
Future Generation Computer Systems 55 (2016) 311–320
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An algorithm for efficient privacy-preserving item-based
collaborative filtering
Dongsheng Li a, Chao Chen a, Qin Lv b,∗, Li Shang a,b, Yingying Zhao a, Tun Lu c, Ning Gu c,∗

a Tongji University, Shanghai 201804, PR China
b University of Colorado Boulder, Boulder, CO 80309, USA
c Fudan University, Shanghai 200433, PR China

h i g h l i g h t s

• We propose an efficient privacy-preserving item-based collaborative filtering method.
• We propose an unsynchronized protocol to achieve secure multi-party computation.
• We propose two incremental privacy-preserving item similarity computation methods.
• The privacy preservation property of the proposed method is formally proved.
• The proposed method is more efficient and accurate than two well-known methods.

a r t i c l e i n f o

Article history:
Received 20 November 2013
Received in revised form
10 September 2014
Accepted 10 November 2014
Available online 2 December 2014

Keywords:
Item-based
Collaborative filtering
Privacy
Efficiency

a b s t r a c t

Collaborative filtering (CF) methods are widely adopted by existing recommender systems, which can
analyze and predict user ‘‘ratings’’ or ‘‘preferences’’ of newly generated items based on user historical
behaviors. However, privacy issue arises in this process as sensitive user private data are collected by the
recommender server. Recently proposed privacy-preserving collaborative filtering (PPCF) methods, using
computation-intensive cryptography techniques or data perturbation techniques are not appropriate
in real online services. In this paper, an efficient privacy-preserving item-based collaborative filtering
algorithm is proposed, which can protect user privacy during online recommendation process without
compromising recommendation accuracy and efficiency. The proposed method is evaluated using
the Netflix Prize dataset. Experimental results demonstrate that the proposed method outperforms a
randomized perturbation based PPCF solution and a homomorphic encryption based PPCF solution by
over 14X and 386X, respectively, in recommendation efficiency while achieving similar or even better
recommendation accuracy.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recommender systems are becoming important due to the
increasing ‘‘information overload’’ challenge on the Internet. Col-
laborative filtering (CF), as one of the most popular recommen-
dation techniques, is adopted by many online service providers,
such as Amazon [1], Youtube [2] and Google News [3]. CF meth-
ods work as follows: (1) the server first collects user historical
behaviors and analyzes user/item correlations; and (2) recommen-
dations are generated based on these user/item correlations. Dur-
ing this process, user specific, hence, sensitive information, such as

∗ Corresponding authors.
E-mail addresses: qin.lv@colorado.edu (Q. Lv), ninggu@fudan.edu.cn (N. Gu).

http://dx.doi.org/10.1016/j.future.2014.11.003
0167-739X/© 2014 Elsevier B.V. All rights reserved.
item rating, demographical information, activity pattern, social re-
lationships, etc., are collected by the recommender system, which
arises privacy concerns. Recent studies have shown that user pri-
vacy could be exploited by service providers or malicious users to
gain profits. Recommender system (service provider) could share
user private data with other parties to make personalized adver-
tisements [4], or even sell these information to other parties [5]. In
some cases, user private data may be exposed via open APIs of ser-
vice provider [6], or attacked bymalicious users [7,8]. To eliminate
these concerns, CF methods should not disclose user private data
to the recommender system yet allowing to provide personalized
recommendations to end users.

Existing works on privacy-preserving collaborative filtering
(PPCF) mainly rely on cryptography [5,9,10] or data perturbation
[11–13] to protect the recommender system from obtaining user

http://dx.doi.org/10.1016/j.future.2014.11.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.11.003&domain=pdf
mailto:qin.lv@colorado.edu
mailto:ninggu@fudan.edu.cn
http://dx.doi.org/10.1016/j.future.2014.11.003

312 D. Li et al. / Future Generation Computer Systems 55 (2016) 311–320
data. Cryptography based PPCF methods generally adopt homo-
morphic encryption to encrypt user information. Then, recommen-
dation scores could be computed on encrypted data, so that user
privacy are protected. It is known that, complex encryptions and
decryptions are computationally prohibitive for large-scale online
services which face with serious scalability issues. Data perturba-
tion based PPCF methods inject noise on user data to prevent rec-
ommender system fromobtaining user privacy. However, this kind
of methods decrease the accuracy of recommendations [11–13].
It is known that accuracy is the ultimate goal of recommender
system, so that degradations in recommendation accuracy are not
acceptable in real online services. Moreover, data perturbation
technique is limited in privacy preservation. Recent works [14,15]
have shown that the server could partially recover user privacy
from perturbed user data using machine learning techniques. In
summary, it calls for a collaborative filtering method which of-
fers high efficiency and high accuracy and protects user privacy for
large-scale online services.

In this paper, an efficient privacy-preserving item-based col-
laborative filtering algorithm is proposed, which can protect user
privacy during recommendation process without compromising
accuracy and efficiency. In the proposed method, item similarities
are calculated by efficient securemulti-party computation (SMPC),
which can achieve the same efficiency and accuracy as centralized
item similarity computation. After similarity computation, users
could locally calculate recommendation scores and obtain recom-
mendations with privacy. The proposed method is evaluated on
the Netflix Prize dataset, and experimental results demonstrate
that the proposed method can achieve higher efficiency than two
well-known PPCF solutions without compromising recommenda-
tion accuracy. The contributions of this work are summarized as
follows:

1. An efficient privacy-preserving item-based collaborative fil-
tering algorithm is proposed to protect user privacy during
recommendation process without compromising recommen-
dation accuracy and efficiency.

2. An unsynchronized secure multi-party computation protocol
is proposed to achieve multi-party computation without
requiring that users should be online simultaneously during
computation.

3. Two similarity computation algorithms are proposed to effi-
ciently measure item similarities without compromising user
privacy. Meanwhile, the proposed methods could incremen-
tally compute item similarities, so that the item similarity
model could be updated incrementally in the proposedmethod.

4. The proposed method is evaluated on the Netflix Prize dataset.
Experimental results demonstrate that the overall efficiency of
the proposed method outperforms a randomized perturbation
based PPCF method and a homomorphic encryption based
PPCF method by over 14X and 386X, respectively. Meanwhile,
the proposed method achieves the same accuracy compared
with the homomorphic encryption based PPCF method and
outperforms the randomized perturbation based PPCF method
by approximately 0.13%–1.07% in accuracy.

The rest of this paper is organized as follows: Section 2discusses
related work. Section 3 presents the proposed privacy-preserving
item-based collaborative filtering algorithm. Section 4 discusses
and proves the privacy-preservation property of the proposed
method. Section 5 presents and discusses the detailed evaluation
results. Finally, we conclude this paper in Section 6.

