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Abstract
User ratings on items are noisy in real-world recommender systems,
which raises challenges to matrix approximation (MA)-based col-
laborative filtering (CF) algorithms — the learned models will be
easily biased to the noisy training data and yield low generalization
performance. This paper proposes a noise-resilient matrix approx-
imation (NORMA) method, which can achieve less biased matrix
approximation and thus more accurate collaborative filtering. In
NORMA, an adaptive weighting strategy is proposed to decrease
the gradient updates of noisy ratings, so that the learned MA mod-
els will be less prone to the noisy ratings. Theoretical analyses
show that NORMA can achieve better generalization performance
than standard matrix approximation methods. Experimental studies
on real-world datasets demonstrate that NORMA can outperform
state-of-the-art matrix approximation-based collaborative filtering
methods in recommendation accuracy.
Keywords: collaborative filtering, matrix approximation.

1 Introduction
Collaborative filtering (CF) is one of the most popular algo-
rithms in real-world recommender systems [1, 22]. Recent s-
tudies demonstrate that matrix approximation (MA) method-
s [6, 16, 21, 19, 28, 31] have achieved state-of-the-art accu-
racy in collaborative filtering on rating prediction task. Gen-
erally, MA methods first learn the feature vectors for users
and items from a set of observed user-item ratings, then the
obtained user/item feature vectors are employed for recom-
mendation on unobserved user-item ratings [16]. Since the
MA models are learned from the observed ratings, so that
the quality of the observed ratings is critical to the success of
recommender systems.

In real-world recommender systems, user-item ratings
are very noisy [3, 8, 21]. Studies show that only around 60%
of user ratings are kept the same when the users are asked
to re-rate items [8], which indicates that a large fraction of
observed user-item ratings cannot accurately represent user-
s’ true interests. Similar phenomenons have also been ob-
served by other studies [2, 3, 14, 30]. This will introduce
challenges to matrix approximation methods, because the
true ratings and noisy ratings will be considered equally im-
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portant during model learning in standard matrix approxima-
tion methods. As a result, the learned matrix approximation
models will be easily biased towards the noisy training da-
ta and thus achieve low generalization performance in prac-
tice. To achieve unbiased matrix approximation and deliver
high quality recommendations based on noisy ratings, matrix
approximation methods should capture the diverse noises in
user-item ratings and alleviate overreaction to the noises dur-
ing model learning.

In this paper, we propose a noise-resilient matrix ap-
proximation method, namely NORMA, to achieve less bi-
ased matrix approximation and thus more accurate collab-
orative filtering with noisy user-item ratings. Firstly, each
observed user-item rating is modelled as a Gaussian random
variable with independent variance, so that the diverse nois-
es in the user-item ratings can be modeled independently.
Secondly, an adaptive weighting strategy is proposed to ad-
just the learning steps based on the estimated levels of nois-
es for each rating, so that the ratings with larger estimated
noises can be trained with smaller learning steps to alleviate
overreaction. Theoretical analyses show that NORMA can
achieve better generalization performance, i.e., sharper gen-
eralization error bound and expected risk bound, compared
with standard matrix approximation methods. Experimental
studies on real-world datasets demonstrate that NORMA can
outperform six state-of-the-art matrix approximation-based
collaborative filtering methods in recommendation accuracy.

2 Problem Formulation
This section first analyzes the noise issue in the user-item
ratings from different perspectives. Then, we model and
analyze the rating noises from a probabilistic view.

2.1 Noises in User-Item Ratings Collaborative filtering
methods rely on historical user-item ratings to predict users’
interests on unseen items, so that the reliability of user-
item ratings are crucial to the success of CF methods [23,
3]. However, real-world user-item ratings are noisy, and
both malicious noise and natural noise exist in today’s
recommender system databases [26]. This paper focuses
on natural noises, which are harder to detect and model in
collaborative filtering [26].

Reasons. The natural noises are mainly introduced due
to the following reasons. 1) User preferences are hard to
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quantify [12]. It is difficult for users to accurately measure
their preferences and consistently assign their preferences to
ratings. 2) Granularity of rating scales. Users like finer-
grained scale the best [8], but most recommender systems
do not support continuous rating scale. Therefore, noises
arise when mapping user opinions into discrete ratings. 3)
Memory Loss. Users store a complex set of feelings about
items, and they may not clearly remember all these feelings
when they are asked to rate the items [25]. 4) Other complex
reasons [3, 12], e.g., mood, context, user rating speed, item
orders, etc.

