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ABSTRACT
Auxiliary information, such as reviews, have been widely adopted
to improve collaborative filtering (CF) algorithms, e.g., to boost the
accuracy and provide explanations. However, most of the existing
methods cannot distinguish between co-appearance and causality
when learning from the reviews, so that they may rely on spurious
correlations rather than causal relations in the recommendation
— leading to poor generalization performance and unconvincing
explanations. In this paper, we propose a Recommendation via Re-
view Rationalization (R3) method including 1) a rationale generator
to extract rationales from reviews to alleviate the effects of spu-
rious correlations; 2) a rationale predictor to predict user ratings
on items only from generated rationales; and 3) a correlation pre-
dictor upon both rationales and correlational features to ensure
conditional independence between spurious correlations and rat-
ing predictions given causal rationales. Extensive experiments on
real-world datasets show that the proposed method can achieve
better generalization performance than state-of-the-art CF methods
and provide causal-aware explanations even when the test data
distribution changes.
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1 INTRODUCTION
In recent years, researchers have been applying state-of-the-art
deep learning techniques to improve performance in recommender
systems, for both rating prediction [5, 8, 21, 38, 48] and top-n rec-
ommendation [11, 15, 40, 41]. A large body of recent works exploits
rich auxiliary information as complements to improve the perfor-
mance of recommender systems. One of the promising and popular
directions is to leverage the rich textual information in user reviews.
Firstly, many CF methods [5, 8, 11, 38, 48] were proposed to extract
features from user reviews and item reviews through deep learning
architectures, and then use these features to perform more accu-
rate rating prediction [5, 8, 38, 48] or top-n recommendation [11].
Besides accuracy, the review information can also help enhance
explainability in recommendation [46]. Several review-based rec-
ommender systems utilize variants of attention mechanism [39],
which can assign different weights to words in reviews and then
provide explanations about informative levels of words for rec-
ommendation. However, neural models may “cheat” by exploiting
spurious correlations in the training data, which results in high
reported accuracy or good explanation during training but can lead
to low generalization performance when data distributions change
during test time [19].

Firstly, spurious correlations may hurt the accuracy of recom-
mender systems. Selection bias [23] commonly exists when collect-
ing data for training recommendation algorithms. Thus, CF algo-
rithms may rely on spurious correlations between users/items with
few observed ratings [22, 23] and even amplify these biases [3, 42]
in model learning, which may lead to unsatisfactory performance
when data distribution changes. Secondly, spurious correlations
may lead to unconvincing explanations in machine learning ap-
plications including recommender systems. For instance, a recent
work [31] set up an experiment using neural networks for feature
engineering to distinguish pictures between Wolves and Eskimo
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Dogs (huskies). They hand-selected the training set to ensure that
all pictures of wolves had snow in the background, while pictures
of huskies did not. Interestingly, they found that the classifier will
predict “Wolf” if there is snow (or light background), and “Husky”
otherwise, regardless of animal color, position and pose. In this
example, explaining “wolf” by only snow is obviously wrong. Simi-
larly, spurious correlations raise challenges for explanation in rec-
ommender systems. Xu et al. [43] mentioned that many existing
recommender systems use global association rule mining to dis-
cover relationships among items and rely on the item co-occurrence
for explanation, which may lead to non-personalized explanations
because different users would receive the same explanation as long
as they are recommended with the same item and have overlapped
histories. Therefore, it is necessary to eliminate these spurious
correlations when training CF models and explaining recommen-
dations.

Inspired by Structural Causal Model (SCM) [29], we design a
framework based on d-separation to extract rationale from textual
reviews to achieve accurate and explainable recommendation to
tackle the above challenges. We refer rationales to the features 𝑅
who can make all the other features𝐶 being independent of the pre-
dicting results 𝑌 , when given 𝑅. We propose the Recommendation
via Review Rationalization (R3) method consisting of: 1) a rationale
generator, which first generates potential rationales from reviews
in word level and then refines the rationales by matching them with
user preferences and item properties; 2) a rationale predictor, which
can predict user ratings on items only from generated rationales via
a neural form of latent factor model; and 3) a correlation predictor,
which is built upon both rationales and correlational features to
ensure conditional independence between spurious correlations
and rating predictions given rationales.

The main contributions of this work are summarized as follows:
• We show that accurate and explainable recommendation can
be approached from a causal perspective and propose a novel
review rationalization method to extract rationales based on
d-separation from reviews.
• We propose the Recommendation via Review Rationalization
(R3) method which can fully utilize the rationales from re-
views to boost recommendation accuracy and provide causal-
aware explanations.
• We evaluate the proposed method on real-world datasets
with and without data distribution shifts and the empirical
results demonstrate that R3 can extract rationales which
are generic with varying data distribution or even across
datasets and achieve higher accuracy.

2 PRELIMINARIES
2.1 Motivating Example
Let us consider a scenario that users rely on online applications
to find restaurants, e.g., Yelp. Recommender systems can be built
to provide recommendations to users. However, these recommen-
dations may not contain obvious indications of why such recom-
mendations are provided. To answer “why” recommendations are
made, we can find a small subset of words from the reviews, namely
rationales, that suffices on its own to make the recommender sys-
tem yield the same outcome. The following review is from Yelp

Figure 1: An abstracted causal graph for rating prediction.
𝑌 represents the ratings, 𝑅 represents the rationales and 𝐶∗
represents all the features correlated to 𝑌 but not rationales.

and the boldface words are extracted using OpinionDigest [36] to
summarize abstractive opinion:

Noodles are truly great! The meat sauce and lamb
are my favorites! This is a perfect to-go place near
the freeway for a work day including weekends! :-)

Aspects (e.g., noodles) and opinions (e.g., great) from the above
review may be strong enough for recommender system to bring
up a positive recommendation. This case is not isolated and hints
at an intuitive approach: we can design a selector to find aspects
and opinions from the reviews and build a predictor for rating
prediction based on the aspects and opinions. Such approach may
exhibit competitive accuracy and help to explain the recommenda-
tion. However, it may also be trapped by spurious correlations. For
instance, the recommender system may select “weekday fast food”
as a strong feature for recommendations, which could be a spurious
correlation for a user who values taste more than convenience.