2. Related work

Recommender systems have become an important research
area in recent years [16]. Compared with content-based recom-
mendation approach [17], collaborative filtering (CF) is one of the
most widely adopted recommendation approach in existing rec-
ommender systems [16]. A wide range of CF methods have been
proposed in the literature, which generally fall into twomain cate-
gories: user-based CF [3,18], item-based CF [1,2,19]. Existing stud-
ies show that item-based CF methods could achieve comparable
or better recommendation accuracy compared with user-based CF
methods [19,20]. Meanwhile, item similarities can be calculated
on a subset of user ratings [1], so that item-based CF methods
are of better scalability. Moreover, user-based CF methods suffer
from the ‘‘cold start user’’ problem, which is less of an issue in
item-based CF methods. Overall, item-based CF methods play an
important role in recommender system, so that the design of
privacy-preserving item-based CF algorithm in this paper is ben-
eficial.

Privacy issues of collaborative filtering have also been identified
and investigated by recent works [5,9–13]. Existing works toward
privacy-preserving collaborative filtering (PPCF) could be classified
into two main categories. The first type of PPCF methods adopt
cryptography to hide user private data. Canny [5] proposed a
privacy-preserving SVD-based collaborative filtering method. In
his solution, users compute the singular value decomposition
(SVD) of the user–item matrix using homomorphic encryption,
in which user privacy are protected by the encryption technique.
After SVD computation, users can obtain recommendations via
local computations. Aïmeur et al. [9] proposed the Alambic system,
which can protect user privacy in a hybrid recommender system.
The basic idea of Alambic system is that user private data are
separated between the service provider and a semi-trusted third
party, and the public key infrastructure is adopted to ensure
data security. Thus, user privacy could be protected if the service
provider does not collude with the semi-trusted third party.
Kikuchi et al. [10] proposed a privacy-preserving collaborative
filtering method, in which user similarities are calculated using
homomorphic encryption. Meanwhile, item recommendation
scores are also calculated using homomorphic encryption and then
decrypted by a set of trusted authorities, so that user can obtain
recommendations without privacy violation. Cryptography based
PPCF solutions have the same accuracy comparedwith CFmethods
without privacy protection. However, encryption operations and
computations on encrypted data greatly increase the computation
overhead of recommender system. Our study using the Netflix
Prize dataset shows that homomorphic encryption based PPCF
method requires approximately 30X computation time compared
with CF method without privacy protection. Thus, this kind of
methods are not appropriate for applicationswith large-scale users
and items. On the contrary, the privacy-preserving item-based CF
method proposed in this paper does not rely on cryptography to
protect user privacy, so that much higher efficiency is achieved.

The second type of PPCF methods adopt data perturbation
techniques to inject noise on user private data before sending to
recommender system, so that user privacy could be protected.
Polat et al. [11] proposed a randomized perturbation technique to
protect user privacy, in which random noises are injected to user
rating data to prevent the recommender system from obtaining
user privacy. However, the noisewould affect the recommendation
accuracy as demonstrated in their experiments. Zhang et al. [12]
found that service provider could infer true user–item ratings
from perturbed user–item ratings if all users are using the same
perturbation variance. They proposed a two-way communication
privacy-preserving approach, in which users perturb their item
ratings based on the guidance from the recommender server. Their
experimental results demonstrated that the new perturbation
approach could reveal less privacy compared with existing
perturbation approach at the same recommendation accuracy
level. McSherry et al. [13] adopted the differential privacy method
in collaborative filtering, which can hide true user–item ratings

D. Li et al. / Future Generation Computer Systems 55 (2016) 311–320 313
with bounded probability of inferring from the perturbed data and
computation results. As shown in their experiments, the accuracy
losses range from approximately 2% to 14% with different amount
of available data. The data perturbation based PPCFmethods are as
efficient as CF methods without privacy protection. But accuracy
is the ultimate goal of recommender system, so that degradations
in accuracy is not acceptable in real online services. Moreover,
the data perturbation technique could not protect user privacy
with strong guarantee because the service provider could derive
user privacy from perturbed user data using machine learning
techniques as demonstrated in recent works [14,15]. Compared
with these data perturbation based PPCF methods, the privacy-
preserving item-based CF method proposed in this paper does not
manipulate user data or recommendation algorithm, so that there
is no tradeoff between accuracy and privacy.

3. Efficient privacy-preserving item-based collaborative filter-
ing

In this work, user privacy are protected by a proposed efficient
secure multi-party computation (SMPC) protocol. In this section,
we first present how to achieve unsynchronized SMPC in a dis-
tributed environment. Then, privacy-preserving item-based col-
laborative filtering using the proposed SMPC protocol is presented
in detail.

3.1. Unsynchronized secure multi-party computation

The general goal of secure multi-party computation is to
achieve the computation of n private values held by n parties
(n > 1) without revealing the private value of each party during
the computation. Secure multi-party computation was first stud-
ied by Yao [21], and later extended by Goldreich [22]. Most ex-
isting secure multi-party computation protocols require that all
parties should be online and collaborate together to jointly com-
pute a value [21,22]. However, in real online applications, the re-
quirements of users being online simultaneously cannot be always
guaranteed. To address this issue, we propose an unsynchronized
secure multi-party computation protocol—UnsyncSum in this sec-
tion, which can achieve jointly computations even when users are
not online simultaneously.

Assume that there are n users, each user ui holds a private value
vi, the goal of the proposed UnsyncSum protocol is to compute

i vi without revealing each vi to any of the other parties. In the
UnsyncSum protocol, each of the private value vi is randomly di-
vided into segments Si = {s1, . . . , si}, such that

s∈Si

s = vi. Then,
each user randomly sends the segments to different users. Since
the segments are distributed among users, such that no single user
can obtain all the segments of a private value. And any subset of
segments does not reveal any information about the private value,
so that the private value of each user could be protected. After this,
each user computes the summation of its segments and its received
segments, and sends the summation to the recommender server.
As the summation of each user is a combination of multiple users’
segments, no privacy of individual user could be obtained in each
summation. Finally, the server can compute the summation of all
received values, which is equal to the summation of the original
private values of all users. Please note that users are not required to
be online simultaneously in the UnsyncSum protocol, but each user
is required to be online once to participate in the protocol during
the computation process. The detailed procedure of the proposed
unsynchronized SMPC protocol—UnsyncSum is presented in Algo-
rithm 1.

Now, we prove that the proposed UnsyncSum protocol (Algo-
rithm 1) can obtain the correct summation in the following theo-
rem.
Algorithm 1 UnsyncSum(U, V)

Require: U is a set of users, each of which holds a private value
and wants to jointly compute the summation of all the values.
V is the set of values held by users in U .

1: while not all users have participated do
2: if ui ∈ U gets online for the first time then
3: ui locally divides its value vi into a set of real-valued

segments Sui = {s1, s2, ..., srui } (rui ≥ 3 is a random
number chosen by ui) ensuring that

1≤j≤rui

sj = vi;
4: ui randomly selects rui − 1 online users as Ui; (Please note

that a user may be selected multiple times if the number
of online users is less than rui − 1.)

