
Mixture-Rank Matrix Approximation
for Collaborative Filtering

Dongsheng Li1 Chao Chen1 Wei Liu2∗ Tun Lu3,4 Ning Gu3,4 Stephen M. Chu1

1IBM Research - China
2Tencent AI Lab, China

3School of Computer Science, Fudan University, China
4Shanghai Key Laboratory of Data Science, Fudan University, China

{ldsli, cshchen, schu}@cn.ibm.com, wliu@ee.columbia.edu, {lutun, ninggu}@fudan.edu.cn

Abstract

Low-rank matrix approximation (LRMA) methods have achieved excellent ac-
curacy among today’s collaborative filtering (CF) methods. In existing LRMA
methods, the rank of user/item feature matrices is typically fixed, i.e., the same rank
is adopted to describe all users/items. However, our studies show that submatrices
with different ranks could coexist in the same user-item rating matrix, so that
approximations with fixed ranks cannot perfectly describe the internal structures
of the rating matrix, therefore leading to inferior recommendation accuracy. In
this paper, a mixture-rank matrix approximation (MRMA) method is proposed, in
which user-item ratings can be characterized by a mixture of LRMA models with
different ranks. Meanwhile, a learning algorithm capitalizing on iterated condition
modes is proposed to tackle the non-convex optimization problem pertaining to
MRMA. Experimental studies on MovieLens and Netflix datasets demonstrate that
MRMA can outperform six state-of-the-art LRMA-based CF methods in terms of
recommendation accuracy.

1 Introduction

Low-rank matrix approximation (LRMA) is one of the most popular methods in today’s collaborative
filtering (CF) methods due to high accuracy [11, 12, 13, 17]. Given a targeted user-item rating matrix
R ∈ Rm×n, the general goal of LRMA is to find two rank-k matrices U ∈ Rm×k and V ∈ Rn×k
such that R ≈ R̂ = UV T . After obtaining the user and item feature matrices, the recommendation
score of the i-th user on the j-th item can be obtained by the dot product between their corresponding
feature vectors, i.e., UiVjT .

In existing LRMA methods [12, 13, 17], the rank k is considered fixed, i.e., the same rank is adopted
to describe all users and items. However, in many real-world user-item rating matrices, e.g., Movielens
and Netflix, users/items have a significantly varying number of ratings, so that submatrices with
different ranks could coexist. For instance, a submatrix containing users and items with few ratings
should be of a low rank, e.g., 10 or 20, and a submatrix containing users and items with many ratings
may be of a relatively higher rank, e.g., 50 or 100. Adopting a fixed rank for all users and items
cannot perfectly model the internal structures of the rating matrix, which will lead to imperfect
approximations as well as degraded recommendation accuracy.

In this paper, we propose a mixture-rank matrix approximation (MRMA) method, in which user-item
ratings are represented by a mixture of LRMA models with different ranks. For each user/item, a
probability distribution with a Laplacian prior is exploited to describe its relationship with different

∗This work was conducted while the author was with IBM.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

LRMA models, while a joint distribution of user-item pairs is employed to describe the relationship
between the user-item ratings and different LRMA models. To cope with the non-convex optimization
problem associated with MRMA, a learning algorithm capitalizing on iterated condition modes
(ICM) [1] is proposed, which can obtain a local maximum of the joint probability by iteratively
maximizing the probability of each variable conditioned on the rest. Finally, we evaluate the proposed
MRMA method on Movielens and Netflix datasets. The experimental results show that MRMA can
achieve better accuracy compared against state-of-the-art LRMA-based CF methods, further boosting
the performance for recommender systems leveraging matrix approximation.

2 Related Work

Low-rank matrix approximation methods have been leveraged by much recent work to achieve
accurate collaborative filtering, e.g., PMF [17], BPMF [16], APG [19], GSMF [20], SMA [13],
etc. These methods train one user feature matrix and one item feature matrix first and use these
feature matrices for all users and items without any adaptation. However, all these methods adopt
fixed rank values for the targeted user-item rating matrices. Therefore, as analyzed in this paper,
submatrices with different ranks could coexist in the rating matrices and only adopting a fixed rank
cannot achieve optimal matrix approximation. Besides stand-alone matrix approximation methods,
ensemble methods, e.g., DFC [15], LLORMA [12], WEMAREC [5], etc., and mixture models, e.g.,
MPMA [4], etc., have been proposed to improve the recommendation accuracy and/or scalability
by weighing different base models across different users/items. However, the above methods do not
consider using different ranks to derive different base models. In addition, it is desirable to borrow
the idea of mixture-rank matrix approximation (MRMA) to generate more accurate base models in
the above methods and further enhance their accuracy.