We expect our model to extract the most informative features for
prediction, which means that other features cannot provide more
information when giving them. We refer such features as rationales
𝑅, who can make all the other features 𝐶 being independent of
the predicting results 𝑌 , when given 𝑅. This leads us to Structural
Causal Model (SCM) [29], where we can apply d-separation to find
such features.

2.2 Causal Graph
We propose to extract rationales 𝑅, as shown in Figure 1, from all
input features 𝑅 and 𝐶∗ (the set of all correlations) to predict the
rating 𝑌 . Since the directed edge 𝑅 → 𝑌 denotes that 𝑅 is the direct
cause of 𝑌 , rationale features should be more robust for prediction
among different scenarios, e.g., varying data distributions.

Figure 1 shows an abstracted causal graph for the rating predic-
tion task, where 𝑌 denotes the ratings, 𝑅 denotes the rationales and
𝐶∗ denotes all the correlations except rationales. For instance, 𝑅
could be the descriptions of food quality of a restaurant, and 𝐶∗
could be the correlation features like the location of a restaurant
or the gender of the user who posted the review. Figure 1 contains
three basic graphical building blocks, i.e., chain 𝐶𝑎 → 𝑅 → 𝑌 ,
fork 𝐶𝑏 ← 𝑅 → 𝑌 , and immorality 𝑌 → 𝐶𝑐 ← 𝐶𝑑 . According to
d-separation, we know that

𝑌 ⊥ 𝐶𝑎,𝐶𝑏 ,𝐶𝑑 |𝑅, (1)

which means that 𝐶∗ cannot provide extra information beyond 𝑅
to predict 𝑌 .
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Figure 2: The architecture of R3. R3 uses review content
(𝑊𝑢,∗|∼𝑡𝑢,𝑣 ,𝑊∗,𝑣 |∼𝑡𝑢,𝑣 ) to automatically extracts rationales 𝑅∗
via the proposed rationale generator and calculates corre-
lations 𝐶∗ of reviews. Then, R3 provides rating predictions
based on these two types of features separately.

Rationales can be extracted via constructing a minimal feature
set with maximum predictivity from the restricted reviews. Here,
the maximum predictivity means that all other variables are inde-
pendent of the target variable when conditioned on this feature set.
Generally, under certain assumptions [28], such minimal feature
set is the Markov boundary of the target variable 𝑌 [28]. Since the
directs effects (𝐶𝑐 ) are not helpful in the recommendation tasks,
we can simply add a restriction on our model that we only use
reviews generated before to predict the current rating. Since an
effect cannot occur before its cause, effects related features cannot
be extracted from the previous reviews as rationales, and thus we
cannot observe and condition on 𝐶𝑐 by following the restriction.
Then,𝐶𝑑 needs not to be conditioned on because of the immorality
structure, i.e., 𝐶𝑑 and 𝑌 are independent when 𝐶𝑐 is not observed.

In this work, the rationales are defined as the minimal feature set
with maximum predictive ability extracted from previous reviews to
predict the current rating.

2.3 Problem Formulation
We focus on the rating prediction task and formulate the targeted
problem as follows:

Input: The input of our approach includes a user set𝑈 , an item
set 𝑉 , and a corpus of user-item interactions 𝐷 including ratings
and reviews.
• Each user is represented by its user ID 𝑢 ∈ 𝑈 and each item
is represented by the item ID 𝑣 ∈ 𝑉 .
• Each user-item interaction in 𝐷 is denoted as a 5-tuple
(𝑢, 𝑣,𝑊𝑢,𝑣, 𝑦𝑢,𝑣, 𝑡𝑢,𝑣), where 𝑊𝑢,𝑣 is the textual content of
user 𝑢’s review on item 𝑣 , 𝑦𝑢,𝑣 is the associated rating, and
𝑡𝑢,𝑣 is the timestamp of the review. The review corpus of 𝑢 is
denoted by {𝑊𝑢,𝑣1 ,𝑊𝑢,𝑣2 , . . . ,𝑊𝑢,𝑣𝑁𝑢

}, where all 𝑁𝑢 reviews
of 𝑢 are sorted by timestamp in ascending order. The review
corpus of 𝑣 is constructed similarly.

Output: Given a user𝑢, an item 𝑣 , and the corresponding review
corpus𝑊𝑢,∗|∼𝑡𝑢,𝑣 = {𝑊𝑢,𝑣1 , . . . ,𝑊𝑢,∼𝑣} and𝑊∗,𝑣 |∼𝑡𝑢,𝑣 = {𝑊𝑢1,𝑣, . . . ,

𝑊∼𝑢,𝑣}, where𝑊𝑢,∼𝑣 means the latest item review of user 𝑢 before
user𝑢 commented on item 𝑣 , and𝑊∼𝑢,𝑣 means the latest user review
of item 𝑣 before user 𝑢 commented on item 𝑣 . Our goal is to:
• Extract the rationales 𝑅 from reviews that is the direct cause
of the rating 𝑌 .
• Predict the rating 𝑦𝑢,𝑣 that reflects how much 𝑢 likes 𝑣 .

3 R3: RECOMMENDATION VIA REVIEW
RATIONALIZATION

As shown in Figure 2, the proposed recommendation via review
rationalization (R3) consists of three key components:
• Rationale generator, which consists of a word-level ratio-
nale generator and a review-level rationale generator. The
word-level rationale generator predicts the probability of
each word being rationale (by 𝜌𝑤𝑢,𝑣 ) and binarizes the prob-
abilities to select the top words from each review (by 𝑧𝑤𝑢,𝑣 ).
After that, the review-level rationale generator selects ratio-
nale reviews based on the word-level rationales.
• Rationale Predictor, which only takes rationales as input
to predict user ratings on items. The rationale in our def-
inition corresponds to the selected words in each review,
i.e., {𝑤𝑘 |𝑧𝑘 = 1}. The rationale predictor first embeds input
rationales into vectors and then uses a neural form of latent
factor model to predict the ratings.
• Correlation Predictor, which takes all features as input
including both rationales and correlated features. Since the
rationale generator provides the probability of each word
𝑤𝑡 to be selected as rationales, i.e., {𝜌1, . . . , 𝜌𝑙 }, we can use
the probabilities to weigh the importance of words in the
predictor. The rest of it is similar to the rationale predictor.