Severity. Cosley et al. [8] showed that users only keep
about 60% of ratings the same as their previous ratings when
they are asked to re-rate the same movies. The studies of
Jones et al. [12] showed that the stability of user ratings
is around 63% and the stability of user comparing items is
around 82%. These rating noises can affect the accuracies
of collaborative filtering methods. Cosley et al. [8] observed
statistically significant MAE differences when CF algorithm
runs on users’ original ratings and their ratings on new
scales. Amatriain et al. [2] showed that recommendation
accuracy can be affected in different conditions, and the
RMSE variations can be as high as 40%.

In summary, noises widely exist in the user-item rating
data of today’s recommender systems, and the accuracies
of collaborative filtering algorithms are affected due to the
existence of noises. Therefore, it is necessary to design
collaborative filtering algorithms which are resilient to the
rating noises.

2.2 A Probabilistic View of Rating Noises The PMF
method [29] first describes user-item ratings as Gaussian
random variables as follows:

(2.1) Ri,j ∼ N (Ri,j |R̂i,j , σ2),

where Ri,j is the observed rating of the i-th user on the j-th
item and R̂i,j is the predicted rating. σ2 is the variance of the
Gaussian distribution, which is considered the same across
all observed user-item ratings during model learning [29].
However, using the same variance for all user-item ratings
may not be appropriate, because users are very consistent
with extreme ratings, e.g., 1 or 5 on a scale of 1 to 5, but
less consistent with moderate ratings, e.g., 2, 3 and 4 [2, 12].
Therefore, we use different variances for different user-item
ratings as follows:

(2.2) Ri,j ∼ N (Ri,j |R̂i,j , σ2
i,j),

where σ2
i,j stands for the variance of rating Ri,j . Therefore,

we can assume that Ri,j − R̂i,j follows a 0 mean Gaussian
distribution as follows:

(2.3) Ri,j − R̂i,j ∼ N (Ri,j − R̂i,j |0, σ2
i,j).

2.3 Confidence Interval of σ2
i,j Since users only rate an

item once in most recommender systems, it is difficult to
estimate the rating variances directly. Here, we estimate the
confidence interval of σ2

i,j using the following theorem.

THEOREM 2.1. Given one observation X from N (0, σ2)
with σ unknown, for any 0 < δ < 1, with a confidence
level of at least 1 − δ, the confidence interval for σ2 is
[0, 2X2/πδ2).

Proof. Since the probability density of N (0, σ2) distribu-
tion does not exceed 1/

√
2πσ, we have Pr(|X| ≤ a) ≤

2a/
√

2πσ for any a > 0. Then, for any δ ∈ (0, 1), we have

δ ≥ Pr(|X| ≤
√

2πσδ/2)

= Pr(X2 ≤ πσ2δ2/2) = Pr(σ2 ≥ 2X2/πδ2).

Thus, we can claim that Pr(σ2 < 2X2/πδ2) ≥ 1− δ.

Based on the above theorem, we can use its confidence
level bound to approximately estimate σ2

i,j as follows:

(2.4) σ2
i,j ≈

2c(Ri,j − R̂i,j)2

πδ2
,

where c is a predefined constant to control the range of σ2
i,j

and δ is a predefined constant to control the confidence level
of estimating σ2

i,j . One simple mechanism is to choose
c as the ratio of πδ2, so that the computation will be
easier because we only have one hyper-parameter to tune in
estimating σ2

i,j , i.e., c′ = 2c/πδ2.

3 Noise-Resilient Matrix Approximation
In this section, we first define the optimization problem of
the proposed NORMA method. Then, we propose how
to adaptively optimize the targeted problem considering
different levels of noises on different ratings. At last,
we analyze the convergence rate of solving the proposed
weighted optimization problem using SGD.

3.1 The Optimization Problem The optimization objec-
tive of PMF [29] can be described as a least square problem
with L2 regularization. By replacing their universal variance
with individual variances, the new optimization objective can
be described as follows:∑
i,j∈Ω

1

σ2
i,j

(Ri,j−UiV Tj )2 +
1

σ2
U

∑
i

||Ui||2 +
1

σ2
V

∑
j

||Vj ||2.

Here, R ∈ Rm×n, U ∈ Rm×r, and V ∈ Rn×r, where
m is the number of users, n is the number of items, and r
is the rank. Ω is the set of all observed entries in R. Ui
(Vj) is the feature vector of i-th user (j-th item). σ2

i,j stands
for the variance of rating Ri,j , which can be estimated by
Equation 2.4. σ2

U and σ2
V are the variances for user features
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and item features, respectively. Here, we can regard 1/σ2
i,j

as the weight for rating Ri,j , and regard 1/σ2
U and 1/σ2

V as
part of the L2 coefficients. Then, the above optimization
objective can be converted into a weighted least square
problem with L2 regularization as follows:∑
i,j∈Ω

Wi,j(Ri,j − UiV Tj )2 + µ(
∑
i

||Ui||2 +
∑
j

||Vj ||2).

