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Abstract

Continuous-depth neural networks, such as the Neural Or-
dinary Differential Equations (ODEs), have aroused a great
deal of interest from the communities of machine learning
and data science in recent years, which bridge the connection
between deep neural networks and dynamical systems. In this
article, we introduce a new sort of continuous-depth neural
network, called the Neural Piecewise-Constant Delay Differ-
ential Equations (PCDDEs). Here, unlike the recently pro-
posed framework of the Neural Delay Differential Equations
(DDEs), we transform the single delay into the piecewise-
constant delay(s). The Neural PCDDEs with such a transfor-
mation, on one hand, inherit the strength of universal approx-
imating capability in Neural DDEs. On the other hand, the
Neural PCDDEs, leveraging the contributions of the informa-
tion from the multiple previous time steps, further promote
the modeling capability without augmenting the network di-
mension. With such a promotion, we show that the Neu-
ral PCDDEs do outperform the several existing continuous-
depth neural frameworks on the one-dimensional piecewise-
constant delay population dynamics and real-world datasets,
including MNIST, CIFAR10, and SVHN.

Recently, many frameworks have been established, connect-
ing dynamical systems tightly with neural networks and pro-
moting the network performances significantly (E 2017; Li
et al. 2017; Haber and Ruthotto 2017; Chang et al. 2017;
Pathak et al. 2018; Fang, Lin, and Luo 2018; Li and Hao
2018; Lu et al. 2018; E, Han, and Li 2019; Chang et al. 2019;
Ruthotto and Haber 2019; Zhang et al. 2019; Zhu, Ma, and
Lin 2019; Tang et al. 2020). One framework of milestone is
the Neural Ordinary Differential Equations (NODEs), also
regarded as continuous-depth neural networks (Chen et al.
2018). The framework non-trivially extends the traditional
residual neural networks (ResNets) (He et al. 2016) to para-
metric ordinary differential equations (ODEs), where the
time in NODEs is treated as the “depth” of the ResNets.
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Actually, different from the traditional neural networks, the
NODEs model the vector fields of the ODEs through op-
timizing their parameters with the back-propagation algo-
rithm and the ODE solver based on the training data and
a predefined loss function. In addition, the NODEs contain
a broad range of architectures, including the feed-forward
neural networks and the convolution neural networks.

Owing to the constant memory cost, the continuous dy-
namical behavior, and the naturally-rooted invertibility of
the NODEs, applications of such a framework to model-
ing physical systems are growing. Examples abound: data
analytics on the time series with irregular sampling dura-
tion (Rubanova, Chen, and Duvenaud 2019; De Brouwer
et al. 2019; Kidger et al. 2020), generations of the contin-
uous normalizing flow (Chen et al. 2018; Grathwohl et al.
2018; Finlay et al. 2020; Deng et al. 2020; Kelly et al.
2020), and representations of the point clouds (Yang et al.
2019; Rempe et al. 2020). It is worthwhile to mention that
the framework of NODEs, in spite of its wide applicability,
is not of a universal approximator. It thus cannot success-
fully learn representative maps such as the reflections or the
concentric annuli due to the homeomorphism property of
ODEs (Dupont, Doucet, and Teh 2019; Zhang et al. 2020).
To address this problem, several practical schemes (Dupont,
Doucet, and Teh 2019; Massaroli et al. 2020; Zhu, Guo, and
Lin 2021) have been suggested and implemented, among
which the Neural Delay Differential Equations (NDDEs)
show an outstanding efficacy in approximating functionals
based on given data (Zhu, Guo, and Lin 2021). Additionally,
variants of extensions and applications of the NODEs have
been proposed in recent years, including the partial differ-
ential equations (Han, Jentzen, and Weinan 2018; Ruthotto
and Haber 2019; Sun, Zhang, and Schaeffer 2020) and the
stochastic differential equations (Liu et al. 2019; Jia and
Benson 2019; Li et al. 2020; Song et al. 2020).

In this article, inspired by a recent framework of ND-
DEs, as mentioned above, we develop a new framework
of continuous-depth neural networks with different config-
urations of delay(s). Although the NDDEs not only allow
the trajectories to intersect with each other even in a lower-
dimensional phase space but also accurately model repre-



sentative delayed physical/biological systems, such as the
Mackey-Glass system (Mackey and Glass 1977), they likely
suffer from tremendously high computational cost. Clearly,
such a shortcoming is due to the persistent existence of the
effect induced by t − τ , the dynamical delay. In addition,
continuously improving the feature representation of a neu-
ral architecture is also a challenging direction of machine
learning. To conquer these difficulties, we therefore pro-
pose the model as mentioned above. Indeed, the proposed
model mainly consists of the following two configurations:
(1) novelly transforming the dynamical delay in NDDEs into
a piecewise-constant delay, viz. bt− τc, and (2) introducing
multiple piecewise-constant delays into the vector field to
significantly promote the feature representation.