The above two predictors are designed to ensure that the ex-
tracted rationales are indeed the set of features with maximum
predictive ability by minimize the gap between their losses.

3.1 Rationale Generator
We design the rationale generator by a two-level approach to extract
both word-level and review-level rationales. We process text using
the same approach as the text processor in existing state-of-the-art
review-based CF methods, e.g., DeepCoNN [48] and NARRE [8].

3.1.1 Word-level rationale generator. In the word-level rationale
generator, we first pass the historical reviews of user 𝑢 and item
𝑣 into the text processor. Then, the features obtained by the text
processor can be used to calculate the probability of each word
being rationale. The output is concatenated over the neurons and
then passed to a fully connected layer consisting of a weight matrix
𝑊 ∈ R𝑚𝑑×1 and a bias 𝑏 as follows:

𝜌 = 𝜎 (𝑐𝑊 + 𝑏), (2)

where 𝑐 is the concatenated feature from the output of the text
processor for each word, 𝜎 is the sigmoid activation function, and
𝜌𝑢,𝑣 represents the probabilities of the words being selected as
rationales from the review that user 𝑢 gave to item 𝑣 .

To specifically choose rationales, we transform probabilities 𝜌
to binary signals denoted by 𝑧 as follows:

𝑧 = 𝜌 + 𝑓𝑑 (⌊𝜌⌉ − 𝜌). (3)
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⌊·⌉ is the rounding function and 𝑓𝑑 is the detach function indicating
that no gradients are needed. Intuitively, 𝑧 is a binary mask to select
rationale words from each review based on the probabilities 𝜌 .

3.1.2 Review-level rationale generator. After obtaining word-level
rationales, we further identify rationales that fully reflect user pref-
erences and item properties for each targeted user-item pair. We
model this as interactions among four information: user preference
P𝑢 , word-level rationales from user historical reviews 𝑅𝑤𝑢,∗, item
property P𝑣 , and word-level rationales from item historical reviews
𝑅𝑤∗,𝑣 .

Intuitively, user 𝑢 reveals its preference on item 𝑣 by posting a
review containing a set of word-level rationales denoted as 𝑅𝑤𝑢,𝑣 . We
can first model user preference by its review (𝑃 (𝑝𝑢,𝑣 |𝑅𝑤𝑢,𝑣)) using
the text processor. After obtaining features generated by the text
processor, we apply aggregation over the dimension of reviews as
follows:

𝑜 𝑗 = max(𝑐1
𝑗 , . . . , 𝑐

𝑙
𝑗 ), 𝑂 = [𝑜1, . . . , 𝑜𝑚], (4)

where 𝑐 𝑗 is the output of the convolutional layer in the text pro-
cessor, and 𝑐𝑡

𝑗
is the feature produced by the 𝑗-th neuron from the

sliding windows 𝑡 over the embedding matrix. Similarly, we obtain
features from item rationales 𝑅𝑤𝑢,𝑣 in the same way. Then, we pass
the outputs from user reviews and item reviews to a fully connected
layer to model user preference on items 𝑝𝑢,𝑣 .

After modelling the user preferences, we obtain the user prefer-
ence vector P𝑢 = {𝑝𝑢,1, . . . , 𝑝𝑢, |𝑊𝑢,∗|∼𝑡𝑢,𝑣 |} reflecting user interests
and the item preference vector P𝑣 = {𝑝1,𝑣, . . . , 𝑝 |𝑊∗,𝑣 |∼𝑡𝑢,𝑣 |,𝑣} reflect-
ing item properties. Then, we calculate an affinity matrix between
P𝑢 and P𝑣 , to select rationales that match both user interests and
item properties:

𝑠𝑢,𝑣 = P⊤𝑢 P𝑣 . (5)
By taking the row and column wise sum of the affinity matrix
𝑠 and using them to weigh the original list of reviews𝑊𝑢,∗|∼𝑡𝑢,𝑣
and𝑊∗,𝑣 |∼𝑡𝑢,𝑣 , we are able to obtain the probabilities of potential
rationales to become true rationales. Based on the affinity matrix 𝑠 ,
we compute the probabilities of user/item reviews being rationales
as follows:

𝜌𝑟𝑢 = 𝜎 (
∑︁
𝑟𝑜𝑤

𝑠), 𝜌𝑟𝑣 = 𝜎 (
∑︁
𝑐𝑜𝑙

𝑠), (6)

where 𝜌𝑟𝑢 or 𝜌𝑟𝑣 is the probabilities of user or item reviews to be
rationale reviews, respectively. Note that the review-level rationales
only contain the rationale words from the word-level rationale
generator.

3.2 Rationale Predictor
The rationale generator provides us with two levels of masks for
rationales, with which we can select rationale reviews containing
only rational words. Based on the final rationales, we can build the
rationale predictor to predict user ratings on items only by rationale
features.

We first use the text processor to learn user preference and item
properties from the rationales. We pass the rationales of user 𝑢 to
the text processor to get the user preferences matrix P𝑢 ∈ R𝑑×𝑙 ,
where 𝑑 is the output size of the final fully connected layer and 𝑙 is
the number of historical reviews from 𝑢. We then binarize the prob-
abilities from the rationale generator (by Equation 3) to obtain the

masks for rationales (denoted by 𝑧𝑟𝑢 ) and apply a binary weighted
sum to represent the final user rationale features 𝛾𝑟𝑢 . Similarly, the
final item rationale features 𝛾𝑟𝑣 can be obtained as follows:

𝛾
(𝑟 )
𝑢 = 𝑧𝑟𝑢

⊤P𝑢 , 𝛾 (𝑟 )𝑣 = 𝑧𝑟𝑣
⊤P𝑣 . (7)

Finally, we use a neural form of latent factor model to predict the
user ratings on items as follows:

𝑦
(𝑟 )
𝑢,𝑣 = ℎ𝑟 ( [𝛾 (𝑟 )𝑢 , 𝛾

(𝑟 )
𝑣 ]) + 𝑏𝑢 + 𝑏𝑣 + 𝜇, (8)

where 𝜇 is the global rating bias, 𝑏𝑢 is the user rating bias, 𝑏𝑣 is the
item rating bias, and ℎ𝑟 is a fully connected layer.