Wi,j is the weight for rating Ri,j , which is related to 1/σ2
i,j .

µ is the L2 regularization coefficient. Then, the user features
and item features can be learned by stochastic gradient
descent (SGD), in which the (t + 1)-th update rules with
regard to rating Ri,j can be described as follows:

U
(t+1)
i ← U

(t)
i − λ(2W

(t)
i,j (R̂

(t)
i,j −Ri,j)V

(t)
j + 2µU

(t)
i ),

V
(t+1)
j ← V

(t)
j − λ(2W

(t)
i,j (R̂

(t)
i,j −Ri,j)U

(t)
i + 2µV

(t)
j ).

λ stands for the learning rate in the above update rules.

3.2 The Adaptive Weighting Strategy In this paper, we
define Wi,j as a function of σ2

i,j . Two main challenges
should be addressed in defining the function: 1) ratings with
larger estimated variances will be given smaller weights and
vice versa; and 2) Wi,j should not be too large or smaller,
otherwise the learning process will diverge or converge very
slowly. Therefore, we propose to use a sigmoid function with
bias to define Wi,j as follows:

(3.5) Wi,j = αS(−c′(Ri,j − R̂i,j)2) + (1− α),

where c′ is a predefined constant to estimate σ2
i,j from

(Ri,j − R̂i,j)2. S(·) is the standard sigmoid function, so that
the range ofWi,j can be bounded when (Ri,j− R̂i,j)2 varies
in [0,+∞). α ∈ (0, 1) is a scaling coefficient to control to
range of Wi,j . Therefore, the range of Wi,j will be bounded
by (1− α, 1− α

2 ], because S(x) ∈ (0, 1
2 ] when x ≤ 0.

Note that the value of Wi,j will vary for different
iterations because the estimation of σ2

i,j , i.e., c′(Ri,j−R̂i,j)2,
will change when the model learns more accurate R̂i,j .
Therefore, we call this adaptive weighting strategy, which
means the weights will adaptively change with the learned
model. In addition, the value of Wi,j will slightly increase
when (Ri,j − R̂i,j)2 gets smaller with increasing number of
epochs, which can naturally address the issue of infinitely
small learning rate after large number of epochs in many
existing adaptive learning rate methods, e.g., AdaGrad [9].

3.3 Convergence Rate Analysis Minimizing the pro-
posed weighted mean square loss can be regarded as min-
imizing the standard mean square loss with adaptive learn-
ing rates. Therefore, we can analyze the convergence rate
of NORMA in the view of adaptive learning rates, then

the analysis can be naturally applied to the weighted least
square problem of NORMA. Assume that we want to min-
imize f(w), where f(·) stands for the mean square loss
function and w is a model (U or V in our case). Then,
we can know that f(·) is strongly convex, i.e., there ex-
ists a positive number l > 0 such that f(w) − f(w′) ≥
〈∇f(w′), w − w′〉 + l

2 ||w − w′||2. The convergence rate
of the NORMA method using adaptive weighting strategy
can be bounded in the following Theorem 3.1.

THEOREM 3.1. Assuming that the gradients of f(w) satisfy
that E(||g||2) ≤ G2 for all w, where E(g) = ∇f(w).
Choose step size ηt = 1

(1−α)tl for the t-th iteration. Then, we

have E(||wt −w∗||2) ≤ max{||w1 − w∗||2, (1−α/2)2G2

(1−α)2l2 }/t.

Proof. Let Wt be the weight for the t-th iteration. We have

E(||wt+1 − w∗||2) = E(||wt − ηtWtgt − w∗||2) =(3.6)

E(||wt − w∗||2)− 2ηtE〈Wtgt, wt − w∗〉+ η2
tE(||Wtgt||2).

Since Wt ∈ (1− α, 1− α
2 ], we know

E〈Wtgt, wt − w∗〉 ≥ (1− α)E〈gt, wt − w∗〉.(3.7)

E(||Wtgt||2) ≤ (1− α

2
)2E(||gt||2).(3.8)

Based on the strongly convex property of f , we have

(3.9) 〈∇f(wt), wt − w∗〉 ≥ l||wt − w∗||2.

Then, by combining the above Inequalities 3.7 – 3.9 into
Equation 3.6, we have

E(||wt+1 − w∗||2)(3.10)

≤(2α− 1)ηtl)E(||wt − w∗||2) + η2
t (1− α

2
)2G2

≤(1− 2

t
)E(||wt − w∗||2) +

(1− α
2 )2G2

(1− α)2l2t2
.