The advantages of the first configuration include preserv-
ing the computational efficacy with the simple piecewise-
constant delay and maintaining the capabilities of model-
ing complex dynamics (chaos) using the discontinuous na-
ture of the particular form of this delay. The advantage of
the second configuration involves leveraging the information
from not only the current time point but also many previous
time points and thus strengthening the feature propagation.
All these advantages definitely result in a better feature rep-
resentation, comparing to the NDDEs. Mathematically, our
model is originated from a well-developed class of delay dif-
ferential equations, called the piecewise-constant delay dif-
ferential equations (PCDDEs) (Carvalho and Cooke 1988;
Cooke and Wiener 1991; Jayasree and Deo 1992). We there-
fore refer our model of continuous-depth neural networks
to the neural PCDDEs (NPCDDEs). To further improve the
performance, we propose an extension of the NPCDDEs
without sharing the parameters in different time duration,
called the unshared NPCDDEs (UNPCDDEs).

To summarize, the major contributions of this article are
multi-folded, including:
• establishment of a generic continuous-depth model,

NPCDDEs, such that typical neural networks, such as
ResNets and NODEs, are the special cases of the UN-
PCDDEs,

• validation of the NPCDDEs having the capability of uni-
versal approximation (see Proposition 2),

• formulation of the adjoint dynamical system and the
backward gradients for the NPCDDEs (see Theorem 2),
and

• demonstrations of the powerful nonlinear representa-
tion of NPCDDEs on the synthetic data produced by
the one-dimensional piecewise-constant delay popula-
tion dynamics and on the representative image datasets,
i.e., MNIST, CIFAR10, and SVHN, as well.

Related Works
Neural Ordinary Differential Equations As pointed

out by (Chen et al. 2018), the NODEs can be regarded as the
continuous version of the ResNets having an infinite number
of layers (He et al. 2016). The residual block of the ResNets
is mathematically written as zt+1 = zt + f(zt, θt), where
zt is the feature at the t-th layer, and f(·, ·) is a dimension-
preserving and nonlinear function parametrized by a neural

network with θt, the parameter vector pending for learning.
Notably, such a transformation could be viewed as the spe-
cial case of the following discrete-time equations:

zt+1 − zt
∆t

= f(zt, θt) (1)

with ∆t = 1. In other words, as ∆t in (1) is set as an in-
finitesimal increment, the ResNets could be regarded as the
Euler discretization of the NODEs which read:

dz(t)

dt
= f(z(t), θ). (2)

Here, the shared parameter vector θ, which unifies the vec-
tor θt of every layer in Eq. (1), is injected into the vector
field across the finite time horizon, to achieve parameter ef-
ficiency of the NODEs. As such, the NODEs can be used
to approximate some unknown function F : x 7→ F (x).
Specifically, the approximation is achieved in the following
manner: Constructing a flow of the NODEs starting from the
initial state z(0) = x and ending at the final state z(T ) with
z(T ) ≈ F (x). Thus, a standard framework of the NODEs,
which takes the input as its initial state and the feature rep-
resentation as the final state, is formulated as:

z(T ) = z(0) +

∫ T

0

f(z(t), θ)dt

= ODESolve(z(0), f, 0, T, θ),

z(0) = input,

(3)

where T is the final time and the solution of the above ODE
can be numerically obtained by the standard ODE solver us-
ing adaptive schemes. Indeed, a supervised learning task can
be formulated as:

minθ L(z(T )),
s.t. Eq. (2) holds for any t ∈ [0, T ],

(4)

whereL(·) is a predefined loss function. To optimize the loss
function in (4), we need to calculate the gradient with respect
to the parameter vector. This calculation can be implemented
with a memory in an order ofO(1) by employing the adjoint
sensitivity method (Chen et al. 2018; Pontryagin et al. 1962)
as:

dL

dθ
= −

∫ 0

T

a(t)>
∂f(z(t), θ)

∂θ
dt, (5)

where a(t) := ∂L
∂z(t) is called the adjoint, representing the

gradient with respect to the hidden states z(t) at each time
point t.