In many matrix approximation-based collaborative filtering methods, auxiliary information, e.g.,
implicit feedback [9], social information [14], contextual information [10], etc., is introduced to
improve the recommendation quality of pure matrix approximation methods. The idea of MRMA is
orthogonal to these methods, and can thus be employed by these methods to further improve their
recommendation accuracy. In general low-rank matrix approximation methods, it is non-trivial to
directly determine the maximum rank of a targeted matrix [2, 3]. Candès et al. [3] proved that a
non-convex rank minimization problem can be equivalently transformed into a convex nuclear norm
minimization problem. Based on this finding, we can easily determine the range of ranks for MRMA
and choose different K values (the maximum rank in MRMA) for different datasets.

3 Problem Formulation

In this paper, upper case letters such as R,U, V denote matrices, and k denotes the rank for matrix
approximation. For a targeted user-item rating matrix R ∈ Rm×n, m denotes the number of users, n
denotes the number of items, and Ri,j denotes the rating of the i-th user on the j-th item. R̂ denotes
the low-rank approximation of R. The general goal of k-rank matrix approximation is to determine
user and item feature matrices, i.e., U ∈ Rm×k, V ∈ Rn×k, such that R ≈ R̂ = UV T . The rank k is
considered low, because k � min{m,n} can achieve good performance in many CF applications.

In real-world rating matrices, e.g., Movielens and Netflix, users/items have a varying number of
ratings, so that a lower rank which best describes users/items with less ratings will easily underfit the
users/items with more ratings, and similarly a higher rank will easily overfit the users/items with less
ratings. A case study is conducted on the Movielens (1M) dataset (with 1M ratings from 6,000 users
on 4,000 movies), which confirms that internal submatrices with different ranks indeed coexist in the
rating matrix. Here, we run the probabilistic matrix factorization (PMF) method [17] using k = 5
and k = 50, and then compare the root mean square errors (RMSEs) for the users/items with less
than 10 ratings and more than 50 ratings.

As shown in Table 1, when the rank is 5, the users/items with less than 10 ratings achieve lower
RMSEs than the cases when the rank is 50. This indicates that the PMF model overfits the users/items
with less than 10 ratings when k = 50. Similarly, we can conclude that the PMF model underfits
the users/items with more than 50 ratings when k = 5. Moreover, PMF with k = 50 achieves lower
RMSE (higher accuracy) than PMF with k = 5, but the improvement comes with sacrificed accuracy
for the users and items with a small number of ratings, e.g., less than 10. This study shows that PMF

2

Table 1: The root mean square errors (RMSEs) of PMF [17] for users/items with different numbers
of ratings when rank k = 5 and k = 50.

rank = 5 rank = 50

#user ratings < 10 0.9058 0.9165
#user ratings > 50 0.8416 0.8352
#item ratings < 10 0.9338 0.9598
#item ratings > 50 0.8520 0.8418

All 0.8614 0.8583

with fixed rank values cannot perfectly model the internal mixture-rank structure of the rating matrix.
To this end, it is desirable to model users and items with different ranks.

4 Mixture-Rank Matrix Approximation (MRMA)

Ri,j

Uki αki V kjβkj

σ2

σ2
U σ2

V

µα bα µβbβ

j = {1, ..., n}

i = {1, ...,m}

k = {1, ...,K}

Figure 1: The graphical model for the proposed mixture-rank matrix approximation (MRMA) method.

Following the idea of PMF, we exploit a probabilistic model with Gaussian noise to model the
ratings [17]. As shown in Figure 1, the conditional distribution over the observed ratings for the
mixture-rank model can be defined as follows:

Pr(R|U, V, α, β, σ2) =

m∏
i=1

n∏
j=1

[

K∑
k=1

αki β
k
jN (Ri,j |Uki V kj

T
, σ2)]1i,j , (1)

where N (x|µ, σ2) denotes the probability density function of a Gaussian distribution with mean µ
and variance σ2. K is the maximum rank among all internal structures of the user-item rating matrix.
αk and βk are the weight vectors of the rank-k matrix approximation model for all users and items,
respectively. Thus, αki and βkj denote the weights of the rank-k model for the i-th user and j-th item,
respectively. Uk and V k are the feature matrices of the rank-k matrix approximation model for all
users and items, respectively. Likewise, Uki and V kj denote the feature vectors of the rank-k model
for the i-th user and j-th item, respectively. 1i,j is an indication function, which will be 1 if Ri,j is
observed and 0 otherwise.