From Inequality 3.10, we know that

E(||w1 − w∗||2) ≤
max{||w1 − w∗||2,

(1−α
2 )2G2

(1−α)2l2 }
1

.

We can adopt induction to prove our results, in which we
prove that the above inequality holds for t + 1 if the above
inequality holds for t. Let us assume that C = max{||w1 −
w∗||2, (1−α

2 )2G2

(1−α)2l2 }. Assuming that E(||wt − w∗||2) ≤ C/t,
then we have

E(||wt+1 − w∗||2)

≤(1− 2

t
)E(||wt − w∗||2) +

(1− α
2 )2G2

(1− α)2l2t2

≤(1− 2

t
)
C

t
+
C

t2
≤ (

1

t
− 1

t2
)C ≤ C

t+ 1
.

The above result shows that the inequality also holds for t+1
if it holds for t, which completes the proof.
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Theorem 3.1 proves that minimizing the proposed
weighted mean square loss using SGD can achieve a con-
vergence rate of O(1/t), i.e., the converge rate of SGD will
not be affected after weighting.

4 Generalization Performance Analysis
This section theoretically analyzes the generalization perfor-
mance of the proposed method by deriving the generalization
error bound and expected risk bound of NORMA and com-
paring with those of standard matrix approximation method.

4.1 Preliminaries We adopt the uniform stability theo-
ry [5] to analyze the generalization error bound of the pro-
posed method, which can measure how a learning algorithm
perturbs with changes in the input samples. Here, we adopt
the uniform stability definition from Hardt et al. [10], which
is based on randomized learning algorithms.

DEFINITION 1. [Uniform Stability [10]] Let S and S′ be
two samples which differ in at most one example. We say
randomized learning algorithm A is ε-uniformly stable if we
have

sup
x

EA(f(A(S);x)− f(A(S′);x)) ≤ ε.

Hardt et al. [10] proved that generalization error can be
bounded by uniform stability bound, so that we can analyze
the generalization performance of NORMA by analyzing its
uniform stability bound. The uniform stability bound of
solving the least square problem using standard SGD method
can be bounded as follows [10]:

THEOREM 4.1. Let f : Φ → R be the convex square loss
function, and assume that ||∇f(·;x)|| ≤ L (L-Lipschitz)
and ||∇f(w;x) − ∇f(w′;x)|| ≤ β||w − w′|| (β-smooth)
for all x ∈ X and w,w′ ∈ Φ. Suppose that we run SGD on
samples withN examples with the t-th step size ηt ≤ 2/β for
totally T steps. Then, its uniform stability can be bounded
by εstab ≤ 2L2

N

∑T
t=1 ηt.

4.2 Generalization Error Bound The uniform stability
bound of NORMA is derived in the following Theorem.

THEOREM 4.2. Let f : Φ → R be the convex square loss
function, and assume that ||∇f(·;x)|| ≤ L (L-Lipschitz) and
||∇f(w;x)−∇f(w′;x)|| ≤ β||w − w′|| (β-smooth) for all
x ∈ X andw,w′ ∈ Φ. Suppose that we run SGD on samples
with N examples with the t-th step size Wtηt ≤ 2/β (Wt is
the weight) for totally T steps. Then, its uniform stability can
be bounded by εstab ≤ 2L2

N

∑T
t=1 (1− α

2 )ηt.

Proof. We have εstab ≤ 2L2

N

∑T
t=1Wtηt from Theorem 4.1.

Since Wt ≤ 1 − α
2 , we have εstab ≤ 2L2

N

∑T
t=1 (1− α

2 )ηt,
which completes the proof.

ηt is the original step size (for the t-th step) in S-
GD without weighting, so that we can conclude that
NORMA has sharper uniform stability bound because
2L2

N

∑T
t=1 (1− α

2 )ηt < 2L2

N

∑T
t=1 ηt, i.e., NORMA has

lower generalization error bound than standard matrix ap-
proximation method.

4.3 Expected Risk Bound Generalization error is only
part of the true risk, because generalization error will some-
times be traded with optimization error [20]. Therefore, we
analyze the expected risk bound of NORMA here, which is
obtained by considering the true data distribution and thus
can be regarded as true risk [10, 20]. The expected risk of a
learned model w by stochastic gradient descent (SGD) on a
sample S can be bounded as follows [10, 20]:

(4.11) E(D(w)) ≤ E(DS(wS∗ )) + εopt + εstab,

where D(w) is the mean square error, wS∗ is the model with
minimum mean square error, εopt is the optimization error,
and εstab is the uniform stability bound. Since E(DS(wS∗ ))
can be regarded as a constant, we can bound the expected
risk of w by εopt + εstab.