Variants of NODEs As shown in (Dupont, Doucet, and
Teh 2019), there are still some typical class of functions that
the NODEs cannot represent. For instance, the reflections,
defined by g1d : R → R with g1d(1) = −1 and g1d(−1) =
1, and the concentric annuli, defined by g2d : R2 → R with

g2d(x) =

{
−1, if ‖x‖ ≤ r1,
1, if r2 ≤ ‖x‖ ≤ r3,

(6)

where ‖ · ‖ is the L2 norm, and 0 < r1 < r2 < r3. Such
successful constructions of the two counterexamples are at-
tributed to the fact that the feature mapping from the input



(i.e., the initial state) to the features (i.e., the final state) by
the NODEs is a homeomorphism. Thus, the features always
preserve the topology of the input domain, which mathemat-
ically results in the impossibility of separating the two con-
nected regions in (6). A few practical strategies have been
timely proposed to address this problem. For example, pro-
posed creatively in (Dupont, Doucet, and Teh 2019) was an
argumentation of the input domain into a higher dimensional
space, which makes it possible to have more complicated dy-
namics emergent in the Augmented NODEs. Very recently,
articulated in (Zhu, Guo, and Lin 2021) was a novel frame-
work of the NDDEs to address this issue without argumenta-
tion. Actually, such a framework was inspired by a broader
class of functional differential equations, named delay dif-
ferential equations (DDEs), where a time delay was intro-
duced (Erneux 2009). Fox example, a simple form of ND-
DEs reads:

dz(t)

dt
= f(z(t− τ), θ), t ∈ [0, T ],

z(t) = φ(t) = x, t ∈ [−τ, 0],
(7)

where τ is the delay effect and φ(t) is the initial func-
tion. Hereafter, we assume φ(t) as a constant function, i.e.,
φ(t) ≡ x with input x. Due to the infinite-dimension na-
ture of the NDDEs, the crossing orbits can be existent in
the lower-dimensional phase space. More significantly as
demonstrated in (Zhu, Guo, and Lin 2021), the NDDEs have
a capability of universal approximation with T = τ in (7).

Control theory Training a continuous-depth neural net-
work can be regarded as a task of solving an optimal control
problem with a predefined loss function, where the param-
eters in the network act as the controller (Pontryagin et al.
1962; Chen et al. 2018; E, Han, and Li 2019). Thus, de-
veloping a new sort of continuous-depth neural network is
intrinsic or equivalent to designing an effective controller.
Such a controller could be in a form of open-loop or closed-
loop. Therefore, from a viewpoint of control, all the exist-
ing continuous-depth neural networks can be addressed as
control problems. However, these problems require differ-
ent forms of controllers. Specifically, when we consider the
continuous-depth neural network dx(t)

dt = f(x(t), u(t), t),
u(t) is regarded as a controller. For example, u(t) treated
as constant parameters yields the network frameworks pro-
posed in (Chen et al. 2018), u(t) as a data-driven controller
yields a framework in (Massaroli et al. 2020), and u(t)
as other forms of controllers brings more fruitful network
structures (Chalvidal et al. 2020; Li et al. 2020; Kidger et al.
2020; Zhu, Guo, and Lin 2021). Here, the mission of this
work is to design a delayed feedback controller for render-
ing a continuous-depth neural network more effectively in
coping with synthetic or/and real-world datasets.

Neural Piecewise-Constant Delay Differential
Equations

In this section, we propose a new framework of continuous-
depth neural networks with delay (i.e., the NPCDDEs) by
an articulated integration of some tools from machine learn-

ing and dynamical systems: the NDDEs and the piecewise-
constant DDEs (Carvalho and Cooke 1988; Cooke and
Wiener 1991; Jayasree and Deo 1992).

We first transform the delay of the NDDEs in (7) into a
form of the piecewise-constant delay (Carvalho and Cooke
1988; Cooke and Wiener 1991; Jayasree and Deo 1992), so
that we have

dz(t)

dt
= f(z(

⌊
t

τ

⌋
τ), θ), t ∈ [0, T ],

z(0) = x,

(8)

where the final time T = nτ and n is supposed to be a posi-
tive integer hereafter. We note that the NPCDDEs in (8) with
T = τ is exactly the NDDEs in (7), owning the universal ap-
proximation as mentioned before. As the vector filed of the
NPCDDEs in (8) is constant in each interval [kτ, kτ + τ ] for
k = 0, 1, ..., bTτ c, the simple NPCDDEs in (8) can be treated
as a discrete-time dynamical system:

z(k + 1) = z(k) + τf(z(k), θ) := F̂ (z(k), θ). (9)
Actually, this iterative property of dynamical systems en-
ables the NPCDDEs in (8) to learn some functions with spe-
cific structures more effectively. For example, if the map
F (x) = c2x with a large real number c > 0 is pending
for learning and the vector field is set as:

f(z(

⌊
t

τ

⌋
τ), θ) := az(

⌊
t

τ

⌋
τ) + b (10)

with τ = 1 and the initial parameters a = b = 0 before
training, then, we only use T = 2τ as the final time for the
NPCDDEs in (8) and require x(τ) to learn the small coeffi-
cient in the linear function x 7→ cx (or, equivalently, require
f to learn x 7→ (c − 1)x). As such, the feature x(T ) ≈
(x(τ))2 ≈ c2x naturally approximates the above-set func-
tion F (x), because F (x) can be simply represented as two
iterations of the function F̂ (x) = cx, i.e., F̂ ◦ F̂ (x) = F (x).
We experimentally show the structural representation power
in Fig. 1, where the training loss of the NPCDDEs in (8)
with T = 2τ decreases faster than that only with T = τ .
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Figure 1: The training processes for fitting the function
F (x) = 16x using the NPCDDEs in (8), respectively, with
the final times T = τ and T = 2τ . The training loses (left),
and the evolution of two parameters a (middle), and b (right),
as defined in (10) during the training processes.

