leat 1 − δ, the M̃ based on z different k × l
co-clustering settings satisfies:

D(M̃) ≤ (1 + β0)α√
mn

(4

√
(2 + %)

%
(klm) + 2kl),

where δ = z(2kln)−3.

Proof. By Proposition 2, we bound the error of M̃ as
follows:∥∥M̃ −M∥∥

F

(a)

≤ 1
z

∥∥∑
s∈[z] Q

(s) ⊗ (M̃ −M)
∥∥
F

(b)
= 1

z

∥∥∑
s∈[z] Q

(s) ⊗ (M̂ (s) −M)
∥∥
F

(c)

≤ 1
z

∑
s∈[z]

∥∥Q(s) ⊗ (M̂ (s) −M)
∥∥
F

(d)

≤ 1
z

∑
s(1 + β0)α(4

√
2+p
p

(klm) + 2kl)

= (1 + β0)α(4
√

2+p
p

(klm) + 2kl)

where (a) holds because every
∑
s∈[z] Q

(s)
ij ≥

∑
s∈[z] 1 = z;

(b) holds due to Equation 13; (c) holds due to the triangle
inequality of Frobenius norm; (d) holds due to Equation 16.
Finally, by dividing

√
mn from both sides, we conclude the

proof. The confidence level is adjusted to z(2kln)−3 using
the union bound property as in Proposition 2.

5. EXPERIMENTAL RESULTS
This section evaluates the proposed method on real-world

datasets. The first study conducts sensitivity analysis. The
proposed method consists of a set of parameters, i.e., rank
of matrices r, and the number of row clusters k and column
clusters l. This study evaluates how the recommendation
accuracy of the proposed method is affected by these pa-
rameters. The second study compares the recommendation
accuracy of the proposed method against six state-of-the-
art matrix approximation based CF methods using PREA
toolkit [13]. The third study evaluates the runtime scalabil-
ity of the proposed method against standard SVD method.

5.1 Experiment Setup
The experimental study uses three real-world datasets that

have been widely used for evaluating recommendation algo-
rithms – 1) MovieLens 1M (106 ratings of 6, 040 users on
3, 706 items); 2) MovieLens 10M (107 rating of 69, 878 users
on 10, 677 items); and 3) Netflix (108 rating of 480, 189 users
on 17, 770 items). For each dataset, we split it into train and
test sets randomly by setting the ratio between train set and
test set as 9 : 1. The results are presented by averaging the
results over five different random train-test splits.

We use learning rate v = 0.002 for gradient decent method,
λ = 0.01 for L2-regularization coefficient, ε = 0.0001 for gra-
dient descent convergence threshold, and T = 100 for max-
imum number of iterations. The proposed method (WE-
MAREC) is compared against six state-of-the-art matrix
approximation based CF methods, which are described as
follows:
• NMF [Lee et al., NIPS’ 01]: assumes the data and compo-
nents are non-negative and every entry follows the Poisson
distribution. Then the approximation is achieved by maxi-
mizing the log-likelihood.

• Regularized SVD [Paterek et al., KDD’ 07]: is a stan-
dard matrix factorization method inspired by the effective

methods of natural language processing, in which user/item
features are estimated by minimizing the sum-squared error.

• BPMF [Salakhutdinov et al., ICML’ 08]: is a Bayesain
extension of probabilistic matrix factorization, in which the
model is trained using Markov chain Monte Carlo methods.

• APG1 [Toh et al., PJO 2010]: views the recommendation
task as a matrix completion problem, and computes the ap-
proximation by solving a nuclear norm regularized linear
least squares problem.

• DFC2 [Mackey et al., NIPS’ 11]: divides a large-scale
matrix factorization task into smaller subproblems, and uses
the techniques from randomized matrix approximation to
combine the subproblem solutions.