The following result from Nemirovski et al. [24] is
adopted to analyze the expected risk bound, i.e., the bound
of εopt + εstab.

THEOREM 4.3. [24] Assume we run SGD with a constant
step size η on a convex function R(w) = Ex∈Xf(w;x),
in which ||∇f(w;x)|| ≤ L and ||w0 − w∗|| ≤ D (w∗ =
arg minw R(w)). Let w̄T be the average of T iterations by
SGD, then R(w̄T ) ≤ R(w∗) + D2

2ηT + L2η
2 .

The expected risk of solving classic least square prob-
lem using standard SGD can be bounded by the following
theorem.

THEOREM 4.4. [10] Let S = {x1, . . . , xn} (|S| = N ).
Suppose that we run SGD with totally T steps with constant
step size γ ≤ 2/β from a start point w0, and w0 satisfies that
||w0 − w∗|| ≤ Q. Then the average of the T iterations w̄T
satisfies that E(D(w̄T )) ≤ E(DS(wS∗ )) + QL√

N

√
N+2T
T .

The following theorem shows that NORMA will not
increase the expected risk bound of SGD (as shown in
the above theorem) by properly choosing α in the weight
definition (Equation 3.5). The proof of the theorem below is
trivial and thus omitted.

THEOREM 4.5. Let S = {x1, . . . , xn} (|S| = N ). Suppose
that we run SGD with totally T steps with constant step size
η ≤ 2/β by properly choosing α in Equation 3.5 from a start
point w0, and w0 satisfies that ||w0 − w∗|| ≤ Q. Then the
average of the T iterations w̄T satisfies that E(D(w̄T )) ≤
E(DS(wS∗ )) + QL√

N

√
N+2T
T .
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In addition, the following theorem shows that NORMA
can even achieve sharper expected risk bound of SGD by
properly choosing α in the weight definition (Equation 3.5),
i.e., NORMA can have lower true risk bound if we properly
choose α.

THEOREM 4.6. Let S = {x1, ..., xn} (|S| = n). Loss
function f is convex, β-smooth and L-Lipschitz. RS(w) =
1
n

∑
x∈S f(w;x) and wS∗ = arg minw RS(w). Suppose that

we run SGD with T steps by a suitable constant step size
(1 − s)η ≤ 2/β (0 < s ≤ 1 − n

2T ) by properly choosing
α in Equation 3.5 and from a start point w0 satisfying
that ||w0 − w∗|| ≤ D. Then, the expected risk bound of
the average of the T iterations w̄T is sharper than that of
Theorem 4.5.

Proof. From Theorem 4.3, the optimization error bound can
be obtained as follows:

εopt(w̄T ) ≤ D2

2η(1− s)T
+
L2η

2
.

The bound for uniform stability can be obtained by combin-
ing Lemma 4.4 and 4.7 in [10] as follows:

εstab ≤
η(1− s)2L2T

n
.

Combining the two inequalities above, we have

E(R(w̄T )) ≤

E(RS(wS∗ )) +
D2

2η(1− s)T
+
L2η

2
+
η(1− s)2L2T

n
.

By choosing η = D
√
n

L
√

(1−s)T (n+2(1−s)2T )
, we can yield the

the following expected risk bound:

E(R(w̄T )) ≤ E(RS(wS∗ )) +
DL√
n

√
n+ 2(1− s)2T

(1− s)T
.

When 0 < s ≤ 1 − n
2T , we have that DL√

n

√
n+2(1−s)2T

(1−s)T ≤
QL√
N

√
N+2T
T , which completes the proof.

5 Experiments
In this section, we first present the experimental setup in-
cluding dataset description, hyperparameter setting and de-
tails of the compared methods. Then, we empirically ana-
lyze the generalization error of NORMA. After that, we ana-
lyze the sensitivity of NORMA with different hyperparame-
ters and the sensitivity of NORMA against manually inserted
rating noises. At last, we compare the accuracy of NORMA
with state-of-the-art matrix approximation-based collabora-
tive filtering methods.