By placing a zero mean isotropic Gaussian prior [6, 17] on the user and item feature vectors, we have

Pr(Uk|σ2
U) =

m∏
i=1

N (Uki |0, σ2
UI), Pr(V k|σ2

V) =

n∏
j=1

N (V kj |0, σ2
V I). (2)

For αk and βk, we choose a Laplacian prior here, because the models with most suitable ranks
for each user/item should be with large weights, i.e., αk and βk should be sparse. By placing the
Laplacian prior on the user and item weight vectors, we have

Pr(αk|µα, bα) =
m∏
i=1

L(αki |µα, bα), Pr(βk|µβ , bβ) =
n∏
j=1

L(βkj |µβ , bβ), (3)

3

where µα and bα are the location parameter and scale parameter of the Laplacian distribution for α,
respectively, and accordingly µβ and bβ are the location parameter and scale parameter for β.

The log of the posterior distribution over the user and item features and weights can be given as
follows:
l = lnPr(U, V, α, β|R, σ2, σ2

U , σ
2
V , µα, bα, µβ , bβ)

∝ ln
[
Pr(R|U, V, α, β, σ2) Pr(U |σ2

U) Pr(V |σ2
V) Pr(α|µα, bα) Pr(β|µβ , bβ)

]
=

m∑
i=1

n∑
j=1

1i,j

[
ln

K∑
k=1

αki β
k
jN (Ri,j |Uki (V kj)T , σ2I)

]
− 1

2σ2
U

K∑
k=1

m∑
i=1

(Uki)
2 − 1

2σ2
V

K∑
k=1

n∑
j=1

(V ki)
2 − 1

2
Km lnσ2

U −
1

2
Kn lnσ2

V (4)

− 1

bα

K∑
k=1

m∑
i=1

|αki − µα| −
1

bβ

K∑
k=1

n∑
j=1

|βkj − µβ | −
1

2

K∑
k=1

m ln b2α −
1

2

K∑
k=1

n ln b2β + C,

where C is a constant that does not depend on any parameters. Since the above optimization problem
is difficult to solve directly, we obtain its lower bound using Jensen’s inequality and then optimize
the following lower bound:

l′ = − 1

2σ2

m∑
i=1

n∑
j=1

1i,j

[K∑
k=1

αki β
k
j (Ri,j − Uki (V kj)T)2

]
− 1

2

m∑
i=1

n∑
j=1

1i,j lnσ
2

− 1

2σ2
U

K∑
k=1

m∑
i=1

(Uki)
2 − 1

2σ2
V

K∑
k=1

n∑
j=1

(V ki)
2 − 1

2
Km lnσ2

U −
1

2
Kn lnσ2

V (5)

− 1

bα

K∑
k=1

m∑
i=1

|αki − µα| −
1

bβ

K∑
k=1

n∑
j=1

|βkj − µβ | −
1

2
Km ln b2α −

1

2
Kn ln b2β + C.

If we keep the hyperparameters of the prior distributions fixed, then maximizing l′ is similar to the
popular least square error minimization with `2 regularization on U and V and `1 regularization on α
and β. However, keeping the hyperparameters fixed may easily lead to overfitting because MRMA
models have many parameters.

5 Learning MRMA Models

The optimization problem defined in Equation 5 is very likely to overfit if we cannot precisely
estimate the hyperparameters, which automatically control the generalization capacity of the MRMA
model. For instance, σU and σV will control the regularization of U and V . Therefore, it is more
desirable to estimate the parameters and hyperparameters simultaneously during model training. One
possible way is to estimate each variable by its maximum a priori (MAP) value while conditioned
on the rest variables and then iterate until convergence, which is also known as iterated conditional
modes (ICM) [1].

The ICM procedure for maximizing Equation 5 is presented as follows.

Initialization: Choose initial values for all variables and parameters.

ICM Step: The values of U , V , α and β can be updated by solving the following minimization
problems when conditioned on other variables or hyperparameters.

∀k ∈ {1, ...,K},∀i ∈ {1, ...,m} :

Uki ← argmin
U ′

{ 1

2σ2

n∑
j=1

1i,j

[K∑
k=1

αki β
k
j (Ri,j − Uki (V kj)T)2

]
+

1

2σ2
U

K∑
k=1

(Uki)
2
}
,

αki ← argmin
α′

{ 1

2σ2

n∑
j=1

1i,j

[K∑
k=1

αki β
k
j (Ri,j − Uki (V kj)T)2

]
+

1

bα

K∑
k=1

|αki − µα|
}
.