5: while Ui ≠ ∅ do
6: ui randomly chooses segment s ∈ Sui and user u′

∈ Ui,
then sends s to u′;

7: Ui = Ui − {u′
};

8: Sui = Sui − {s};
9: end while

10: if ui receives segment s from another user then
11: Sui = Sui ∪ {s};
12: end if
13: Before ui gets offline, ui computes ti =

s∈Sui

s and sends
ti to a randomly chosen online user;

14: end if
15: end while
16: The recommender server notifies users to terminate the

protocol;
17: Each online user ui computes v′

i =

s∈Sui
s and sends v′

i to the
recommender server;

18: Once all v′

is are received, the recommender server can compute
sum =

i v

′

i ;

Theorem 3.1. For a set of users U, each user ui ∈ U holds a private
value vi, then running UnsyncSum protocol on U can obtain the
correct summation

i vi.

Proof. Let A be an n × n matrix (n is the number of users in U),
and Ai,j denotes the summation of segments that user ui sent to
user uj, where Ai,j = 0 means ui did not send any segment to uj.
And Ai,i is the summation of all segments that are generated by
ui but did not send to any other user. Since the summation of all
segments of ui will equal to vi, we have vi =

i Ai,j. When the

server requests users to report their values, each online user ui will
correctly compute v′

i =

j Aj,i and report v′

i . Then, the server will
have

i

v′

i =

i

j

Aj,i

=

i

j

Ai,j =

i

vi.

Thus, we can conclude that the correct summation

i vi is
obtained. �

Meanwhile, the protocol is privacy-preserving in the semi-
honestmodel [22], inwhich all parties follow the protocol properly
except that they can infer the privacy of other parties based on
intermediate values. The privacy of users are protected by the
random segments distribution, in which a user’s private value is
shared among no less than two users, so that no one can recover
the private value based on only part of the segments. Formal proof
is given to prove the privacy-preservation property of the protocol
in Section 4.

In the proposed UnsyncSum protocol, the computation and
communication complexities are both O(1) per user if we consider
the size of random parts as a constant. Meanwhile, the server
only need to receive numbers from users and then compute the

314 D. Li et al. / Future Generation Computer Systems 55 (2016) 311–320
summation of these numbers, so the server-side computation and
communication complexities are bothO(n), where n is the number
of users. Since the computation and communication complexities
are both linear in the number of users,we can say that the proposed
UnsyncSum protocol is rather efficient.

3.2. Privacy-preserving item-based collaborative filtering using SMPC

Item-based collaborative filtering is a popular recommendation
technique proposed by Amazon [1], and later adopted bymany on-
line services, such as Youtube [2]. In item-based CF, item similari-
ties/correlations are first discovered. Then, item recommendations
are generated based on user–item ratings and item correlations.
Generally, item-based collaborative filtering algorithms work as
follows [1,19]:

1. The recommender system first computes similarities/correl-
ations among items pairs;

2. For a target user u, the recommender system finds items that
are similar to items which were rated by u before;

3. For each target item i, the recommender system computes a
weighted average to predict user u’s rating on i.

In this section, we present how to achieve privacy-preserving
item-based collaborative filtering using the proposed UnsyncSum
protocol.

3.2.1. Privacy-preserving item similarity computation
In item-based CF algorithm, the key step is to compute

similarities/correlations among items pairs. In this section, the
PrivateCosine algorithm and the PrivatePearson algorithm are pro-
posed, which can efficiently compute cosine similarity and Pear-
son correlation among item pairs while protecting the privacy of
all users. Please note that, cosine similarity and Pearson correla-
tion are two of the most commonly adopted similarity/correlation
measures in item-based CF methods [1,19,16]. Other similar-
ity/correlation measures, such as adjusted cosine similarity [19],
Jaccard similarity [16], etc., could be computed similarly.

1. Privacy-preserving cosine similarity computation. In
vector-space model, each item is described as a vector. The cosine
value between two vectors can be considered as a measure of the
similarity between the two items. The cosine similarity between
item i and item j is computed as follows:

sim(i, j) = cos(⃗i, j⃗) =

u∈U

ru,iru,j
u∈U

r2u,i

u∈U
r2u,j

(1)

where U is the set of users who have rated on item i or j, and ru,i is
user u’s rating on item i.

Here, a privacy-preserving algorithm—PrivateCosine is pro-
posed to compute the cosine similarity between two items. In the
PrivateCosine algorithm, the users first run UnsyncSum protocol to
compute the three summations in Eq. (1). Then, after obtaining
each of the summations in Eq. (1), the recommender server can
compute the cosine similarity on the server side. The detailed pro-
cedure of proposed PrivateCosine is presented in Algorithm 2.

2. Privacy-preserving Pearson correlation computation. In
statistical model, each item is described as a variable. Thus, the
degree of dependent between two variables can be adopted as a
measure of the correlation between the two items. The Pearson
correlation between item i and item j is computed as follows:

sim(i, j) = corri,j =

u∈U

(ru,i − r̄i)(ru,j − r̄j)
u∈U

(ru,i − r̄i)2

u∈U
(ru,j − r̄j)2

(2)
Algorithm 2 PrivateCosine(U, i, j)
Require: U is the set of users who have rated on item i or item j.
1: for each u ∈ U do
2: u computes ru,iru,j, r2u,i, and r2u,j locally;
3: end for
4: Users in U run the UnsyncSum protocol to compute

u∈U ru,iru,j,

u∈U r2u,i, and

u∈U r2u,j;
5: The recommender server computes cos(i, j) as shown in

Equation 1;

where U is the set of users who both rated item i and item j, ru,i is
user u’s rating on item i, and r̄i is the average rating of item i.

Different from the cosine similarity, the Pearson correlation
requires to compute the average ratings of items as shown in
Eq. (2). Thus, the proposed PrivatePearson algorithm first needs
to compute the average ratings of items using the UnsyncSum
protocol. Then, the rest of the computations is conducted similarly
as in PrivateCosine. The detailed procedure of the proposed
PrivatePearson is presented in Algorithm 3.

Algorithm 3 PrivatePearson(U, i, j)
Require: U is the set of users who have rated on both item i and

item j.
1: Users in U run the UnsyncSum protocol to compute

u∈U ri,

u∈U rj, and

u∈U 1(u, i, j). (1(u, i, j) = 1 if u has rated both i
and j, otherwise 1(u, i, j) = 0.)

2: r̄i =

u∈U ri

u∈U 1(u,i,j) , r̄j =

u∈U rj

u∈U 1(u,i,j) ;
3: for each u ∈ U do
4: u computes (ru,i − r̄i)(ru,j − r̄j), (ru,i − r̄i)2, and (ru,j − r̄j)2

locally;
5: end for
6: Users inU run theUnsyncSum protocol to compute

u∈U(ru,i−

r̄i)(ru,j − r̄j),

u∈U(ru,i − r̄i)2, and

u∈U(ru,j − r̄j)2;
7: The recommender server computes corri,j as shown in Equa-

tion 2;

3.2.2. Privacy-preserving item recommendation generation
After the similarities/correlations among item pairs are gener-

ated, the recommender server sends these similarities/correlations
to users. Then, users locally compute item recommendation scores
using the weighted sum technique [1,19] as follows:

r̃u,i =

j∈Ii

sim(i, j) ∗ ru,j
j∈Ii

sim(i, j)
(3)

where Ii denotes the set of items that are similar to item i. As
user ratings on items are stored locally, item similarities are
obtained from the server, so that the local item recommendation
computation will not violate user privacy.