• LLORMA [Lee et al., ICML’ 13]: relaxes the low-rank as-
sumption, and assumes that the original matrix is described
using multiple low-rank submatrices, which are constructed
using techniques from non-parametric kernel smoothing.

5.2 Sensitivity Analysis
We first show how WEMAREC performs with different

combinations of parameters. MovieLens (10M) and Netflix
datasets are used in this study with randomly selected 90%
of data as training data and the rest 10% as test data.

Figure 3 presents the effects of the weighted function p(x)
(Eqn. 5) with β0 varying in [0, 2.0] on three artificially se-
lected datasets (from MovieLens (10M)) with different rat-
ing distributions. The detailed characteristics of the three
selected datasets are presented in Table 2. As we can see,
the RMSEs on all three datasets first decrease as β0 increas-
es from 0, and increases after the optimal accuracies are
achieved. We also observe that optimal β0s on more uneven
datasets are smaller than those on more even datasets. The
reason is that the frequency of different ratings are close
on even datasets, so that a greater β0 is required to make
the weights of different ratings more different. Based on
the above study, we choose β0 = 0.4 for the following ex-
periments because the submatrices generated by Bregman
co-clustering are always uneven.

Figure 4 and 5 analyze the effects of Bregman co-clustering
by changing the rank r and the numbers of row and column
clusters k and l on MovieLens (10M) and Netflix dataset.
We can see from the results that recommendation accura-
cies increase when the rank r increases from 5 to 20 in Fig-
ure 4. And the accuracies on the left (I-divergence) and mid-
dle (Euclidean-distance) are worse than those on the right
(combination of these two distances), which indicates that

the combination of different approximations M̂ leads to bet-
ter recommendation accuracy than both original ones. Fig-
ure 4 also shows that the recommendation accuracy decreas-
es when k and l increase (from 2×2 to 3×3). This is due to
the fact that each co-cluster based submatrix consists of less
user-item ratings when k and l increase, resulting in insuffi-
cient training data for both model training and prediction.
However, the accuracy first increases when k and l increase
(from 2 × 2 to 2 × 3) in Figure 5, and then decrease when
k× l = 3×3. This implies that larger dataset can be divided
into more clusters to further improve the efficiency with im-
proved accuracy. Based on this study, we choose rank r = 20
and k × l as 2 × 2 or 3 × 2 in the ensemble method, which
offers the best recommendation accuracy for WEMAREC.

Figure 6 analyzes the effect of ensemble weight function

1http://www.math.nus.edu.sg/~mattohkc/NNLS.html
2http://www.cs.ucla.edu/~ameet/dfc/



Rating = 1 Rating = 2 Rating = 3 Rating = 4 Rating = 5 Entropy
High 0.98% 3.14% 15.42% 40.98% 39.49% 1.174590

Median 3.44% 9.38% 29.25% 37.86% 20.06% 1.387499
Low 18.33% 26.10% 35.27% 16.88% 3.43% 1.445043

Table 2: Characteristics of three artificially selected datasets with different rating distributions (smaller
entropy means that the dataset is more uneven).
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Figure 3: Effects of weighted function p(x) on the performance of cocluster-based model over high-uneven(left),
median-uneven(middle), low-uneven(right) datasets, with β0 varying in [0, 2.0].
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Figure 4: Effects of Bregman co-clustering on the performance of WEMAREC in I-divergence (left),
Euclidean-distance (middle), and Combination of both two above distances (right), with the rank of sub-
matrix varying in {5, 10, 15, 20}, the number of row and column clusters varying in {2× 2, 3× 2, 4× 2, 3× 3} on
MovieLens (10M).
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Figure 5: Effects of Bregman co-clustering on the performance of WEMAREC in I-divergence (left),
Euclidean-distance (middle), and Combination of both two above distances (right), with the rank of sub-
matrix varying in {5, 10, 15, 20}, the number of row and column clusters varying in {2× 2, 3× 2, 4× 2, 3× 3} on
Netflix.

q(x) (Eqn. 12) by selecting different β1 and β2. And we
can see that the accuracies of the proposed weighted aver-
age methods always outperform the simple average method
without weighting (i.e., β1 = 0.0, β2 = 0.0). It seems that
larger β1 will lead to better accuracy, but we also observe
that the RMSE becomes stable when β1 > 40. Therefore,
we adopt β1 = 3.0 and β2 = 40 in the following experiments.