5.1 Experimental Setup Dataset Description. We eval-
uate the proposed method using three popular real-world
datasets: 1) MovieLens 1M (∼ 106 ratings from 6k users
on 4k movies); 2) MovieLens 10M (∼ 107 ratings from 70k
users on 10k movies); and 3) Netflix (∼ 108 ratings from
480k users on 18k movies). For each experiment, we ran-
domly split the dataset with 90% of data as training set and
10% of data as test set. All the results are reported by aver-
aging over five different random splits.
Hyperparameter Setting. In the experiments, we set the
learning rate λ = 0.001 and regularization coefficient µ =
0.02. The convergence threshold is set to 10−5 and the
maximum number of iterations is set to 600. The values of
α and c′ in Equation 3.5 are chosen based on the sensitivity
analysis experiments. Note that the sensitivity analysis are
conducted on training sets only, so that all comparisons
with other methods are fair. The optimal parameters for all
compared methods are chosen from their original papers.
Compared Methods. We compare the accuracy of NORMA
with the following six state-of-the-art matrix approximation-
based collaborative filtering methods: 1) BPMF [28] extends
the PMF method [29] by a Baysian treatment to automatical-
ly control the model capacity; 2) LLORMA [18] combines
a set of local low-rank matrix approximation sub-models us-
ing kernel smoothing to improve accuracy; 3) GSMF [31]
introduces group-sparsity regularization to matrix approxi-
mation, which can model multiple user behaviors to improve
accuracy; 4) WEMAREC [7] constructs sub-models by co-
clustering-based matrix approximation, and then combines
the sub-models by weighted average; 5) SMA [21] is a stable
matrix approximation method, which can improve the gen-
eralization performance of MA-based CF methods; 6) ER-
MMA [20] can minimize the expected risk of matrix approx-
imation, which can also improve the accuracy of collabora-
tive filtering. Similar to NORMA, SMA and ERMMA also
adaptively/randomly manipulate the gradients of a subset of
examples in SGD, but both methods does not consider noise
levels of different examples when manipulating the gradi-
ents.

We also compare NORMA with two popular robust ma-
trix approximation-based CF methods, which were also pro-
posed to address the noisy rating issue in matrix approxima-
tion: 1) Robust MF [23] proposes an iteratively reweighted
matrix approximation method to improve recommendation
stability and 2) RBMF [17] proposes to use heteroscedastic
noise models in the PMF method [29] to improve predictive
performance.

Since changing the weights of examples can be equiva-
lently regarded as changing learning rates, we also compare
NORMA with three popular adaptive learning rate methods
as follows: 1) AdaGrad [9] uses larger learning rates for in-
frequent parameters and smaller learning rates for frequent
parameters; 2) AdaDelta [32] uses a running average of the
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Figure 1: Training and test errors vs. epoch for NORMA and
RSVD [27] on the MovieLens 1M dataset. Here, we set the rank
r = 100, α = 0.6 and c′ = 0.5 for NORMA.

magnitudes of gradients to adjust the learning rates; and 3)
Adam [13] considers the first and the second moment of the
gradients to adjust the learning rates. Here, the three adaptive
learning rate methods are applied in the RSVD [27] method
as the baselines.

5.2 Generalization Error Analysis Figure 1 shows the
trends of training and test errors with different number of
epochs in NORMA and RSVD [27] on the MovieLens 1M
dataset. The only difference between NORMA and RSVD
is that NORMA adopts the adaptive weighting strategy pro-
posed in this paper but RSVD weighs all ratings equally. We
can see from the results that the training and test RMSEs
of NORMA are much closer than those of RSVD. Mean-
while, it is noticeable that NORMA does not show any sign-
s of overfitting even with 500 epochs. This indicates that
NORMA achieves lower generalization error than RSVD,
i.e., NORMA is less prone to overfitting than RSVD. Mean-
while, the lowest test RMSE of NORMA is around 0.8310,
which is much smaller than that of RSVD — 0.8461. This
means that NORMA achieves lower test error than RSVD,
which is because less biased matrix approximation models
has stronger predictive ability.

5.3 Sensitivity Analysis Here, we analyze the sensitivity
of NORMA with different hyperparameters and noises. We
compare NORMA with AdaGrad [9], AdaDelta [32] and
Adam [13] in the experiments, and the results show that
NORMA can outperform the three popular adaptive learning
rate methods in recommendation accuracy.

5.3.1 Sensitivity with α Figure 2 shows how the RMSE
of NORMA changes with α increasing from 0.1 to 0.9. We
can see from the results that the test RMSE of NORMA
first decreases with increasing α when α < 0.7 and then

increases afterwards. Since the variance term plays more
important role in the weighting function as α increases,
which indicates that introducing the variance in the adaptive
weighting can be beneficial to the model learning. However,
when α is too large, e.g., 0.8 or 0.9, the learning rate will
become too small, so that the learning process will stop
before reaching local minimum when the gain is too small.
Since α = 0.6 can achieve near optimal accuracy, we choose
α = 0.6 in the following experiments.