4

∀k ∈ {1, ...,K},∀j ∈ {1, ..., n} :

V kj ← argmin
V ′

{ 1

2σ2

m∑
i=1

1i,j

[K∑
k=1

αki β
k
j (Ri,j − Uki (V kj)T)2

]
+

1

2σ2
V

K∑
k=1

(V kj)
2
}
,

βkj ← argmin
β′

{ 1

2σ2

m∑
i=1

1i,j

[K∑
k=1

αki β
k
j (Ri,j − Uki (V kj)T)2

]
+

1

bβ

K∑
k=1

|βkj − µβ |
}
.

The hyperparameters can be learned as their maximum likelihood estimates by setting their partial
derivatives on l′ to 0.

σ2 ←
m∑
i=1

n∑
j=1

1i,j

[K∑
k=1

αki β
k
j (Ri,j − Uki (V kj)T)2

]
/

m∑
i=1

n∑
j=1

1i,j ,

σ2
U ←

K∑
k=1

m∑
i=1

(Uki)
2/Km, µα ←

K∑
k=1

m∑
i=1

αki /Km, bα =

K∑
k=1

m∑
i=1

|αki − µα|/Km,

σ2
V ←

K∑
k=1

n∑
j=1

(V kj)
2/Kn, µβ ←

K∑
k=1

n∑
j=1

βkj /Kn, bβ =

K∑
k=1

n∑
j=1

|βkj − µβ |/Kn.

Repeat: until convergence or the maximum number of iterations reached.

Note that ICM is sensitive to initial values. Our empirical studies show that setting the initial values
of Uk and V k by solving the classic PMF method can achieve good performance. Regarding α
and β, one of the proper initial values should be 1/

√
K (K denotes the number of sub-models in

the mixture model). To improve generalization performance and enable online learning [7], we can
update U, V, α, β using stochastic gradient descent. Meanwhile, the `1 norms in learning α and β
can be approximated by the smoothed `1 method [18]. To deal with massive datasets, we can use the
alternating least squares (ALS) method to learn the parameters of the proposed MRMA model, which
is amenable to parallelization.

6 Experiments

This section presents the experimental results of the proposed MRMA method on three well-known
datasets: 1) MovieLens 1M dataset (∼1 million ratings from 6,040 users on 3,706 movies); 2)
MovieLens 10M dataset (∼10 million ratings from 69,878 users on 10,677 movies); 3) Netflix Prize
dataset (∼100 million ratings from 480,189 users on 17,770 movies). For all accuracy comparisons,
we randomly split each dataset into a training set and a test set by the ratio of 9:1. All results are
reported by averaging over 5 different splits. The root mean square error (RMSE) is adopted to
measure the rating prediction accuracy of different algorithms, which can be computed as follows:

D(R̂) =
√∑

i

∑
j 1i,j(Ri,j − R̂i,j)2/

∑
i

∑
j 1i,j (1i,j indicates that entry (i, j) appears in the

test set). The normalized discounted cumulative gain (NDCG) is adopted to measure the item
ranking accuracy of different algorithms, which can be computed as follows: NDCG@N =

DCG@N/IDCG@N (DCG@N =
∑N
i=1(2

reli − 1)/ log2(i+ 1), and IDCG is the DCG value
with perfect ranking).

In ICM-based learning, we adopt ε = 0.00001 as the convergence threshold and T = 300 as the
maximum number of iterations. Considering efficiency, we only choose a subset of ranks, e.g.,
{10, 20, 30, ..., 300} rather than {1, 2, 3, ..., 300}, in MRMA. The parameters of all the compared
algorithms are adopted from their original papers because all of them are evaluated on the same
datasets.

We compare the recommendation accuracy of MRMA with six matrix approximation-based collabo-
rative filtering algorithms as follows: 1) BPMF [16], which extends the PMF method from a Baysian
view and estimates model parameters using a Markov chain Monte Carlo scheme; 2) GSMF [20],
which learns user/item features with group sparsity regularization in matrix approximation; 3) LLOR-
MA [12], which ensembles the approximations from different submatrices using kernel smoothing;
4) WEMAREC [5], which ensembles different biased matrix approximation models to achieve higher

5

0.80

0.82

0.84

0.86

0.88

k=10
k=20

k=50
k=100

k=150
k=200

k=250
k=300

MRMA

R
M

S
E

Model

PMF
MRMA

Figure 2: Root mean square error comparison
between MRMA and PMF with different ranks.