3.2.3. Model updating
In item-based collaborative filtering, one common challenge

is how to efficiently update the item similarity model when
more user–item rating data are incrementally available. Here, we
propose two efficient incremental methods to update the item
similarity models.

1. Incremental updating for cosine similarity. The incremen-
tal updating for cosine similarity requires the computation of

u∈U ′ ru,iru,j,

u∈U ′ r2u,i and

u∈U ′ r2u,j (U
′ is the new set of users

who have rated item i or item j) using the proposed UnsyncSum
protocol. Let U be the set of users in the original cosine similar-
ity computation, then all users in U are included in U ′. Thus, we

D. Li et al. / Future Generation Computer Systems 55 (2016) 311–320 315
do not need to add the data of users in U . We just need to run the
UnsyncSum protocol on users in U ′

− U , and obtain the update for
each summation. Then, the recommender server could add these
updates to the original

u∈U ru,iru,j,

u∈U r2u,i and

u∈U r2u,j, and

recompute the cosine similarity as Eq. (1).
2. Incremental updating for Pearson correlation. The incre-

mental updating for Pearson correlation is more challenging, be-
cause the average ratings of items change as new item ratings
are obtained. Thus, the original computation results could not be
utilized directly as the case for cosine similarity. Next, we de-
scribe how to update the Pearson correlation incrementally and
efficiently.

Let r̄i and r̄ ′

i be the average ratings of item i on the original
user–item rating data and new user–item rating data, respectively.
Let δi be the difference between the two average ratings of item i,
so we have

r̄ ′

i = r̄i + δi. (4)

Then, we discuss the updating for

u∈U(ru,i − r̄i)(ru,j − r̄j),
u∈U(ru,i − r̄i)2, and

u∈U(ru,j − r̄j)2 one by one hereinafter.

Let

u∈U ′(ru,i − r̄ ′

i)(ru,j − r̄ ′

j) be the new numerator of Eq. (2),
where U ′ is the new set of users who have rated item i and item j.
Then, we divide this expression into three parts as follows:
u∈U ′

(ru,i − r̄ ′

i)(ru,j − r̄ ′

j)

=

u∈U

(ru,i − r̄ ′

i)(ru,j − r̄ ′

j) +

u∈U ′−U

(ru,i − r̄ ′

i)(ru,j − r̄ ′

j)

=

u∈U

(ru,i − r̄i)(ru,j − r̄j) + ∆i,j +

u∈U ′−U

(ru,i − r̄ ′

i)(ru,j − r̄ ′

j). (5)

The first term of Eq. (5) could be obtained from the original Pearson
correlation computation, and the third term of Eq. (5) could be
computed as in PrivatePearson. Thus, the main difficulty is to
compute ∆i,j, which can be computed as follows:

∆i,j =

u∈U

(ru,i − r̄ ′

i)(ru,j − r̄ ′

j) −

u∈U

(ru,i − r̄i)(ru,j − r̄j)

=

u∈U

(ru,i − (r̄i + δi))(ru,j − (r̄j + δj))

−

u∈U

(ru,i − r̄i)(ru,j − r̄j)

=

u∈U

((ru,i − r̄i)(ru,j − r̄j) − δj(ru,i − r̄i)

− δi(ru,i − r̄i) + δiδj) −

u∈U

(ru,i − r̄i)(ru,j − r̄j)

=

u∈U

δiδj (6)

where δi (δj) is the difference between initial average rating of item
i (j) and new average rating of i (j).

Since

u∈U(ru,i − r̄i)2 and

u∈U(ru,j − r̄j)2 can be updated in
similar fashion, so we only present how to incrementally update

u∈U(ru,i − r̄i)2, which can be divided into three parts as follows:
u∈U ′

(ru,i − r̄ ′

i)
2

=

u∈U

(ru,i − r̄ ′

i)
2
+

u∈U ′−U

(ru,i − r̄ ′

i)
2

=

u∈U

(ru,i − r̄i)2 + ∆i2 +

u∈U ′−U

(ru,i − r̄ ′

i)
2. (7)

Similarly, the first term of Eq. (7) can be obtained in the original
Pearson correlation computation, and the third term can be
computed as in PrivatePearson. And the ∆i2 can be computed as
follows:

∆i2 =

u∈U

(ru,i − r̄ ′

i)
2
−

u∈U

(ru,i − r̄i)2

=

u∈U

(ru,i − (r̄i + δi))
2
−

u∈U

(ru,i − r̄i)2

=

u∈U

((ru,i − r̄i)2 − 2δi(ru,i − r̄i) + δi
2) −

u∈U

(ru,i − r̄i)2

=

u∈U

δi
2. (8)

As we can see, updating of Pearson correlation relies on the
updating of average item ratings. The average ratings of items can
be updated incrementally, because the recommender server just
need to obtain the number of newusers and the summation of new
ratings using the UnsyncSum protocol as in PrivatePearson. Then,

u∈U δiδj,

u∈U δi
2, and

u∈U δj

2 can be computed efficiently
on the server side. Thus, the Pearson correlation can be updated
incrementally and efficiently on the server side.

3.3. Analysis

3.3.1. Complexity analysis
1. Complexity of item similarity computation. On the server

side, the complexity of similarity computation between two items
is O(n), where n is the number of users. Thus, the total complex-
ity for computing similarities among all item pairs is O(n ∗ m2)
(m is the number of items), because there are totally 1

2m(m − 1)
item pairs. This server-side complexity is similar to that in the
non-privacy-preserving item-based CF methods [1,19]. However,
in thosemethods, 3nmultiplications and 3n additions are required
to compute the similarity between two items. In our method, all
multiplications are performed by users, only 3n additions are re-
quired. Thus, the proposed method is much more efficient than
those methods on the server side. On the client side, the compu-
tation and communication complexities are both O(mu

2) for each
user u, where mu is the number of items that u have rated. This is
because each user only needs to participate in the similarity com-
putation of items which were rated by him/her before. Generally,
user only rates a small set of items, so that the client-side compu-
tation and communication overhead are low. Note that the client-
side complexities of the proposed method are higher than those
of non-privacy-preserving collaborative filtering methods, whose
computation complexity is 0 and communication complexity is
typicallyO(mu) [19]. But the proposedmethod is beneficial to users
because they can preserve their privacy by only performing a small
amount of extra communication and computation.

2. Complexity of item recommendation generation. In our
method, all item recommendations are generated on the client
side. For each user u, the computation complexity is O(mu) for
recommending one item, where mu is the number of items that u
have rated. This is because one weighted sum on mu items should
be performed to compute the recommendation score of an item. As
stated above, users generally rates a small set of items, so that the
item recommendation generation is also efficient.

3. Complexity of model updating. In the updating for cosine
similarity and Pearson correlation, the computation and communi-
cation complexities for updating the similarity between two items
on the server side are both O(n′), where n′ is the number of new
users. Thus, the total complexity for updating similarities among
all item pairs is O(n′

∗ m2), where m is the number of items. On
the client side, the computation and communication complexities
are also O(mu

2) for each new user u, where mu is the number of
items that u have rated. Please note that, users who have already
participated in similarity computations do not need to perform any
computation during the updating.