Given the above example, the following question arises
naturally: For any given function x 7→ F (x), does there exist
a function x 7→ F̂ (x) such that the functional equation

F̂ ◦ F̂ (x) = F (x) (11)
holds? Unfortunately, the answer is no, which is rigorously
stated in the following proposition.



Proposition 1 (Radovanovic 2007) There does not exist any
function f : R → R such that f(f(x)) = x2 − 2 for all
x ∈ R.
As shown in Proposition 1, although the iterative property of
NPCDDEs in (8) allows the effective learning of functions
with certain structure, the solution of the functional equation
(11) does not always exist. This thus implies that (8) cannot
represent a wide class of functions (Rice, Schweizer, and
Sklar 1980; Chiescu and Gdea 2011).

To further elaborate this point, we use T = τ and T = 2τ ,
respectively, for the NPCDDEs in (8) to model the function
g2d(x) as defined in (6). Clearly, Fig. 2 shows that the train-
ing processes for fitting the concentric annuli using (8) with
the two delays are different. Contrary to the preceding ex-
ample, the training loss of one with T = τ decreases much
faster than that of the one with T = 2τ .

In order to sustain the capability of universal approxima-
tion from the NDDEs to the current framework, we modify
the NPCDDEs in (8) by adding a skip connection from the
time 0 to the final time 2τ in the following manner:

dz(t)

dt
= f(z(

⌊
t

τ

⌋
τ), z(

⌊
t− τ
τ

⌋
τ), θ), t ∈ [0, 2τ ],

z(−τ) = z(0) = x.
(12)

As can be seen from Fig. 2, the training loss of the modified
NPCDDEs in (12)) decreases outstandingly faster than that
of the NPCDDEs in (8) with T = 2τ and that of NODEs.
Also, it is slightly faster than the one with T = τ . More-
over, the dynamical behaviors of the feature spaces during
the training processes using different neural frameworks are
shown in Fig. 3. In particular, the NPCDDEs in (12) first
separate the two clusters among these models at the 3rd
training epoch, which is beyond the ability of the baselines.

More importantly, the following theorem demonstrates
that NPCDDEs in (12) are universal approximators, whose
proof is provided in the supplementary material.
Theorem 1 (Universal approximation of the NPCDDEs in
(12)) Consider the NPCDDEs in (12) of n-dimension. If,
for any given function F : Rn → Rn, there exists a neu-
ral network g(x, θ) that can approximate the map G(x) =
1
2τ [F (x) − x], then the NPCDDEs that can learn the map
x 7→ F (x). In other words, we have z(T ) ≈ F (x) provided
that both the initial states z(−τ) and z(0) are set as x, the
input.

Notice that, for the NPCDDEs in (8) and the modified
NPCDDEs in (12), their vector fields keep constant in a τ
period of time. More generally, we can extend these models
by adding the dependency on the current state, enlarging the
value of the final time, and introducing more skip connec-
tions from the previous time to the current time. As such, a
more generic framework of the NPCDDEs reads:

dz(t)

dt
=f(z(t), z(

⌊
t

τ

⌋
τ), z(

⌊
t− τ
τ

⌋
τ), ...,

z(

⌊
t− nτ
τ

⌋
τ), θ), t ∈ [0, T ],

z(−nτ) = · · · = z(−τ) = z(0) = x,

(13)
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Figure 2: The training processes for fitting the func-
tion g2d(x). (a) The training loses, respectively, using the
NODEs, the NPCDDEs in (8) with n = 1 and τ = 1, the
NPCDDEs in (8) with n = 2 and τ = 0.5, and the special
NPCDDEs in (12) with τ = 0.5. (b) A part of the training
dataset for visualization. The flows mapping from the initial
states to the target states, respectively, by the NODEs (c), the
NPCDDEs in (8) with n = 2 and τ = 0.5 (d), NPCDDEs
in (8) with n = 1 and τ = 1 (e), and the special NPCDDEs
in (12) with τ = 0.5 (f). The red (resp. blue) points and the
yellow (resp. cyan color) points are the initial states and the
final states of all the flows, respectively.

where T = nτ with n being a positive integer. Analogous to
the proof of Theorem 1, the universal approximation of the
NPCDDEs in (13) can be validated (see Proposition 2).
Proposition 2 The NPCDDEs in (13) have a capability of
universal approximation.