3.3 Correlation Predictor
Despite the rationale indicator mask, the rationale generator also
provides the probability of each word being selected as rationale. By
applying such probabilities to the input reviews, we can build the
correlation predictor to predict user ratings on items by utilizing
both rationale features and non-rationale features.

Similar to rationale predictor, we first use the text processor to
embed all the reviews and then apply a weighted sum to obtain
user/item correlation features. Different from the rationale pre-
dictor, we apply rationale probabilities as weights here instead of
binary weights as follows:

𝛾
(𝑐)
𝑢 = 𝜌𝑟𝑢

⊤P𝑢 , 𝛾
(𝑐)
𝑣 = 𝜌𝑟𝑣

⊤P𝑣 . (9)

Finally, we add the interaction correlation model via matrix factor-
ization [18] into the neural form of latent factor model to obtain
the final correlation predictor as follows:

𝑦
(𝑐)
𝑢,𝑣 = ℎ𝑐 ( [𝛾 (𝑐)𝑢 + 𝛾 (𝑒)𝑢 , 𝛾

(𝑐)
𝑣 + 𝛾 (𝑒)𝑣 ]) + 𝑏𝑢 + 𝑏𝑣 + 𝜇, (10)

where𝛾 (𝑒)𝑢 and𝛾 (𝑒)𝑣 are the user embedding and the item embedding
trained by matrix factorization.

3.4 Model Learning
We apply mean square loss for both rationale predictor and corre-
lation predictor as follows:

L𝑅 =
∑︁

𝑢,𝑣∈D
(𝑦 (𝑟 )𝑢,𝑣 − 𝑦𝑢,𝑣)2, L𝐶 =

∑︁
𝑢,𝑣∈D

(𝑦 (𝑐)𝑢,𝑣 − 𝑦𝑢,𝑣)2, (11)

where D denotes the set of instances for training, and 𝑦𝑢,𝑣 is the
true rating assigned by the user 𝑢 to the item 𝑣 .

Since the rationale generator needs to construct a minimal fea-
ture set with maximum predictive ability, to satisfy the constraints
introduced by d-separation in Figure 1, we add two terms to the op-
timization objective. The first term is to minimize the gap between
L𝑅 and L𝐶 as follows:

L𝑅,𝐶 = ReLU(L𝑅 − L𝐶 ), (12)

which can help to ensure that features extracted by the rationale
generator is as predictive as the case when all correlations are
considered, i.e., ensure that the rationales 𝑅 have the maximum
predictive ability. The second term ensures that the size of the
selected rationales is small via a sparsity constraint as follows:

L𝑅𝑒𝑔 = E[| |𝑅 | |1] − 𝛾, (13)
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where 𝛾 is a predefined gap level and E[| |𝑅 | |1] denotes the pro-
portion of rationales in all input features. Finally, we design the
optimization objective of the rationale generator as follows:

L𝐺 = L𝑅 + 𝜆ReLU(L𝑅 − L𝐶 ) + 𝛼 (E[| |𝑅 | |1] − 𝛾) . (14)

We apply a loop training strategy for this adversarial learning to
optimize L𝑅 , L𝐶 and L𝐺 .

4 EXPERIMENT
In this section, we conduct comprehensive experiments to answer
the following research questions (RQs):
• RQ1 Does R3 outperform state-of-the-art methods?
• RQ2 Does R3 get rationales instead of correlations?
• RQ3What are the impacts of the design choices of R3?
• RQ4 Does the rationales help improve explainability?

4.1 Experimental Setup
4.1.1 Dataset. We use five publicly available datasets from dif-
ferent domains to evaluate the proposed method. The first four
datasets are from Amazon1: Home and Kitchen (35,515 users, 11,843
items, 341,138 reviews), Toys and Games (19,385 users, 11,912 items,
167,328 reviews), Health and Personal Care (38,577 users, 18,520
items, 346,089 reviews), and Beauty (22,348 users, 12,095 items,
198,378 reviews). Note that Beauty is only used to evaluate the
performance of knowledge transfer across datasets because Beauty
contains items (e.g., facial cream) that are similar to those in Health
and Personal Care (e.g., after sun moisture), i.e., we train R3 on the
Health-and-Personal-Care dataset and evaluate its performance on
the Beauty dataset to evaluate the transferability of R3.

The Yelp2 dataset is provided by OpinionDigest [36], in which
aspects and opinions from reviews are extracted by Snippext [25].
Since the raw data is very large and sparse, we only kept the users
and items with at least five ratings. After pre-processing, it contains
341,138 reviews from 35,515 users on 11,843 items.

We use randomized 80:10:10 train/validation/test splits. For each
example, we ensure that user/item historical reviews are posted
before the targeted timestamp. To evaluate the performance of
R3 with data distribution shifts, we sample 2% of users whose
average rating are around 3, which are much less biased than the
original datasets, and we call them “debiased datasets”. The reason
why we choose 2% of users is that the number of their reviews is
approximately equal to the size of the test sets. These debiased test
sets are referred to as “test-u” in the experiments.