5.3.2 Sensitivity with c′ Figure 2 shows how the RMSE
of NORMA changes with c′ increasing from 0.1 to 1. We
can see from the results that the test RMSE of NORMA first
decreases as c′ increases when c′ < 0.5 and then slightly
increases afterwards. c′ actually controls the confidence in-
terval of the estimated variance, so that too small confidence
interval (small c′) or too large confidence interval (large c′)
will cause bad variance estimation. From this experiment,
we know that c′ = 0.4 achieves near optimal accuracy.

5.3.3 Sensitivity with Manual Noises Since NORMA
can give noisy ratings lower weights in training, it is desir-
able that NORMA can be more robust with rating noises than
standard matrix approximation methods. In this experimen-
t, for each noise scale x, we first randomly choose 20% of
ratings in the training data, and increase the ratings for half
of the chosen data by x and decrease the ratings by x for the
other half of the chosen data.

Figure 4 analyzes how NORMA performs with different
level of manually inserted rating noises. As we can see from
the results, the test RMSE variation of NORMA is smaller
than 0.009 when the noise scale increases from 0.1 to 1, but
the test RMSE variations of the other three adaptive learning
rate methods are larger than 0.011 with the same setting.
This experiment indicates that NORMA is more stable than
RSVD with adaptive learning rate methods on noisy ratings,
which confirms that NORMA can indeed achieve robust
recommendation on noisy ratings.

5.4 Accuracy Comparison Table 1 compares the recom-
mendation accuracy of NORMA with six state-of-the-art ma-
trix approximation-based CF methods. Among the compared
methods, LLORMA [18] and WEMAREC [7] are ensemble
methods, which are empirically more accurate than stand-
alone methods. However, NORMA statistically significant-
ly outperforms all the compared methods on both datasets
with at least 95% confidence level. The main reasons are: 1)
NORMA can learn less biased models than the other meth-
ods due to giving lower weights to more noisy ratings, i.e.,
NORMA can achieve better generalization performance and
2) the adaptive weighting strategy can adjust learning steps
in SGD to achieve better convergence, which is similar to the
adaptive learning rate methods in SDG [9, 13, 32].
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Figure 2: Sensitivity analysis of NORMA with different α values
on the MovieLens 1M dataset. We set the rank r = 100 and
c′ = 0.5 in the experiment.
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Figure 3: Sensitivity analysis of NORMA with different c′ values
on the MovieLens 1M dataset. We set the rank r = 100 and
α = 0.6 in the experiment.
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Figure 4: Sensitivity analysis of NORMA with different manual
noises on the MovieLens 1M dataset. We set the rank r = 100,
α = 0.6 and c′ = 0.5 in the experiment.
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Figure 5: Test RMSE comparison between NORMA and two robust
matrix approximation methods: Robust MF [23] and RBMF [17] on
the MovieLens 1M dataset.

5.5 Comparison with Robust MF Methods Robust col-
laborative filtering methods have been proposed to achieve
robust recommendation against noisy or even malicious us-
er ratings. Here, we compare the performance of NORMA
with two of the state-of-the-art robust matrix approximation-
based CF methods — robust matrix factorization (Robust
MF) method [23] and robust Bayesian matrix factorization
(RBMF) method [17]. Figure 5 compares the test RMSE of
NORMA with the two robust matrix approximation meth-
ods on MovieLens 1M dataset with rank increasing from 10
to 50. As we can see from the results, NORMA can achieve
much lower test RMSEs than both methods with all rank val-
ues. Since NORMA and the other two robust methods only
differ in how to model the noises in learning, the superior

performance of NORMA indicates that the proposed adap-
tive weighting strategy is more desirable in addressing the
noisy rating issue in collaborative filtering applications.

6 Related Work
Collaborative filtering is the most important class of methods
in many real-world recommender systems [1]. Among ex-
isting collaborative filtering methods, matrix approximation-
based methods have achieved state-of-the-art accuracy in rat-
ing prediction tasks recently. Billsus et al. [4] first applied
singular value decomposition on user-item rating matrix for
collaborative filtering. Paterek [27] proposed an improved
method for regularized SVD method and achieved signif-
icantly better accuracy than the baseline method of Net-
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Table 1: Root mean square error (RMSE) comparison be-
tween NORMA (rank = 300) and six state-of-the-art matrix
approximation-based collaborative filtering methods — BPM-
F [28], LLORMA [18], GSMF [31], WEMAREC [7], SMA [21],
ERMMA [20] on the MovieLens 10M and Netflix datasets. Note
that NORMA statistically significantly outperforms the other meth-
ods with 95% confidence level on both datasets.