316 D. Li et al. / Future Generation Computer Systems 55 (2016) 311–320
Table 1
Similarity computation complexity comparisons between the proposed methods
and traditional methods.

Cosine similarity Pearson similarity

Traditional (3α + 3β)n+ 3β (5α + 3β)n + 3β
Proposed (similarity computation) 3αni,j + 3β 3αni,j + 3β
Proposed (model updating) 3αn′

i,j + 6β 3αn′

i,j + 6β

3.3.2. Efficiency analysis and comparison
As analyzed above, the server-side complexities of item simi-

larity computation for the proposed methods are similar to those
of non-privacy-preserving item-based CF methods. However, it
should be noted that the proposed methods can distribute a large
fraction of computation to users, so that the server-side computa-
tion overhead is significantly reduced.

1. Efficiency analysis and comparison of similarity computa-
tion.

Firstly, the proposed privacy-preserving similarity computation
methods can reduce the time of data preparation. As shown in Eqs.
(1) and (2), both

u∈U ru,iru,j and

u∈U(ru,i − r̄i)(ru,j − r̄j) require

pair-wise data ru,i and ru,j. This implies that data preparation
is required for traditional item similarity computation, which
has O(1) complexity for each pair-wise multiplication and O(n)
complexity for the summation over all pair-wise multiplications
(n is the number of users). In contrast, the proposed Algorithm 2
shows that ru,iru,j, r2u,i and r2u,j are computedbyusers in a distributed
fashion, and similarly for (ru,i−r̄i)(ru,j−r̄j), (ru,i−r̄i)2 and (ru,j−r̄j)2
in Algorithm 3. Thus, data preparation is avoided in the proposed
methods.

Secondly, the proposed methods require less server-side com-
putation. In Algorithm 2, ru,iru,j, r2u,i and r2u,j are computed by users,
and similarly for (ru,i − r̄i)(ru,j − r̄j), (ru,i − r̄i)2 and (ru,j − r̄j)2
in Algorithm 3. Thus, this part of computation is avoided on the
server side. Meanwhile, the UsyncSum protocol only needs to com-
pute the summation of values from online users rather than the
whole set of users, which further reduces the server-side com-
putation overhead. To precisely assess the computation efficien-
cies of the proposed methods, we assume each floating-point
addition/subtraction operation consumes α CPU cycles and each
floating-point multiplication/division operation consumes β CPU
cycles. Let n be the total number of users in the system and ni,j be
the number of online users when the server computes the simi-
larity between item i and item j. Then, the detailed computation
efficiencies of the proposed methods and the traditional item sim-
ilarity computationmethods are listed in Table 1. Since β > α [23]
and n ≫ ni,j, we can conclude that the server-side computation
overheads of the proposed similarity computation methods are
much lower than those of the traditional methods.

2. Efficiency analysis and comparison of model updating.
Model updating is required for both our method and non-

privacy-preserving CF methods, such as [1] and [19], when new
ratings become available after item-to-item similarity model has
been obtained. To the best of our knowledge, no incremental
method for updating item-to-item similarity model have been
proposed before. The incremental updating approach proposed in
ourmethod ismuchmore efficient than other updating approaches
that re-compute the similarities among all items.

As shown in Table 1, the overall server-side computation com-
plexities for updating the similarity between an item pair (i, j) are
both 3αn′

i,j + 6β for Cosine similarity and Pearson similarity (n′

i,j is
the number of online users when updating the similarity between
item i and item j). Since β > α and n ≫ n′

i,j, the server-side
complexities for model updating are much lower than updating
by re-computing the similarities among all item pairs (row one in
Table 1). For the client side, themodel updating has the same com-
plexity as the proposed similarity computation methods, which
are both O(∆m2

u) per user (∆mu is the number of items that u has
newly rated).
4. Discussion

4.1. Secure multi-party computation

To prove that the proposed item-based collaborative filter-
ing is privacy-preserving, we adopt the privacy definition in
secure multi-party computation. We first discuss the privacy-
preservation property of the proposed method under the semi-
honest model [22], in which all parties follow the computation
protocol properly except that they can infer the privacy of other
parties based on intermediate values. Later, privacy under mali-
cious model is discussed in detail. The formal definition of pri-
vatemulti-party computation in the semi-honestmodel is adopted
from Goldreich’s work [22], quoted below:

Definition 1 (Privacy w.r.t. Semi-honest Behavior [22]).

• f : (0, 1∗)m → (0, 1∗)m be an m-ary function, and fi(x1,
. . . , xm) denotes the ith element of f (x1, . . . , xm).

• For i = {i1, . . . , it} ⊂ [m]
def
= {1, . . . ,m}, fI(x1, . . . , xm) denotes

the subsequence fi1(x1, . . . , xm), . . . , fit (x1, . . . , xm).
• π is an m-party protocol for computing f .
• VIEW i

π (x̄) is the View of the ith party during an execution of π
on x̄ = (x1, . . . , xm).

• VIEW I
π (x̄)

def
= (I, VIEW i1

π (x̄), . . . , VIEW it
π (x̄)), for I = {i1,

. . . , it}.

We say thatπ privately computes f if there exists a polynomial-
time algorithm, denoted S, such that {(S(I, (xi1 , . . . , xit), fI(x̄)),

f (x̄))}x̄∈(0,1∗)m
def
≡ {VIEW I

π (x̄),OUTPUTπ (x̄)}x̄∈(0,1∗)m for every I as
shown above, where OUTPUTπ (x̄) denotes the output sequence of
all parties during the execution represented in VIEW I

π (x̄).

The above privacy definition states that amulti-party computa-
tion protocol is privacy-preserving if the view of each party during
the execution of the protocol could be simulated by a polynomial-
time algorithm knowing only the input and the output of the party.

Another key theory that we adopt to prove the privacy-
preservation property of the proposed CF method is the Compo-
sition Theorem under semi-honest model (Theorem 4.1). Detailed
proof of Theorem 4.1 could be found in [22], and thus is omitted
here.

Theorem 4.1 (Composition theorem for the semi-honestmodel [22]).
Suppose that g is privately reducible to f and that there exists a
protocol to privately compute f . Then there exists a protocol to
privately compute g.

4.2. Privacy preservation in semi-honest model

Based on Definition 1 and Theorem 4.1, we first prove that
each component of the proposed item-based collaborative filtering
method is privacy-preserving in this section. Then, based on the
Composition Theorem, we can conclude that the proposed item-
based CF method is privacy-preserving.

4.2.1. Privacy preservation of UnsyncSum protocol
In the proposed item similarity/correlation computation, the

UnsyncSum protocol is proposed to protect user privacy. We first
prove that the proposed UnsyncSum protocol is privacy-preserving
in the semi-honest model in the following theorem.