4.1.2 Evaluation Metrics. To evaluate the performance of all al-
gorithms, we calculate Mean Square Error (MSE), which is widely
used for rating prediction in recommender systems. A lower MSE
score indicates a better performance. Given a predicted rating 𝑦𝑢,𝑣
and a ground-truth rating 𝑦𝑢,𝑣 from the user 𝑢 for the item 𝑣 , the
MSE is calculated as follows:

MSE =
1
𝑁

∑︁
𝑢,𝑣

(𝑦𝑢,𝑣 − 𝑦𝑢,𝑣)2 . (15)

To evaluate the influence of biases in rating prediction, we apply
Pearson Correlation Coefficient (PCC) between predicted ratings

1https://cseweb.ucsd.edu/ jmcauley/datasets.html
2https://github.com/megagonlabs/opiniondigest

and the true ratings as follows:

PCC =

∑
𝑢,𝑣 (𝑦𝑢,𝑣 − ¯̂𝑦𝑢,𝑣) (𝑦𝑢,𝑣 − 𝑦𝑢,𝑣)√︃∑

𝑢,𝑣 (𝑦𝑢,𝑣 − ¯̂𝑦𝑢,𝑣)2
√︃∑

𝑢,𝑣 (𝑦𝑢,𝑣 − 𝑦𝑢,𝑣)2
, (16)

The intuition behind this is that predicted ratings with a constant
bias may increase/decrease the MSE but will not affect the PCC.
Hence we can evaluate the performance from a new perspective,
i.e., if the performance improvements of R3 are from data biases or
not.

To evaluate the performance of the proposed rationale generator,
we compare the extracted rationales with the aspects and opinions
extracted by Snippext [25] by the Explainability Recall measure [1].
Intuitively, aspects and corresponding opinions provided by users
are the causes of the ratings. A higher recall indicates that our ratio-
nale generator extracts more of the aspects and opinions from the
reviews. Since multiple words may have the same semantic mean-
ing, we apply word vector cosine similarity to define synonyms.
Extracting a synonym word can be treated as True Positive. We will
evaluate the recall by applying different thresholds of synonym.

4.1.3 Baseline Methods. We consider a variety of methods fol-
lowing [32], which cover multiple categories of CF algorithms
from traditional MF to state-of-the-art review-based deep-learning
methods as follows. 1) MF [18], in which ratings are modeled as:
𝑦𝑢,𝑣 = 𝛾𝑢𝛾𝑣 + 𝑏𝑢 + 𝑏𝑣 + 𝜇. 2) D-CoNN [48], which learns item
properties and user behaviors jointly from reviews and models the
rating by a neural network conditioned on the extracted features.
An improved version named D-CoNN++ (not in the original pa-
per) is considered where the global, user, and item biases (𝜇, 𝑏𝑢 , 𝑏𝑣)
are learnt and added to the output. 3) T-Nets [5], which uses the
current review for regularization by minimizing the distance be-
tween the latent spaces. Similarly, an improved version named
T-Nets++ is consider in this paper where latent factors from MF
are concatenated to the textual features. 4) MPCN [38], which pro-
poses a review-by-review pointer-based learning scheme to infer
the importance of each review. 5) NARRE [8], which follows the
intuition of MPCN but uses an attention mechanism to learn the
weights over individual reviews. 6) AHN [13], which accounts for
the difference of users’ heterogeneous reviews and item’s homo-
geneous reviews by means of asymmetric attentive modules. 7)
ESCOFILT [30], which integrates BERT, K-Means embedding clus-
tering, and multilayer perceptron to learn sentence embeddings,
representation-explanations, and user-item interactions, respec-
tively.

We also compare our method with state-of-the-art explainable
method AR [27], which extracting explanations from latent factor
based recommendation algorithms by training association rules on
the output of a matrix factorization-based black-box model, on the
evaluation of explainability.

4.1.4 Implementation Details. For the comparedmethods, we reuse
the implementations from the original papers. The hyper-parameters
for the compared methods are initialized as those in the correspond-
ing papers, and then carefully fine-tuned via grid search (with the
same search space as our method) to achieve optimal performance.
More specifically, we search the learning rate in [0.001, 0.005, 0.01,
0.05], L2 regularization coefficient in [10−3, 10−4, 10−5, 10−6, 10−7],



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Sicheng Pan et al.

Table 1: Performance comparison (mean square error) on benchmark datasets. R3-R means the results of the rationale predictor
and R3-C means the results of the correlation predictor. The best performance is in boldface. * and ** denote the statistical
significance for 𝑝 < 0.05 and 𝑝 < 0.01, respectively, of R3-R compared to the best baseline.

(a) Raw Dataset MF D-CoNN D-CoNN++ T-Nets T-Nets++ MPCN NARRE AHN ESCOFILT R3-R R3-C
Home and Kitchen 0.8882 0.8770 0.9895 0.9318 0.8952 0.8881 0.8815 0.8768 0.8778 0.8421** 0.8432
Toys and Game 0.6916 0.6799 0.6770 0.682 0.6859 0.6925 0.6862 0.6806 0.6899 0.6760* 0.6537

Health and Personal Care 0.9239 0.9188 1.0332 0.9712 0.9404 0.9531 0.9626 0.8949 0.8798 0.8510** 0.8470
Yelp 1.0811 1.0796 1.0761 1.0715 1.0903 1.1097 1.0672 1.0774 1.0691 1.0603** 1.0638

(b) Debiased Dataset MF D-CoNN D-CoNN++ T-Nets T-Nets++ MPCN NARRE AHN ESCOFILT R3-R R3-C
Home and Kitchen 3.9481 3.8327 4.4353 3.8859 3.7996 4.3538 3.8801 3.6787 3.7414 3.0957** 3.1048
Toys and Game 2.8575 2.8244 3.0766 3.0968 2.4824 2.7924 2.9847 2.3808 2.3613 2.0158** 2.1809

Health and Personal Care 3.7198 3.8870 4.5853 3.5987 3.4528 4.1551 4.1778 3.3892 3.6773 2.8640** 2.9443
Yelp 2.6131 2.8038 2.8559 3.014 2.6519 3.1663 2.8603 2.5824 2.6333 2.3466** 2.3432

and dropout rate in [0, 0.2, 0.4, 0.6, 0.8]. We use Adam [17] to adap-
tively change the learning rates for all the training. We train all
models with early stopping (i.e., we stop model training if model
performance does not improve for 10 epochs), and report the test
results from the best performing models on the validation sets. In
text embedding layer, we use GloVe3 with the dimension of 50.