Method MovieLens (10M) Netflix
BPMF 0.8197 ± 0.0004 0.8421 ± 0.0002
GSMF 0.8012 ± 0.0011 0.8420 ± 0.0006

LLORMA 0.7855 ± 0.0002 0.8275 ± 0.0004
WEMAREC 0.7775 ± 0.0007 0.8143 ± 0.0001

SMA 0.7682 ± 0.0003 0.8036 ± 0.0004
ERMMA 0.7670 ± 0.0007 0.8018 ± 0.0001
NORMA 0.7641 ± 0.0008 0.7986 ± 0.0002

flix prize challenge — the Cinematch method. Salakhut-
dinov and Minh [29] first proposed the probabilistic ma-
trix factorization (PMF) method, which achieves matrix ap-
proximations from a probabilistic view. Then, they im-
proved the PMF method by a Baysian treatment and pro-
posed the Bayesian probabilistic matrix factorization (BPM-
F) method [28], which can automatically control the model
capacity. Koren [15] combined the implicit feedback into
the matrix approximation methods and proposed the SVD++
method. Li et al. [21] proposed a stable matrix approxima-
tion method, which can improve the generalization perfor-
mance of matrix approximation-based collaborative filtering.
Later, they extended the stable matrix approximation method
and proposed ERMMA [20], which can achieve lower ex-
pected risk in learning matrix approximation models using S-
GD by randomly shrinking the gradients of a subset of train-
ing examples. However, these methods do not consider the
noises in user-item ratings and treat all ratings equally im-
portant in model training, which will make the learned MA
models be biased when facing with noisy ratings.

The noisy rating issue in collaborative filtering has also
been studied recently. Hill et al. [11] observed a correlation
of 83% when users are asked to re-rate the movies that they
rated 6 weeks ago. The study of Cosley et al. [8] showed that
around 60% of user ratings are kept the same when users are
asked to re-rate movies that they rated before. Amatriain et
al. [2] also studied users’ consistency when rating movies
and found that users are inconsistent even when determining
whether they have seen a movie or not. Their findings reveal
that user ratings are indeed noisy and unreliable, so that
matrix approximation models will be biased if ratings with
different levels of noises are treated equally.

Several methods have been recently proposed to address
the noisy rating issue in collaborative filtering. Amatriain et
al. [3] proposed to let users re-rate items that they rated be-
fore, which can help to remove the natural noises. They

observed around 10% improvements in terms of RMSE af-
ter denoising. However, their method is not scalable in real
applications, because users pay a lot of effort when rating
items [30]. Another type of methods tried to design robust
collaborative filtering methods to address the rating noise
issue [23, 17]. Mehta et al. [23] found that M-estimators
cannot significantly improve the stability of collaborative fil-
tering, and they proposed an iteratively reweighted matrix
approximation method to improve recommendation stabili-
ty on noisy ratings. Lakshminarayanan et al. [17] studied
the noisy model in the PMF method, and compared differ-
ent noise models and prior distributions in RBMF. These
robust collaborative filtering methods can improve stability
of recommendation, but cannot achieve similarly significant
improvement in recommendation accuracy compared to the
proposed method as shown in the experiments.

Another type of related work is the adaptive learning
rate method in SGD, e.g., AdaGrad [9], AdaDelta [32] and
Adam [13], etc., because the proposed adaptive weighting s-
trategy can be regarded as a variant of adaptive learning rate
method. The merit of these methods is that frequent parame-
ters are given smaller updates and infrequent parameters are
given larger updates to improve model convergence. Howev-
er, these methods are not perfect for matrix approximation-
based collaborative filtering on noisy ratings, because both
frequent and infrequent parameters can appear on noisy rat-
ings. In the contrary, NORMA can give larger gradient up-
dates on less noisy ratings and give smaller gradient updates
to noisy ratings, so that the learned MA models will be less
biased to noisy ratings.

7 Conclusion and Future Work
Collaborative filtering is important in today’s recommender
systems, but the unavoidable noises in the user-item ratings
raise challenges to matrix approximation-based CF methods.
This paper views the matrix approximation on noisy ratings
as a weighted matrix approximation method. An adaptive
weighting strategy is proposed to decrease learning steps on
noisy ratings, so that the learned MA models will be less
sensitive to noises. Theoretical and empirical analyses show
that the proposed method can achieve better generalization
performance than existing method. Empirical studies on
real-world datasets demonstrate that the proposed method
can outperform six state-of-the-art matrix approximation-
based collaborative filtering methods in recommendation
accuracy. One possible extension of this work is to apply
the idea of NORMA to other adaptive learning rate methods,
e.g., AdaGrad [9], to further improve performance.
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