Theorem 4.2. Given a set of users U (|U| > 1), each user ui ∈ U
holds a private value vi. The proposed UnsyncSum protocol can pri-
vately compute

i vi in the semi-honest model.

D. Li et al. / Future Generation Computer Systems 55 (2016) 311–320 317
Proof. We construct a simulator to simulate the stages of the
UnsyncSum protocol as follows:

• Stage 1: In this stage, each user ui randomly divides its private
value vi into rui segments. The simulator for ui can run exactly as
what ui performs in real computation. Since each segment of vi
is randomly distributed in R, so that it is indistinguishable from
what other user views in real computation. Thus, the outputs of
ui in this stage are successfully simulated.

• Stage 2: In this stage, ui randomly sends rui −1 segments of vi to
rui − 1 users. The simulator for ui can randomly select segments
from Sui to simulate the output of ui. Again, since each segment
of vi is randomly distributed in R, so that it is indistinguishable
from what other user views in real computation. Thus, the
outputs of ui in this stage are successfully simulated.

• Stage 3: In this stage, ui sends

s∈Sui
s to the recommender

server or another online user. The simulator for ui can just
simulate

s∈Sui

s as the output of ui, because this value is also a
random number.

• Stage 4: In this stage, the recommender server computes the
summation of all received values. Since there is no communi-
cation in this stage, the simulator for each user does not need
to simulate anything.

The above simulator is linear in the size of the input/output of each
user,whichmeans that a polynomial-time simulator is successfully
constructed. Thus, the UnsyncSum protocol can privately compute

i vi. �

4.2.2. Privacy preservation of item similarity computation
Since the multi-party summation in item similarity computa-

tion are achieved by the proposed UnsyncSum protocol, so that the
privacy preservation property of item similarity computation can
be easily proved. The formal proofs are presented in the following
Theorems 4.3 and 4.4 for cosine similarity computation and Pear-
son correlation computation, respectively.

Theorem 4.3. Given two items i and j, the proposed PrivateCosine
algorithm can privately compute cos(i, j).

Proof. In PrivateCosine, each user u first computes ru,iru,j, r2u,i, and
r2u,j locally, so that user privacy are preserved. Then,

u∈U ru,iru,j,

u∈U r2u,i, and

u∈U r2u,j are computed using the UnsyncSum
protocol. As proved above, the UnsyncSum protocol can pri-
vately compute summations, so these computations are privacy-
preserving. At last, the recommender server computes cos(i, j)
using

u∈U ru,iru,j,

u∈U r2u,i, and

u∈U r2u,j, in which no privacy of

individual user are revealed. Thus, based on Theorem 4.1, we can
conclude that the PrivateCosine algorithm can privately compute
cos(i, j). �

Theorem 4.4. Given two items i and j, the proposed PrivatePearson
algorithm can privately compute corri,j.

Proof. This theorem can be similarly proved as in Theorem 4.3, so
the proof is omitted here. �

4.2.3. Privacy preservation of item recommendation
In the proposed privacy-preserving item-based CF method, the

item similarity computations are proved to be privacy-preserving,
and the item recommendation generations are conducted on
the client side, so that the privacy preservation property of the
proposed method can be easily proved using the composition
theorem. Thus, formal proofs are omitted here.
4.3. Privacy protection in malicious model

The previous section has discussed the privacy preservation
property of the proposed item-based CF method in the semi-
honest model. Actually, the proposedmethod has stronger privacy
guarantee than the semi-honest model. Considering malicious
model, in which users could manipulate their inputs/outputs or
collude to attack a target user, the proposed method is privacy-
preserving except that all other users are colluding to attack a tar-
get user. Otherwise, malicious users cannot attack the target user
at all, because segments of the target user’s private value can be
sent to someone who is not colluding with the malicious users. For
other cases, in which collusion is not happening, single malicious
user could only disrupt the results, but cannot learn any private in-
formation that are not revealed by the computation results. Since
it is not practical that all users in the system are colluding to at-
tack a target user, so that the proposed method can provide strong
privacy guarantee even facing with malicious adversaries.

5. Experimental results

In this section, we evaluate the proposed privacy-preserving
item-based collaborative filtering algorithm using the Netflix Prize
dataset. In Sections 3 and 4, the privacy-preserving item-based
collaborative filtering is formally described and proved. Therefore,
the following quantitative studies focus on recommendation
efficiency and accuracy.
• System efficiency is measured by the overall computation time

for recommending all items to users on the server side.
• Recommendation accuracy is measured by MAE (Mean

Average Error) and RMSE (Root Mean Square Error), which are
defined as follows:

MAE =
1
n

n
u=1

|ru,i − r̃u,i|,

RMSE =

1
n

n
u=1

(ru,i − r̃u,i)2 (9)

where r̃u,i is the predicted rating of user u on item i, and ru,i
is the real rating from the dataset. It should be noted that
for both MAE and RMSE, the smaller value indicates better
recommendation accuracy, but RMSE is more sensitive to large
errors than MAE.

All the experiments are conducted on the Netflix Prize dataset,
which consists of 17,770 movies, 480,189 users, and almost 100
million known ratings in the scale from 1 to 5. In the experiments,
the number of items vary from 1777 (10% of items) to 17,770 (all
items).

In the experiments, the proposed algorithm is compared against
two well-known privacy-preserving collaborative filtering (PPCF)
solutions. The first method is a randomized perturbation based
PPCF solution (RP) proposed by Polat et al. [11], in which random
noises are injected to user rating data to prevent the recommender
server from obtaining user privacy. The second method is a
homomorphic encryption based PPCF solution (HE) proposed by
Kikuchi et al. [10], in which user similarities and recommendation
scores are calculated using homomorphic encryption. All the
experiments are conducted using Ali cloud service environment
(www.aliyun.com), and each server node is equipped with Xeon
E5-2430 dual CPU and 16 GB memory.

5.1. System efficiency comparison

Since the server-side efficiency is the bottleneck of recom-
mender system [16], this experiment compares the server-side
efficiencies of the three methods. Fig. 1 shows the computation

http://www.aliyun.com

318 D. Li et al. / Future Generation Computer Systems 55 (2016) 311–320
Table 2
MAE comparison of the proposed method and the RP method.

Item Size
Method m = 1777 m = 3554 m = 5321 m = 7108 m = 8885

Proposed 0.7670 0.7656 0.7613 0.7587 0.7582
RP (γ = 50%) 0.7707 0.7676 0.7626 0.7595 0.7591
RP (γ = 95%) 0.7943 0.7800 0.7704 0.7644 0.7634

Item Size
Method m = 10662 m = 12439 m = 14216 m = 15993 m = 17770

Proposed 0.7579 0.7572 0.7565 0.7559 0.7551
RP (γ = 50%) 0.7584 0.7578 0.7569 0.7563 0.7555
RP (γ = 95%) 0.7608 0.7608 0.7586 0.7575 0.7563
Table 3
RMSE comparison of the proposed method and the RP method.