To further improve the modeling capability of the NPCD-
DEs, we propose an extension of the NPCDDEs without
sharing the parameters, which reads:

dz(t)

dt
=f(z(t), z(

⌊
t

τ

⌋
τ), z(

⌊
t− τ
τ

⌋
τ), ...,

z(0), θk), t ∈ [kτ, kτ + τ ],

z(0) =x,

(14)

where θk is the parameter vector used in the time interval
[kτ, kτ + τ ] for k = 0, 1, ..., n− 1. For simplicity, we name
such a model as unshared NPCDDEs (UNPCDDEs). As in
the ResNets (1), a typical neural network, the parameters in
each layer are independent with the parameters in the other
layer. Moreover, the gradients of the loss with respect to the
parameters of the UNPCDDEs in (14) are shown in Theo-
rem 2, whose proof is provided in the supplementary mate-
rial. Moreover, setting θk ≡ θ straightforwardly in Theorem
2 enables us to compute the gradients of the NPCDDEs in
(13).
Theorem 2 (Backward gradients of the UNPCDDEs in
(14)) Consider the loss function L(z(T )) with the final time
T = nτ . Thus, we have

dL

dθk
=

∫ kτ

kτ+τ

−a(t)>
∂f

∂θk
dt, (15)
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Figure 3: The dynamical behaviors of the feature spaces dur-
ing the training processes (totally 6 epochs from the left col-
umn to the right column) for fitting g2d(x) using different
models: the NODEs (the top row), the NPCDDEs in (8) with
n = 1 and τ = 1 (the second row), the NPCDDEs in (8)
with n = 2 and τ = 0.5 (the third row), and the special
NPCDDEs in (12) with τ = 0.5 (the bottom row).

where the dynamics of the adjoint can be specified as:

da(t)

dt
= −a(t)>

∂f

∂z(t)
, t ∈ [kτ, kτ + τ ]

a(lτ) = a(lτ) +

∫ kτ

kτ+τ

−a(t)>
∂f

∂z(lτ)
dt,

l = 0, 1, · · · , k,

(16)

where the backward initial condition a(T ) = ∂L((T ))
∂z(T ) and

k = n− 1, n− 2, · · · , 0.

We note that in (16), due to the skip connections, anal-
ogous to DenseNets (Huang et al. 2017), the gradients are
accumulated from multiple paths through the reversed skip
connections in the backward direction, which likely renders
the parameters optimized sufficiently. Additionally, if the
loss function L(z(T )) depends on the states at different time
points, viz., the new loss function L(z(t0), z(t1), ..., z(tN )),
we need to update instantly the adjoint state in the backward
direction by adding the partial derivative of the loss at the
observational time point, viz. a(ti) = a(ti) + ∂L

∂z(ti)
. For the

specific tasks of classification and regression, refer to the
section of Experiments.

Major Properties of NPCDDEs
The NPCDDEs in (13) and the UNPCDDEs in (14) gener-
alize the ResNets and the NODEs as well. Also, they have
strong connections with the Augmented NODEs. Moreover,
the discontinuous nature of the NPCDDEs enables us to
model complex dynamics beyond the NODEs, the Aug-
mented NODEs, and the NDDEs. Lastly, the NPCDDEs are
shown to enjoy advantages in computation over the NDDEs.
In the sequel, we discuss these properties.

Both the ResNets and the NODEs are special cases
of the UNPCDDEs in (14). We emphasize that any

dimension-preserving neural networks (multi-layer residual
blocks) are special cases of the UNPCDDEs. Actually, one
can enforce the z(t), z(

⌊
t−τ
τ

⌋
τ), z(

⌊
t−2τ
τ

⌋
τ), · · · , z(0) as

the dummy variables in the vector field of (13) by assigning
the weights connected to these variables to be zero, except
for the variable z(

⌊
t
τ

⌋
τ). Moreover, letting τ = 1 results in

very simple unshared NPCDDEs as:

dz(t)

dt
= f(z(k), θk), t ∈ [k, k + 1], z(0) = x. (17)

Due to the vector field of (17) keeping constant in each in-
terval [k, k + 1], we have

z(k + 1) = z(k) + f(z(k), θk), z(0) = x, (18)

which is exactly the form of the ResNets (1). In addition,
if we let z(

⌊
t
τ

⌋
τ), z(

⌊
t−τ
τ

⌋
τ), ..., z(0) as the dummy vari-

ables in the vector field of (13) and set θk ≡ θ, the UN-
PCDDEs in (14) indeed become the typical NODEs. Inter-
estingly, though the NODEs are inspired by the ResNets,
they are not equivalent to each other because of the limited
modeling capability of the NODEs. But UNPCDDEs in (14)
provides a more general form of the two.