5.3 Recommendation Accuracy Comparisons
This study evaluates the accuracy of the proposed meth-

ods by comparing it with the six state-of-the-art matrix ap-
proximation based CF methods summarized in Section 5.1,
i.e., NMF [11], Regularized SVD (RSVD) [16], BPMF [18],
APG [25], DFC [14], LLORMA [12]. Each of the method is
configured using the same parameters provided by the orig-
inal paper. For the proposed WEMAREC method, we con-
sider 2∗2∗2 = 8 resulting matrix approximations, which are
constructed by varying C ∈ {C2, C5}, dφ ∈ {I-divergence,
Euclidean-distance} and k× l ∈ {2× 2, 3× 2}. The Movie-
Lens (10M) and Netflix datasets are used in this study.

Table 3 presents the RMSEs of all these matrix approx-
imation based CF methods on the MovieLens (10M) and

MovieLens (10M) Netflix
NMF 0.8832 ± 0.0007 0.9396 ± 0.0002
RSVD 0.8253 ± 0.0009 0.8534 ± 0.0001
BPMF 0.8195 ± 0.0006 0.8420 ± 0.0003
APG 0.8098 ± 0.0005 0.8476 ± 0.0028
DFC 0.8064 ± 0.0006 0.8451 ± 0.0005

LLORMA 0.7851 ± 0.0007 0.8275 ± 0.0004
WEMAREC 0.7769 ± 0.0004 0.8142 ± 0.0001

Table 3: RMSE on MovieLens (10M) and Netflix
of NMF (r=50) [11], Regularized SVD (r=50) [16],
BPMF(r=30) [18], APG [25], DFC [14], LLORMA
(r=20) [12], WEMAREC (r=20).

Netflix datasets. This study shows that the proposed WE-
MAREC method outperforms all the other six matrix ap-
proximation based CF methods on both the datasets. The
reason why the proposed method can further improve the
recommendation accuracy is due to 1) the new low-rank ma-
trix approximation method can build more accurate models
on submatrices because most often appeared ratings (major
interests) of users are treated more importantly; and 2) the
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ensemble method can effectively take advantage of the high-
quality recommendation results from different co-clusterings
to further improve the recommendation accuracy.

5.4 Scalability Analysis
This study evaluates how the WEMAREC method can

speedup the recommendation process by leveraging parallel
computing. The MovieLens (1M) dataset is used in this s-
tudy. Leveraging parallel computing, all the submatrices are
processed in parallel, and the execution time of WEMAREC
is determined by that of the largest submatrix.

Figure 7 shows the execution time of WEMAREC by
changing the co-clustering settings. The SVD method is
included in this study for comparison purpose. This study
shows that the execution time of SVD and WEMAREC both
increases as the rank increases, and the performance of the
WEMAREC method improves as the sizes of the submatri-
ces decrease. WEMAREC outperforms SVD by 3X – 10X
when the co-clustering setting varies from 2 × 2 to 5 × 5,
and the speedup increases as the number of submatrices
increases. This study demonstrates that WEMAREC can

effectively improve the recommendation system scalability
on large datasets.