Item Size
Method m = 1770 m = 3540 m = 5310 m = 7080 m = 8850

Proposed 0.9747 0.9674 0.9599 0.9559 0.9548
RP (γ = 50%) 0.9788 0.9698 0.9614 0.9568 0.9558
RP (γ = 95%) 1.0129 0.9881 0.9731 0.9640 0.9629

Item Size
Method m = 10620 m = 12390 m = 14160 m = 15930 m = 17700

Proposed 0.9545 0.9537 0.9526 0.9515 0.9502
RP (γ = 50%) 0.9551 0.9544 0.9531 0.9519 0.9505
RP (γ = 95%) 0.9592 0.9589 0.9558 0.9539 0.9519
Fig. 1. Computation time comparison of the proposed method, HE, and RP.

time of the three methods on the server side. (In our method, we
assume that all users are online, which increases the computation
overhead compared with applying our method in real systems.) As
we can see, the proposed method can greatly reduce the compu-
tation overhead on the server side. The proposed method consis-
tently outperforms the RPmethod andHEmethod by over 14X and
386X across different dataset sizes, respectively, in recommenda-
tion efficiency. Note that, the RP method is of the same compu-
tation efficiency as some non-privacy-preserving item-based CF
methods, such as the item-based CF methods proposed in [1,19].
This indicates that the proposed privacy-preserving item-based CF
is even more efficient than some of the non-privacy-preserving
item-based CF methods on the server side.

The reason why the proposed method could achieve high effi-
ciency is that only addition operations are required on the server
side during similarity computation. Meanwhile, the recommenda-
tion score computations are performed by clients, which further
reduces the computation overhead on the server side. In the RP
method, all the computations are performed on the server side, so
it is not as efficient as the proposed method. In the HE method, all
computations are performed on encrypted data, which greatly in-
creases the computation overhead of the recommender server.
5.2. Recommendation accuracy comparison

In recommendation accuracy comparison, theproposedmethod
and the HE method have no accuracy loss, so the same accura-
cies could be achieved in the two methods. Thus, the following
experiments focus on comparisons between the proposed method
and the RP method. In the RP method, the range of random noises
would have great impact on recommendation accuracy, larger
noise would results in greater loss in accuracy but better privacy
protection. In this experiment, we compare two different ranges
of random noises: [−0.67, 0.67] and [−1.95, 1.95], in which γ =

50% or γ = 95% of noises fall into those ranges, respectively, in
standard normal distribution [11]. Please note that the RP method
has slightly different accuracies in different runs, because the noise
vary in different runs. Thus, in this experiment, we run ten times
for the RP method and use the average MAE and RMSE as the final
results.

Tables 2 and 3 show the MAE and RMSE comparisons of the
proposed method and the RP method in different settings. From
the results, we can see that the proposed method achieves better
recommendation accuracy. Compared with the RP method, the
proposed method can reduce MAE by 0.14% and 0.94% on average
and reduce RMSE by 0.13% and 1.07% on average when γ is
50% and 95%, respectively. Note that, the accuracy loss of the RP
method decreases as m (the number of items) increases, which
is because larger m can yield more accurate approximation for
similarity estimation in theRPmethod.However, in theRPmethod,
the noise on user–item ratings would affect the accuracy of both
similarity computation and recommendation score computation,
so that the recommendation accuracy is affected. When the range
of random noises grows larger, i.e., stronger privacy guarantee
could be achieved, more accuracy losses are observed in the RP
method. On the contrary, the proposed method does not need to
trade accuracy for privacy.

6. Conclusion

This paper presents an efficient algorithm for privacy-preserving
item-based collaborative filtering, which can protect user pri-
vacy during recommendation process without compromising

D. Li et al. / Future Generation Computer Systems 55 (2016) 311–320 319
recommendation accuracy and efficiency. In the proposedmethod,
item similarities/correlations are incrementally computed using a
proposed unsynchronized secure multi-party computation proto-
col. After that, recommendations are generated on the client side
with privacy. The proposed method is evaluated on the Netflix
Prize dataset, and experimental results demonstrate that the pro-
posedmethod outperforms a randomized perturbation based PPCF
solution and a homomorphic encryption based PPCF method by
over 14X and 386X, respectively, in recommendation efficiency.
Meanwhile, the proposed method achieves the same accuracy as
the homomorphic encryption based PPCF method, and outper-
forms the randomized perturbation based PPCFmethod by approx-
imately 0.13%–1.07% in accuracy.

Acknowledgments

Thisworkwas supported in part by theNational Natural Science
Foundation of China under Grant Nos. 61233016, 61332008
and 61272533, the National Science Foundation under awards
CNS-0910995 and CNS-1162614, and the Shanghai Science &
Technology Committee Project under Grant Nos. 11JC1400800 and
13ZR1401900.

References

[1] G. Linden, B. Smith, J. York, Amazon.com recommendations: Item-to-item
collaborative filtering, IEEE Internet Comput. 7 (1) (2003) 76–80.

[2] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van
Vleet, Ullas Gargi, Sujoy Gupta, He Yu, Mike Lambert, Blake Livingston,
Dasarathi Sampath, The YouTube video recommendation system, in: Proceed-
ings of the fourth ACMconference on Recommender systems, RecSys ’10, ACM,
2010, pp. 293–296.

[3] S.DasAbhinandan,DatarMayur, GargAshutosh, Rajaram. Shyam,GoogleNews
personalization: scalable online collaborative filtering, in: Proceedings of the
16th international conference on World Wide Web, WWW ’07, ACM, 2007,
pp. 271–280.

[4] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, Anmol N. Sheth, TaintDroid: An Information-flow tracking
system for realtime privacy monitoring on smartphones, in: Proceedings of
the 9thUSENIX Conference onOperating SystemsDesign and Implementation,
OSDI ’10, 2010, pp. 1–6.

[5] John Canny, Collaborative filtering with privacy, in: Proceedings of 2002 IEEE
Symposium on Security and Privacy, S&P ’02, IEEE, 2002, pp. 45–57.

[6] Wondracek Gilbert, Holz Thorsten, Kirda Engin, Kruegel. Christopher, A
practical attack to deanonymize social network users, in: Proceedings of 2010
IEEE Symposium on Security and Privacy, S&P ’10, IEEE, 2010, pp. 223–238.

[7] Yuan Mingxuan, Chen Lei, S.Yu. Philip, Personalized privacy protection in
social networks, In Proceedings of the VLDB Endowment 4 (2) (2010) 141–150.

[8] Dongsheng Li, Qin Lv, Huanhuan Xia, Li Shang, Tun Lu, Ning Gu, Pistis: A
Privacy-preserving content recommender system for online social communi-
ties, in: Proceedings of 2011 IEEE/WIC/ACM International Conference onWeb
Intelligence and Intelligent Agent Technology, WI-IAT ’11, pp. 79–86, 2011.

[9] Esma Aïmeur, Gilles Brassard, José Manuel Fernandez, Flavien Serge Mani
Onana, Alambic: a privacy-preserving recommender system for electronic
commerce, Int. J. Inf. Secur. 7 (5) (2008) 307–334.

[10] Hiroaki Kikuchi, Hiroyasu Kizawa,Minako Tada, Privacy-preserving collabora-
tive filtering schemes, in: International Conference on Availability, Reliability
and Security, ARES ’09, IEEE, 2009, pp. 911–916.