Connection to Augmented NODEs The NPCDDEs in
(13) can be viewed as a particular form of the Augmented
NODEs:

dz(t)

dt
= f(z(t), z0(t), z1(t), ..., zn(t), θ), t ∈ [0, T ],

dz0(t)

dt
= 0, z0(t) = z(

⌊
t

τ

⌋
τ),

· · ·
dzn(t)

dt
= 0, zn(t) = z(

⌊
t− nτ
τ

⌋
τ),

z(−nτ) = · · · z(−τ) = z(0) = x.
(19)

Hence, we can apply the framework of the NODEs to cop-
ing with the NPCDDEs by solving the Augmented NODEs
in (19). It is worthwhile to emphasize that the Augmented
NODEs in (19) are not trivially equivalent to the traditional
Augmented NODEs developed in (Dupont, Doucet, and Teh
2019). In fact, the dynamics of zi(t) in (19) are piecewise-
constant (but z(t) is continuous) and thus discontinuous
at each time instant kτ , while the traditional Augmented
NODEs still belong to the framework of NODEs whose dy-
namics are continuously evolving. The benefits of disconti-
nuity are specified in the following.

Discontinuity of the piecewise-constant delay(s) No-
tice that b·c used in the piecewise-constant delay(s) is a dis-
continuous function, which makes the first-order derivative
of the function discontinuous at each key time point (i.e.,
integer multiple of the time delay). This characteristic over-
comes a huge limitation, the homeomorphisms/continuity of
the trajectories produced by the NODEs, and thus enhances
the flexibility of the NPCDDEs to handling plenty of com-
plex dynamics (e.g., jumping derivatives and chaos evolv-
ing in the lower dimensional space). We will validate this
advantage in the section of Experiments. Additionally, the
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Figure 4: Sketches of different kinds of continuous-depth neural networks, including the NODEs, the NDDEs, and our newly
proposed framework, the NPCDDEs. Specifically, φ(t) ≡ z(0) as a constant function is the initial function for the NDDEs. For
the NPCDDEs in (13), at each time point in the interval [kτ, kτ + τ ], the time dependencies are unaltered, different from the
dynamical delay in the NDDEs.

simple Euler scheme for the ODEs in (1) is actually a special
PCDDE: dz(t)

dt = f(z(b t∆tc∆t)) (Cooke and Wiener 1991).
Based on the discontinuous nature, the approximation of the
DDEs using the PCDDEs has been validated in (Cooke and
Wiener 1991). Finally, such kind of discontinuous settings
could be seen as typical forms of those discontinuous con-
trol strategies that are frequently used in control problems
(Evans 1983; Lewis, Vrabie, and Syrmos 2012). Actually,
discontinuous control strategies can bring benefits on time
and energy consumption (Sun et al. 2017).

Computation advantages of NPCDDEs over NDDEs
For solving the conventional NDDEs in (7), we need to re-
compute the delay states in time using appropriate ODE
solver (Zhu, Guo, and Lin 2021), which requiresO(n) mem-
ory andO(nK) computation, whereK is the adaptive depth
of the ODE solver. On the contrary, for NPCDDEs in (13)
and the unshared NPCDDEs in (13), the delays are constant,
and thus recomputing is not needed. As a result, for NPCD-
DEs (or UNPCDDEs), computational cost is approximately
in orders of O(n) and O(K). Thus, the computational cost
of NPCDDEs is cheaper than NDDEs.

Experiments
Population Dynamics: One-Dimensional PCDDE
We consider a 1-d PCDDE, which reads:

dx(t)

dt
= ax(t)(1− x(btc)), x(0) = x0 ≥ 0. (20)

where the growth parameter a > 0 (Carvalho and Cooke
1988; Cooke and Wiener 1991). The above PCDDE (20) is
analogous to the well-known, first-order nonlinear logistic
differential equation of one-dimension, which describes the
growth dynamics of a single population and can be written
as:

dx(t)

dt
= ax(t)(1− x(t)), x(0) = x0 ≥ 0. (21)

Clearly, replacing the term 1 − x(t) in the vector field of
(21) by the term 1 − x(btc) results in the vector field of
(20). For each given a > 0 and x0 ≥ 0, if we consider
the state x(t) at the integer time instants t = 0, 1, 2, · · · ,
the corresponding discrete sequence, x(0), x(1), x(2), · · · ,
satisfy the following discrete dynamical system:

x(t+ 1) = x(t)ea(1−x(t)), t = 0, 1, 2, · · · . (22)
Thus, we study the function

fa(x) = xea(1−x), x ∈ [0,∞). (23)

Direct computation indicates that the function fa(·) in (23)
is a C1-unimodal map in [0,∞] with its maximal value as
fa(x∗) = fa( 1

a ). Thus, [0, 1
a ] is a strictly increasing regime

of this function while [ 1
a ,∞) is a strictly decreasing regime.