4.2 Experimental Results
4.2.1 Overall Performance (RQ1). Table 1 (a) compares the accuracy
of R3 with all baseline methods in the standard rating prediction set-
ting. We can observe that R3 outperforms all the compared methods
on all four datasets, which confirms the superiority of our method
in recommendation accuracy and answers RQ1.

Besides, we have an additional observation from Table 1 (a). Most
of the methods considering reviews perform better than MF which
only considers the rating matrix as the input. This is not surprising
because review information is complementary to ratings and can
be used to improve the quality of representation learning in CF.
However, we also observe that, in a few cases, MF outperforms some
of the review-based methods. We conjecture that this behaviour is
mainly due to the spurious correlations applied by review-based
methods. Since the parameter size of each review-based model is
much larger than the MFmodel, spurious correlations may be easily
discovered and leveraged by these review-based methods leading to
higher attentions towards non-generalized features and achieving
unexpected results.

4.2.2 Robustness Analysis (RQ2). To answer RQ2, we evaluate if
the extracted rationales 𝑅 are effective for recommendation across
data distributions or even across datasets. The intuition is from
d-separation in Figure 1, in which 𝐶∗ and 𝑌 are independent con-
ditioned on 𝑅. Thus, models based on 𝑅 should be less influenced
when 𝐶∗ is changed, e.g., shifting data distribution or testing on
other similar dataset.

To evaluate the performance of R3 with data distribution shifts,
we conduct detailed experiments on the debiased test sets namely
test-u. As mentioned above, test-u contains reviews posted by users
whose average rating is around 3, i.e., the test rating distributions
are significantly different from the training rating distributions in
this experiment. As shown in Table 5 (appendix), test-u shows a
more uniform distribution among ratings from 1 to 5. Table 1 (b)
3https://nlp.stanford.edu/projects/glove/

compares the accuracy of R3 and all the baseline methods on the
four debiased test sets, in which we can see that R3 outperforms
all the other methods on all the datasets. We can further have
the following observations: 1) the rationales extracted by R3 can
better help to alleviate the spurious correlation effects than the
other methods and thus can help to achieve more robust results on
datasets with new rating distributions and 2) our rationale predictor
R3-R performs better than the correlation predictor R3-C in this
setting because R3-C takes not only rationales but also correlations
as its input, which may introduce unexpected spurious correlations
even though rationales are with higher weights in the model.

To evaluate the performance of R3 across different datasets, we
train R3 and the state-of-the-art baseline NARRE on the Health-
and-Personal-Care dataset and evaluate their performance on the
Beauty dataset. Since these are two different datasets, MFmay suffer
from untrained item embeddings, so that we only test the review-
based methods. We choose NARRE as the baseline here because
it shows very competitive results in previous experiments and
it also follows the classic interest + biasuser + biasitem + biasglobal
prediction paradigm so that we can easily analyse the effectiveness
of each component. The components are defined as follows:

𝜋𝑢,𝑣 = interest + biasuser + biasitem + biasglobal .

𝜋 = interest.
𝜋𝑢 = interest + biasuser .

𝜋𝑣 = interest + biasitem .

(17)

Here, interestmeans that we predict the ratings by user embedding
and item embedding via dot production or MLP.

Intuitively, in this transfer learning setting, all predictions in-
volving item features or item bias will be non-transferable because
the items in test set were not observable during training. Therefore,
user preferences will be the only transferable features in this ex-
periment. As shown in Table 2, both R3-R and R3-C exhibit higher
accuracy than NARRE on the new dataset, which indicates that our
methods can better capture the invariant features across datasets
than NARRE. In addition, we can have the following two observa-
tions: 1) we can see from the Pearson Correlation Coefficient (PCC)
results that R3 relies more on 𝜋𝑢 (the only transferable feature) in
the prediction than NARRE; and 2) 𝜋 and 𝜋𝑣 are closely related to
item features and item biases, which are non-transferable across
datasets, and their correlations with R3 are close to zero. These
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Table 2: Transfer learning fromHealth-and-Personal-Care to
Beauty, i.e., we train R3 and NARRE on Health-and-Personal-
Care and evaluate their performance on Beauty. The best
performance is in boldface. *: p < 0.05 in statistical signifi-
cance test, for R3-R compared to NARRE.

Model MSE PCC
𝜋𝑢,𝑣 𝜋 𝜋𝑢 𝜋𝑣

NARRE 1.4687 0.1446 0.0840 0.1446 0.0840
R3-R 1.4267* 0.1638 -0.0328 0.1638 -0.0328
R3-C 1.4156 0.1639 -0.0022 0.1639 -0.0022

two observations further confirm that R3 can better capture the
transferable features when making predictions across datasets.

Note that R3-C achieves slightly better accuracy than R3-R in the
transfer learning setting. The reason is that only user preferences
and user biases are transferable in this setting but 𝜋 will be non-
transferable because it makes predictions by both user embedding
(transferable) and item embedding (non-transferable). Thus, the
only transferable feature is the user bias term. Since R3-C can better
capture training data biases than R3-R, R3-C may exhibit higher
accuracy when the predictions are only relying on the user biases.

4.2.3 Impact of Each Component (RQ3). Since R3 follows the classic
interest + biasuser + biasitem + biasglobal prediction paradigm, we
measure the impact of each component by PCC. Intuitively, higher
PCC of a component indicates higher importance of its predictions.
Table 3 presents the detailed MSE and PCC comparison among R3,
MF and NARRE on the Yelp dataset under two settings: benchmark
test set (with the same rating distribution as the training set) and
debiased test set (with different rating distribution as the training
set).

From the results in the benchmark setting, we can have the fol-
lowing observations: 1) both the PCCs of 𝜋𝑢 and 𝜋𝑣 are significant,
i.e., bias terms contribute a lot to the predictions. The item bias
dominates because 𝜋𝑣 has the highest PCC value; 2) R3-R achieves
higher accuracy but lower PCC on user/item bias compared to MF
and NARRE, which indicates that R3-R can achieve decent perfor-
mance even without fully relying on rating distribution biases; 3)
R3-C can also achieve decent performance without fully relying
on rating distribution biases, which should be due to that rationale
features will be given higher weights in R3-C so that R3-C can rely
on these rationale features in addition to user/item biases.