[11] Huseyin Polat, Wenliang Du, Privacy-preserving collaborative filtering using
randomized perturbation techniques, in: Proceedings of The Third IEEE
International Conference on Data Mining, ICDM ’03, IEEE, 2003, pp. 625–628.

[12] Sheng Zhang, James Ford, Fillia Makedon, A privacy-preserving collaborative
filtering scheme with two-way communication, in: Proceedings of the 7th
ACM Conference on Electronic Commerce, EC ’06, 2006, pp. 316–323.

[13] Frank McSherry, Ilya Mironov, Differentially private recommender systems:
building privacy into the net, in: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’09,
ACM, 2009, pp. 627–636.

[14] Zhengli Huang, Wenliang Du, Biao Chen, Deriving private information from
randomized data, in: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, SIGMOD ’05, ACM, 2005, pp. 37–48.

[15] Sheng Zhang, James Ford, Fillia Makedon, Deriving private information from
randomly perturbed ratings, in: Proceedings of the Sixth SIAM International
Conference on Data Mining, SDM ’06, SIAM, 124(59), 2006.

[16] Gediminas Adomavicius, Alexander Tuzhilin, Toward the next generation
of recommender systems: A survey of the State-of-the-Art and possible
extensions, IEEE Trans. Knowl. Data Eng. 17 (6) (2005) 734–749.

[17] Marko Balabanović, Yoav Shoham, Fab: Content-based, collaborative recom-
mendation, Commun. ACM 40 (1997) 66–72.
[18] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, John Riedl, An
algorithmic framework for performing collaborative filtering. in: Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’99, 1999, pp. 230–237.

[19] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, John Reidl, Item-based
collaborative filtering recommendation algorithms, in: Proceedings of the
10th International Conference on World Wide Web, WWW’01, ACM, 2001,
pp. 285–295.

[20] Manos Papagelis, Dimitris Plexousakis, Qualitative analysis of user-based and
item-based prediction algorithms for recommendation agents, Eng. Appl. Artif.
Intell. 18 (7) (2005) 781–789.

[21] Andrew C. Yao, Protocols for secure computations, in: Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, FOCS’82, IEEE, 1982,
pp. 160–164.

[22] Oded Goldreich, Secure Multi-Party Computation. Final (incomplete) Draft,
Version 1.4. 2002.

[23] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Refer-
ence Manual. http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-optimization-manual.html. March 2014.

Dongsheng Li received the B.E. degree from University of
Science and Technology of China, Hefei, China, in 2007,
and the Ph.D. degree in School of Computer Science
from Fudan University, Shanghai, China, in 2012. He is
currently a Postdoctoral Researcher with the Department
of Computer Science and Technology, Tongji University,
Shanghai, China. His current research interests include
recommender systems, online social networks, and smart
grid.

Chao Chen received his Bachelor degree in Software Engi-
neering from Zhejiang University of Technology, Zhejiang,
China, in 2012. He is currently a graduate student with the
Department of Computer Science and Technology, Tongji
University, Shanghai, China. His research interests include
privacy-preserving recommender systems.

Qin Lv received the B.E. degree (Hons.) from Tsinghua Uni-
versity, Beijing, China, in 2000, and the Ph.D. degree in
Computer Science from Princeton University, Princeton,
NJ, in 2006. She is currently an Assistant Professor with
the Department of Computer Science, University of Col-
orado, Boulder. She has published more than 40 papers in
peer-to-peer networks, large-scale similarity searches, air
quality sensing, PHEV driving studies, and event modeling
and recommendation in online social communities. Her
current research interests include search systems, data
mining, mobile systems, social networks, and data man-

agement.

Li Shang (S’99–M’04) received the B.E. degree (Hons.)
from Tsinghua University, Beijing, China, and the Ph.D.
degree from Princeton University, Princeton, NJ. He is
currently an Associate Professor with the Department of
Electrical, Computer, and Energy Engineering, University
of Colorado, Boulder. He has authored or co-authored over
100 publications in computer systems, mobile computing
and design for high-performance information systems. Dr.
Shang currently serves as an Associate Editor of the IEEE
Transactions on Very Large Scale Integration Systems and
the ACM Journal on Emerging Technologies in Computing

Systems. He was a recipient of the Best Paper Award in IEEE/ACM DATE 2010 and
IASTED PDCS 2002. His work on FPGA power modeling and analysis was selected
as one of the 25 Best Papers from FPGA. His work on temperature-aware on-chip
networks was selected for publication in the MICRO Top Picks 2006. His work was
a recipient of the Best Paper Award nominations at ISLPED 2010, ICCAD 2008, DAC
2007, and ASP-DAC 2006. He was a recipient of the Provost’s Faculty Achievement
Award in 2010 and his department’s Best Teaching Award in 2006. He was a
recipient of the NSF CAREER Award.

Yingying Zhao is currently a Ph.D. candidate with the
Department of Computer Science and Technology, Tongji
University, Shanghai, China. Her research interest includes
privacy-preservation in information systems, big data
analysis and information system design in smart grid.

http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref1
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref2
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref3
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref5
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref6
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref7
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref9
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref10
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref11
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref12
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref13
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref14
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref15
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref16
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref17
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref19
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref20
http://refhub.elsevier.com/S0167-739X(14)00237-4/sbref21
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html

320 D. Li et al. / Future Generation Computer Systems 55 (2016) 311–320
Tun Lu graduated from Sichuan University, China with a
B.Eng. in 2000, a M.Eng. in 2003 and a Ph.D. in 2006, all
in Computer Science. He is now an Associate Professor
at the School of Computer Science, Fudan University,
China. His current research interests include collaborative
computing, social computing and service computing.
Ning Gu received the Ph.D. degree in Computer Sci-
ence from the Institute of Computing Technology, Chi-
nese Academy of Sciences, China, 1995. He is a Professor
and the Director of the Cooperative Information and
Systems Lab at the School of Computer Science, Fu-
dan University, China. His current research interests
include computer-supported cooperative work, data
management, distributed systems, and social network-
ing. More information about his research is available at
http://cscw.fudan.edu.cn/. He is a member of the IEEE.

http://cscw.fudan.edu.cn/

	An algorithm for efficient privacy-preserving item-based collaborative filtering
	Introduction
	Related work
	Efficient privacy-preserving item-based collaborative filtering
	Unsynchronized secure multi-party computation
	Privacy-preserving item-based collaborative filtering using SMPC
	Privacy-preserving item similarity computation
	Privacy-preserving item recommendation generation
	Model updating

	Analysis
	Complexity analysis
	Efficiency analysis and comparison

	Discussion
	Secure multi-party computation
	Privacy preservation in semi-honest model
	Privacy preservation of U n s y n c S u m protocol
	Privacy preservation of item similarity computation
	Privacy preservation of item recommendation

	Privacy protection in malicious model

	Experimental results
	System efficiency comparison
	Recommendation accuracy comparison

	Conclusion
	Acknowledgments
	References