As pointed out in (Carvalho and Cooke 1988; Cooke and
Wiener 1991), the discrete dynamical system (22) can ex-
hibit complex dynamics including chaos. More precisely, at
a∗ = 3.11670..., the solution of (22) with the initial value
x(0) = x0 = 1

a∗ is periodic and asymptotically stable with
a period of three, so that fa∗ ◦ fa∗ ◦ fa∗(x0) = x0. This
further implies that the map with the adjustable parameter a
admits period-doubling bifurcations and thus has chaotic dy-
namics according to the well-known Sharkovskii Theorem
(Li and Yorke 1975; Carvalho and Cooke 1988; Cooke and
Wiener 1991). Moreover, since the discrete dynamical sys-
tem (22) could be regarded as the sampled system with in-
teger sampling time instants from the original PCDDE (20),
this PCDDE exhibits chaotic as well for a in the vicinity of
a∗. We thereby test the NODEs, the NDDEs, the NPCDDEs,
and the Augmented NODEs on the piecewise-constant delay
population dynamics (20), respectively, with a = 2.0 and
a = 3.2, which corresponds to two regimes of oscillation
and chaos. Moreover, as can be seen from Fig. 5, the train-
ing losses and the test losses of the NPCDDEs decrease sig-
nificantly, compared to those of the other models. Addition-
ally, in the oscillation regime, the losses of the NPCDDEs
approach a very low level in both training and test stages,
while in the chaos regime, the NPCDDEs can achieve short-
term prediction in an accurate manner. Naturally, it is hard to
achieve long-term prediction because of the sensitive inde-
pendence of initial conditions in a chaotic system. Here, for
training, we produce 100 time series from different initial
states in the time interval [0, 3] with 0.1 as the sampling pe-
riod. Thus, still with 0.1 as the sampling period, we use the
final states of the training data as the initial states for the 100
test time series in the next time interval [3, 13]. More specific
configurations for our numerical experiments are provided
in the supplementary material.

Image datasets
We conduct experiments on several image datasets, includ-
ing MNIST, CIFAR10, SVHN, by using the (unshared)
NPCDDEs and the other baselines. In the experiments, we
follow the setup in the work (Zhu, Guo, and Lin 2021). For a
fair comparison, we construct all models without augment-
ing the input space, and for the NDDEs, we assume that
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Figure 5: The training losses and the test losses of the piecewise-constant delay population dynamics (20) with the growth
parameter a = 2.0 (the oscillation regime, top) and a = 3.2 (the chaos regime, bottom), respectively, by using the NPCDDEs,
the NDDEs, the NODEs, and the Agumented NODEs (where the augmented dimension equals to 1). The panels in the first
column depict the training losses. The panels from the second column to the fifth column depict the test losses over the time
intervals, respectively, with the lengths 1, 2, 5, and 10.

the initial function keeps constant (i.e., the initial function
φ(t) = input for t ≤ 0), which is different from the ini-
tial function used for the NDDEs in (Zhu, Guo, and Lin
2021). We note that our models are orthogonal to these mod-
els, since one can also augment the input space and model
the initial state as the feature of an NODE in the frame-
work of NPCDDEs. Additionally, the number of the param-
eters for all models are almost the same (84k params for
MNIST, 107k params for CIFAR10 and SVHN). Notably,
the vector fields of all the models are parameterized with the
convolutional architectures (Dupont, Doucet, and Teh 2019;
Zhu, Guo, and Lin 2021), where the arguments that ap-
peared in the vector fields are concatenated and then fed into
the convolutional neural networks (CNNs). For example, for
the NDDEs, the vector field is f(concat(z(t), z(t − τ)), θ),
where concat(·, ·) is a concatenation operator for two ten-
sors on the channel dimension. Moreover, the initial states
for these models are just the images from the datasets. It
is observed that our models outperform the baselines on
these datasets. The detailed test accuracies are shown, re-
spectively, in Tab. 1. For the specific training configurations
for all the models and more experiments equipped with aug-
mentation (Dupont, Doucet, and Teh 2019), please refer to
the supplementary material.