0.80

0.82

0.84

0.86

set 1
set 2

set 3
set 4

set 5
 0

 1000

R
M

S
E

co
m

pu
ta

tio
n

tim
e

(s
)

rank setting

RMSE
computation time

Figure 3: The accuracy and efficiency tradeoff of
MRMA.

accuracy; 5) MPMA [4], which combines local and global matrix approximations using a mixture
model; 6) SMA [13], which yields a stable matrix approximation that can achieve good generalization
performance.

6.1 Mixture-Rank Matrix Approximation vs. Fixed-Rank Matrix Approximation

Given a fixed rank k, the corresponding rank-k model in MRMA is identical to probabilistic matrix
factorization (PMF) [17]. In this experiment, we compare the recommendation accuracy of MRMA
with ranks in {10, 20, 50, 100, 150, 200, 250, 300} against those of PMF with fixed ranks on the
MovieLens 1M dataset. For PMF, we choose 0.01 as the learning rate, 0.01 as the user feature
regularization coefficient, and 0.001 as the item feature regularization coefficient, respectively. The
convergence condition is the same as MRMA.

As shown in Figure 2, when the rank increases from 10 to 300, PMF can achieve RMSEs between
0.86 and 0.88. However, the RMSE of MRMA is about 0.84 when mixing all these ranks from 10 to
300. Meanwhile, the accuracy of PMF is not stable when k ≤ 100. For instance, PMF with k = 10
achieves better accuracy than k = 20 but worse accuracy than k = 50. This is because fixed rank
matrix approximation cannot be perfect for all users and items, so that many users and items either
underfit or overfit at a fixed rank less than 100. Yet when k > 100, only overfitting occurs and PMF
achieves consistently better accuracy when k increases, which is because regularization terms can
help improve generalization capacity. Nevertheless, PMF with all ranks achieves lower accuracy
than MRMA, because individual users/items can give the sub-models with the optimal ranks higher
weights in MRMA and thus alleviate underfitting or overfitting.

6.2 Sensitivity of Rank in MRMA

In MRMA, the set of ranks decide the performance of the final model. However, it is neither efficient
nor necessary to choose all the ranks in [1, 2, ...,K]. For instance, a rank-k approximation will
be very similar to rank-(k − 1) and rank-(k + 1) approximations, i.e., they may have overlapping
structures. Therefore, a subset of ranks will be sufficient. Figure 3 shows 5 different settings of
rank combinations, in which set 1 = {10, 20, 30, ..., 300}, set 2 = {20, 40, ..., 300}, set 3 =
{30, 60, ..., 300}, set 4 = {50, 100, ..., 300}, and set 5 = {100, 200, 300}. As shown in this figure,
RMSE decreases when more ranks are adopted in MRMA, which is intuitive because more ranks will
help users/items better choose the most appropriate components. However, the computation time
also increases when more ranks are adopted in MRMA. If a tradeoff between accuracy and efficiency
is required, then set 2 or set 3 will be desirable because they achieve slightly worse accuracies but
significantly less computation overheads.

MRMA only contains three sub-models with different ranks in set 5 = {100, 200, 300}, but it still
significantly outperforms PMF with ranks ranging from 10 to 300 in recommendation accuracy (as
shown in Figure 2). This further confirms that MRMA can indeed discover the internal mixture-rank
structure of the user-item rating matrix and thus achieve better recommendation accuracy due to
better approximation.

6

Table 2: RMSE comparison between MRMA and six state-of-the-art matrix approximation-based
collaborative filtering algorithms on MovieLens (10M) and Netflix datasets. Note that MRMA
statistically significantly outperforms the other algorithms with 95% confidence level.

MovieLens (10M) Netflix

BPMF [16] 0.8197 ± 0.0004 0.8421 ± 0.0002
GSMF [20] 0.8012 ± 0.0011 0.8420 ± 0.0006

LLORMA [12] 0.7855 ± 0.0002 0.8275 ± 0.0004
WEMAREC [5] 0.7775 ± 0.0007 0.8143 ± 0.0001

MPMA [4] 0.7712 ± 0.0002 0.8139 ± 0.0003
SMA [13] 0.7682 ± 0.0003 0.8036 ± 0.0004
MRMA 0.7634 ± 0.0009 0.7973 ± 0.0002

Table 3: NDCG comparison between MRMA and six state-of-the-art matrix approximation-based
collaborative filtering algorithms on Movielens (1M) and Movielens (10M) datasets. Note that
MRMA statistically significantly outperforms the other algorithms with 95% confidence level.