From the results in the debiased setting, we can have the follow-
ing observations: 1) the users are new in this setting, so that 𝜋 and
𝜋𝑢 will be uncorrelated to the predictions in MF. But review-based
methods will not suffer from new user issue, because they can rely
on reviews in rating prediction; 2) in R3-R, the PCCs of 𝜋𝑢 and
𝜋𝑣 are almost equal, which indicates that the rationale features
captured by R3-R are predictive even on new users with new rating
distributions; and 3) in R3-C, the PCC of 𝜋𝑣 is much higher than
that of 𝜋𝑢 , which indicates that the features extracted by R3-C are
biased. Note that the MSE difference between R3-R and R3-C is not
statistically significant and should be due to the randomness in the
test set.

Table 3: Detailed MSE and PCC comparison among R3, MF
and NARRE on the Yelp dataset under two settings. The best
performance is in boldface. **: p < 0.01 in statistical signifi-
cance test, for R3-R compared to the best baseline.

Model MSE PCC
𝜋𝑢,𝑣 𝜋 𝜋𝑢 𝜋𝑣

benchmark test set
MF 1.0811 0.3731 0.0470 0.2017 0.3325

NARRE 1.0672 0.3671 0.2810 0.2307 0.3490
R3-R 1.0603** 0.3696 0.1799 0.1965 0.3290
R3-C 1.0638 0.3677 0.1638 0.2027 0.3280

debiased test set
MF 2.6131 0.3257 -0.0004 -0.0004 0.3257

NARRE 2.8603 0.3237 0.2603 0.2603 0.3237
R3-R 2.3466** 0.3290 0.3128 0.3128 0.3287
R3-C 2.3432 0.3323 0.2209 0.2209 0.3275

4.2.4 Explanation via Rationales (RQ4). In this experiment, we an-
alyze the explainability of the proposed method. State-of-the-art
explainability metrics are based on calculating the proportion of
explainable items among all recommendations. Inspired by [1], we
use Explainability Recall to measure explainability. Original explain-
ability recall is the proportion of explainable items in the top-n
recommendation list relative to the number of all explainable items
for a given user. However, all of the recommendations provided
by the review based recommender systems can be explained us-
ing reviews used for recommendations. Hence we propose to fine
tune the original explainability recall for finer grained explana-
tion fidelity evaluation, we calculate the proportion of raionales
extracted by our models relative to the rationales provided by the
user in its ground truth review, which is unseen to our model. More
specifically, we first compare the rationales extracted by the pro-
posed rationale generator with the aspects and opinions extracted
by Snippext [25] in each review. Intuitively, aspects and opinions
in each review are causal features for predicting the ratings since
they are the most descriptive features in reviews. And Snippext is
the state-of-the-art aspects and opinions extractor. Hence, a high
explainability recall between the rationales and the aspects and
opinions indicates that the proposed rationale generator can extract
more of the true rationales. Since it is common that the extracted
rationales and aspects and opinion tokens are with the same se-
mantic meaning but represented by different words (e.g., nice and
good), so we compute the cosine similarity between their word
vectors and treat cosine similarities above a certain threshold as
true positives.

Figure 3 shows the correlation between cosine similarity thresh-
old and the explainability recall. The intuitive understanding behind
the threshold is as follows: if we select a cosine similarity threshold
as 0.7, it will infer that words like “aged” and “older” share the same
semantic. As we can see from the results, if we select the threshold
as 0.7, we can achieve a pretty high explainability recall of 0.9, i.e.,
around 90% of aspects and opinions are successfully discovered by
the proposed rationale generator.

Figure 3 also compares the explainability of R3 with the state-of-
the-art explainable method – AR [27]. As we can see, AR shows a
model fidelity of 0.85 in this experiment, which indicates that 85% of
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Table 4: Rationales (words in boldface) from user and item reviews extracted by R3 for predicting the targeted review and
rating. The targeted review is: food has improved recently but service is slow and always pesky flies - gross. its hit or miss.

user historical reviews item historical reviews

- been here a few times - close location and "burger deals". service is
horrible and food is so slow, could be better. cute burger ideas, but
not worth full price - more bar like then food place.

have been there multiple times as 1/2 off coupons - bad food
and service 3 out of 4 visits - 1/2 off coupons still available -
no thank u. even when empty service sucked, burgers
overcooked, side dish errors on plate, bad bad, was great
place - bar seems busy for happy hour maybe, no more
attempts by me.

- water as beverage - horrid service - to get water then food, oh boy
then waiting for bill. food was good , but service blew!

the recommendations are explainable. Same as explainability recall,
model fidelity also measures the percentage of explainable recom-
mendations. This comparison confirms that R3 exhibits comparable
explainability to the state-of-the-art explainable CF method.

Besides quantitative analysis, we further present some rationale
examples extracted by the proposed method in Table 4. Consider
the context of recommending a restaurant to a user. R3 can find
that the user was more concerned with food quality and service
quality, which were reflected by his/her reviews about food and ser-
vice. Meanwhile, R3 also finds the restaurant reviews that contain
aspects and opinions about food and service. Then, R3 can make
recommendations based on the rationales from user historical re-
views and item historical reviews. The targeted review (the ground
truth of the example) verifies that the extracted rationales from
historical reviews are indeed highly consistent with the targeted
review. This qualitative study further confirms the effectiveness of
the proposed rationale generator.

Figure 3: Explainability Recall of R3 w.r.t. different word
vector cosine similarity thresholds (x-axis). Model fidelity of
the AR method is also reported for comparison.

5 RELATEDWORK
Many recent works are proposed to exploit reviews for recom-
mendation, which mainly falls into two categories. 1) Topic-based
methods [2, 24, 37, 47], which integrates topic models in their frame-
works to learn the latent factors from user and item reviews to im-
prove the recommendation performance. However, many of these
methods organize reviews via the bag-of-words representation,
which ignores the word ordering and may fail to effectively cap-
ture the semantic meanings of reviews. 2) Deep learning-based
methods [5, 8, 38, 48], which try to extract features from user re-
views and item reviews through deep learning architectures, and
use these extracted features to perform matrix factorization. Re-
cently, [14] introduced novel views of organizing and exploiting

reviews: sequence level and graph level, which enables the CF mod-
els to additionally capture short-term features and collaborative
features. Different from the above methods, this work proposes a
novel method to extract rationales from reviews to achieve more
robust recommendation.