6. RELATED WORK
Matrix factorization methods have been widely adopted in

many applications [27], as well as recommendation system-
s [10]. Billsus et al. [4] initially introduced SVD to collab-
orative filtering context. Then, Srebro et al. [23] proposed
a maximum-margin matrix factorization (MMMF) method,
which can be formulated as a semi-definite programming
problem for achieving matrix approximation based CF. Ren-
nie et al. [17] investigated a direct gradient-based optimiza-
tion method for achieving MMMF based CF, which can ef-
fectively improve the efficiency of MMMF method. Singh et
al. [20] introduced a collective matrix factorization method
based on relational learning to generalize existing matrix
factorization methods and yielded new large-scale optimiza-
tion algorithms for these problems. Yu et al. [28] proposed
a non-parametric matrix factorization method, to make ma-
trix approximation based CF methods applicable on large-
scale datasets. Salakhutdinov et al. [15] extended matrix fac-
torization to probabilistic algorithms by proposing a Prob-
abilistic Matrix Factorization (PMF) method, which can s-
cale linearly with the number of observations in the matrix.
Based on the above work, a fully Bayesian treatment of PMF
is present By Salakhutdinov et al. [18], which can train the
user-rating matrix in recommender systems using Markov
chain Monte Carlo methods.

In addition to single matrix factorization, ensemble meth-
ods have also been investigated in the literature. The Net-
flix Prize winners Bell et al. [3] and Koren et al. [9] utilized
the combination of memory-based and matrix factorization
methods to improve recommendation accuracy. Different
from the above work, Mackey et al. [14] introduced a Divide-
Factor-Combine (DFC) framework, in which the expensive
task of matrix factorization is randomly divided into smaller
subproblems which can be solved in parallel using an arbi-
trary base matrix factorization algorithms. Lee et al. [12]
proposed a local low-rank matrix approximation (LLOR-
MA) method, which generalized the DFC method in a way
that a metric structure is used on the original matrix and
the matrix partitions are constructed by kernel smoothing.

The DFC method and LLORMA method share similar
idea with our method in that ensemble methods are adopted
to boost recommendation accuracy. A significant difference
between DFC and LLORMA is the construction of subma-
trices. In DFC, each submatrix is constructed by random
sampling, while in LLORMA the submatrix is made of n-
earest neighbors within certain range. Different from both
of them, the submatrices in our method are constructed via
partitional co-clustering, so that each submatrix has low-
parameter structure with less users and items, i.e., the sub-
matrices in our method are of lower rank. Therefore, matrix
approximation on such submatrices can be performed more
efficiently. In addition, a submatrix-based weighting strat-
egy is proposed to capture rating-specific prediction power
of each submatrix, so that more accurate recommendations
can be generated on more frequent samples in each subma-
trix. Therefore, the overall recommendation accuracy can
be improved in each submatrix. Finally, the ensemble strat-
egy in the proposed method can leverage both user-specific
and item-specific rating distributions to combine the approx-
imation matrices, which considers much more information
compared with simple averaging method in DFC and kernel



smoothing method in LLORMA. Moreover, the proposed en-
semble method is more efficient than the LLORMA method,
because the kernel distance used in LLORMA method is
based on the cosine distances between the rows of factor
matrices, requiring extra singular value decompositions.

7. CONCLUSIONS
Matrix approximation methods have shown great success

in recommender systems. However, tradeoff between scala-
bility and accuracy must be made for most existing matrix
approximation based CF methods. In this paper, a weighted
and ensemble matrix approximation method (WEMAREC)
is proposed to improve both recommendation accuracy and
scalability. In WEMAREC, the user-item rating matrix is
partitioned into a set of submatrices, which are then pro-
cessed in parallel to improve system scalability. To opti-
mize recommendation accuracy, a submatrix-based weight-
ing strategy and an ensemble strategy are proposed. The
weighting strategy improves the accuracy of the majority
ratings of individual submatrices. The ensemble strategy
improves the overall recommendation accuracy by combin-
ing multiple sets of co-clustering results based on the user-
specific and item-specific rating distributions. Experimental
study on MovieLens and Netflix datasets demonstrates that
the proposed method can outperform state-of-the-art ma-
trix approximation based CF methods on recommendation
accuracy and scalability.
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