Discussion
As shown above, the NPCDDEs achieve good performances
not only on the 1-d PCDDE example but on the image
datasets as well. However, such NPCDDEs are not the per-
fect framework, still having some limitations. Here, we sug-
gest several directions for future study, including: 1) For an
NPCDDE, seeking a good strategy to determine the num-
ber of the skip connections and the specific value of each
delay for different tasks, 2) applying the NPCDDEs to the
other suitable real-world datasets, such as the time series
with the piecewise-constant delay effects, 3) providing more
analytical results for the NPCDDEs to guarantee the stabil-
ity and robustness, and 4) leveraging the optimal control the-

Table 1: The test accuracies with their standard devia-
tions over 5 realizations of different models on the image
datasets. In the first column, the integer i in NPCDDEi or
UNPCDDEi means that n = i for the NPCDDEs in (13) or
for the UNPCDDEs in (14). The results for the NODEs and
NDDEs are reported in (Zhu, Guo, and Lin 2021). The final
time T for all models is assigned as 1.

CIFAR10 MNIST SVHN
NODE 53.92%± 0.67 96.21%± 0.66 80.66%± 0.56
NDDE 55.69%± 0.39 96.22%± 0.55 81.49%± 0.09
NPCDDE2 (ours) 56.03%± 0.25 97.32%± 0.30 82.63%± 0.36
UNPCDDE2 (ours) 56.22%± 0.42 97.43%± 0.13 82.99%± 0.23
NPCDDE3 (ours) 56.34%± 0.51 97.34%± 0.10 82.38%± 0.35
UNPCDDE3 (ours) 56.09%± 0.37 97.52%± 0.14 83.19%± 0.32
NPCDDE5 (ours) 56.59%± 0.44 97.40%± 0.19 82.62%± 0.69
UNPCDDE5 (ours) 56.73%± 0.54 97.69%± 0.13 83.45%± 0.38

ory (Pontryagin et al. 1962) for dynamical systems to further
promote the performance of neural networks.

Conclusion
In this article, we have articulated a framework of the
NPCDDEs, which is mainly inspired by several previous
frameworks, including the NODEs, the NDDEs, and the
PCDDEs. The NPCDDEs own not only the provable capa-
bility of universal approximation but also the outstanding
power of nonlinear representations. Also, we have derived
the backward gradients along with the adjoint dynamics for
the NPCDDEs. We have emphasized that both the ResNets
and the NODEs are the special cases of the NPCDDEs and
that the NPCDDEs are of a more general framework com-
pared to the existing models. Finally, we have demonstrated
that the NPCDDEs outperform the several existing frame-
works on representative image datasets (MNIST, CIFAR10,
and SVHN). All these suggest that integrating the elements
of dynamical systems with different kinds of neural net-
works is indeed beneficial to creating and promoting the
frameworks of deep learning using continuous-depth struc-
tures.
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Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 32, 5320–5330. Curran Associates, Inc.
Ruthotto, L.; and Haber, E. 2019. Deep neural networks
motivated by partial differential equations. Journal of Math-
ematical Imaging and Vision, 1–13.
Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.;
Ermon, S.; and Poole, B. 2020. Score-Based Generative
Modeling through Stochastic Differential Equations. arXiv
preprint arXiv:2011.13456.
Sun, Y.; Zhang, L.; and Schaeffer, H. 2020. Neupde: Neural
network based ordinary and partial differential equations for
modeling time-dependent data. In Mathematical and Scien-
tific Machine Learning, 352–372. PMLR.
Sun, Y.-Z.; Leng, S.-Y.; Lai, Y.-C.; Grebogi, C.; and Lin, W.
2017. Closed-loop control of complex networks: A trade-off
between time and energy. Physical review letters, 119(19):
198301.
Tang, Y.; Kurths, J.; Lin, W.; Ott, E.; and Kocarev, L. 2020.
Introduction to Focus Issue: When machine learning meets
complex systems: Networks, chaos, and nonlinear dynam-
ics. Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 30(6): 063151.
Yang, G.; Huang, X.; Hao, Z.; Liu, M.-Y.; Belongie, S.; and
Hariharan, B. 2019. Pointflow: 3d point cloud generation

with continuous normalizing flows. In Proceedings of the
IEEE International Conference on Computer Vision, 4541–
4550.
Zhang, D.; Zhang, T.; Lu, Y.; Zhu, Z.; and Dong, B. 2019.
You only propagate once: Painless adversarial training using
maximal principle. arXiv preprint arXiv:1905.00877, 2(3).
Zhang, H.; Gao, X.; Unterman, J.; and Arodz, T. 2020.
Approximation capabilities of neural ODEs and invertible
residual networks. In International Conference on Machine
Learning, 11086–11095. PMLR.
Zhu, Q.; Guo, Y.; and Lin, W. 2021. Neural Delay Differ-
ential Equations. In International Conference on Learning
Representations.
Zhu, Q.; Ma, H.; and Lin, W. 2019. Detecting unstable pe-
riodic orbits based only on time series: When adaptive de-
layed feedback control meets reservoir computing. Chaos,
29(9): 93125–93125.

View publication statsView publication stats

https://www.researchgate.net/publication/356726959