Selective rationalization [6, 9, 10, 20, 45] is also a related area,
which can help to address the interpretability issue. The key idea
behind these methods is to find a small subset of the input features
– rationales – that suffice on its own to yield the same outcome.
Lei et al. [20] first proposed a generator-predictor framework for
rationalization, following which several recent works [6, 9, 10, 45]
applied different techniques to deal with the challenges in generat-
ing high-quality rationales. Recently, Chang et al. [7] proposed a
game-theoretic invariant rationalization criterion which can learn
invariant rationales among different environments. This work fol-
lows this line of research and sheds new light on applying rational-
ization techniques for accurate and explainable recommendation.

It has been widely known that virtually all data for training CF
models suffers from selection bias, because the data we observe is
missing not at random [23, 33–35, 44]. For instance, users are less
likely to provide ratings for movies they do not like [23]. Previous
approaches for dealing with selection bias include choosing more
robust target metrics [35] or modeling the generative process of
missing data explicitly [16]. Recently, several approaches [33, 34, 44]
took a counterfactual perspective, resulting in a principled approach
for adjusting for selection bias via propensities. This work differs
from the above works by taking a SCM perspective and proposes a
review rationalization method to achieve accurate and explainable
recommendation, which can alleviate the spurious correlations
caused by the missing not at random issue.

6 CONCLUSION
In this paper, we propose a review rationalization based algorithm
for accurate and explainable recommendation, named Recommen-
dation via Review Rationalization (R3). R3 first extracts rationales
from user and item reviews via a rationale generator to alleviate
the effects of spurious correlations in recommendation. Then, R3
can achieve accurate recommendation and provide causal-aware
explanation based on the rationales. Extensive experiments on pub-
lic datasets demonstrate the superiority of the proposed method in
terms of accuracy and explainability.
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A TEXT PROCESSOR
In this section, we detail the text processor we use. The text proces-
sor works as follows. In the first layer, a word embedding function
maps each word in the review into a 𝑑 dimensional vector, and
then the given text will be transformed to an embedded matrix
with fixed length 𝐿 (padded with zero wherever necessary to tackle
length variations). The word embedding model can be any pre-
trained models like those trained on the GoogleNews corpus using
word2vec [26], or on Wikipedia using GloVe [4].

Following the embedding layer, there is a convolutional layer
consisting of𝑚 neurons, each of which is associatedwith a filter𝐾 ∈
R𝑘×𝑑 which produces features by applying convolution operator
on word vectors. Let e = {𝑒1, . . . , 𝑒𝐿} be the embedding matrix
corresponding to the input text with length 𝑙 (𝑙 ≤ 𝐿). The 𝑗𝑡ℎ
neuron produces its features as follows:

𝑐 𝑗 = ReLU(e ∗ 𝐾𝑗 + 𝑏 𝑗 ), (18)

where 𝑏 𝑗 is the bias, ∗ is the convolution operation and ReLU is the
Rectified Linear Unit activation function.

Let 𝑐1, 𝑐2, . . . , 𝑐𝐿 be the features produced by the 𝑗𝑡ℎ neuron
using the sliding window with size 𝑘 over the embedded text, then
we treat them as word-level features. To capture features of each
review, we use a max-pooling operation [12] to capture the most
important features. The final output of the convolutional layer is
the concatenation of the output from all𝑚 neurons as follows:

𝑜 𝑗 = max(𝑐1, 𝑐2, . . . , 𝑐𝐿),
𝑂 = [𝑜1, 𝑜2, . . . , 𝑜𝑚] .

(19)

B RATING DISTRIBUTIONS
In this section, we report rating distributions of all datasets we used
for training and testing in Table 5.

Table 5: Rating Distributions of All Datasets.

Dataset Split 5 4 3 2 1

Home
and
Kitchen

train 0.6843 0.1886 0.0697 0.0305 0.0268
valid 0.6826 0.1905 0.0699 0.0289 0.0281
test 0.6855 0.1878 0.0713 0.0301 0.0253
test-u 0.2851 0.2094 0.1628 0.1391 0.2037

Amazon
Toys and
Games

train 0.6637 0.2175 0.0800 0.0246 0.0143
valid 0.6528 0.2228 0.0834 0.0250 0.0160
test 0.6743 0.2105 0.0780 0.0241 0.0132
test-u 0.2448 0.2705 0.2251 0.1318 0.1279

Health
and
Personal
Care

train 0.6638 0.1958 0.0813 0.0337 0.0253
valid 0.6584 0.1927 0.0851 0.0363 0.0275
test 0.6752 0.1869 0.0797 0.0329 0.0253
test-u 0.2592 0.2139 0.1909 0.1431 0.1929

Beauty test 0.5770 0.2002 0.1121 0.0577 0.0530

Yelp

train 0.4436 0.3211 0.1336 0.0553 0.0465
valid 0.4385 0.3263 0.1348 0.0531 0.0473
test 0.4605 0.3094 0.1279 0.0559 0.0465
test-u 0.1838 0.2322 0.2091 0.1690 0.2060

C RANKING METRIC
In this section, we evaluate the proposed method in top-N recom-
mendation task and report the results on ranking metrics. Table 6
compares the Normalized Discounted Cumulative Gain (NDCG) of
R3 with MF and NARRE.

Table 6: Detailed NDCG comparison among R3, MF and
NARRE on the Yelp dataset under two settings. The best
performance is in boldface. **: p < 0.01 in statistical signifi-
cance test, for R3-R compared to the best baseline.

Metric Model
MF NARRE R3-R R3-C

benchmark test set
NDCG 0.0975 0.1053 0.1803** 0.1798

debiased test set
NDCG 0.2072 0.2075 0.2082** 0.2079

https://doi.org/10.1145/3018661.3018665
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