Metric NDCG@N

Data |Method N=1 N=5 N=10 N=20

M
ov

ie
le

ns
1M

BPMF 0.6870 ± 0.0024 0.6981 ± 0.0029 0.7525 ± 0.0009 0.8754 ± 0.0008
GSMF 0.6909 ± 0.0048 0.7031 ± 0.0023 0.7555 ± 0.0017 0.8769 ± 0.0011

LLORMA 0.7025 ± 0.0027 0.7101 ± 0.0005 0.7626 ± 0.0023 0.8811 ± 0.0010
WEMAREC 0.7048 ± 0.0015 0.7089 ± 0.0016 0.7617 ± 0.0041 0.8796 ± 0.0005

MPMA 0.7020 ± 0.0005 0.7114 ± 0.0018 0.7606 ± 0.0006 0.8805 ± 0.0007
SMA 0.7042 ± 0.0033 0.7109 ± 0.0011 0.7607 ± 0.0008 0.8801 ± 0.0004

MRMA 0.7153 ± 0.0027 0.7182 ± 0.0005 0.7672 ± 0.0013 0.8837 ± 0.0004

M
ov

ie
le

ns
10

M

BPMF 0.6563 ± 0.0005 0.6845 ± 0.0003 0.7467 ± 0.0007 0.8691 ± 0.0002
GSMF 0.6708 ± 0.0012 0.6995 ± 0.0008 0.7566 ± 0.0017 0.8748 ± 0.0004

LLORMA 0.6829 ± 0.0014 0.7066 ± 0.0005 0.7632 ± 0.0004 0.8782 ± 0.0012
WEMAREC 0.7013 ± 0.0003 0.7176 ± 0.0006 0.7703 ± 0.0002 0.8824 ± 0.0006

MPMA 0.6908 ± 0.0006 0.7133 ± 0.0002 0.7680 ± 0.0001 0.8808 ± 0.0004
SMA 0.7002 ± 0.0006 0.7134 ± 0.0004 0.7679 ± 0.0003 0.8809 ± 0.0002

MRMA 0.7048 ± 0.0006 0.7219 ± 0.0001 0.7743 ± 0.0001 0.8846 ± 0.0001

6.3 Accuracy Comparison

6.3.1 Rating Prediction Comparison

Table 2 compares the rating prediction accuracy between MRMA and six matrix approximation-
based collaborative filtering algorithms on MovieLens (10M) and Netflix datasets. Note that among
the compared algorithms, BPMF, GSMF, MPMA and SMA are stand-alone algorithms, while
LLORMA and WEMAREC are ensemble algorithms. In this experiment, we adopt the set of ranks
as {10, 20, 50, 100, 150, 200, 250, 300} due to efficiency reason, which means that the accuracy of
MRMA should not be optimal. However, as shown in Table 2, MRMA statistically significantly
outperforms all the other algorithms with 95% confidence level. The reason is that MRMA can
choose different rank values for different users/items, which can achieve not only globally better
approximation but also better approximation in terms of individual users or items. This further
confirms that mixture-rank structure indeed exists in user-item rating matrices in recommender
systems. Thus, it is desirable to adopt mixture-rank matrix approximations rather than fixed-rank
matrix approximations for recommendation tasks.

6.3.2 Item Ranking Comparison

Table 3 compares the NDCGs of MRMA with the other six state-of-the-art matrix approximation-
based collaborative filtering algorithms on Movielens (1M) and Movielens (10M) datasets. Note that
for each dataset, we keep 20 ratings in the test set for each user and remove users with less than 5

7

ratings in the training set. As shown in the results, MRMA can also achieve higher item ranking
accuracy than the other compared algorithms thanks to the capability of better capturing the internal
mixture-rank structures of the user-item rating matrices. This experiment demonstrates that MRMA
can not only provide accurate rating prediction but also achieve accurate item ranking for each user.

6.4 Interpretation of MRMA

Table 4: Top 10 movies with largest β values for sub-models with rank k = 20 and k = 200 in MRMA.
Here, #ratings stands for the average number of ratings in the training set for the corresponding
movies.

rank=20 rank=200

movie name β #ratings movie name β #ratings

Smashing Time 0.6114

2.4

American Beauty 0.9219

1781.4

Gate of Heavenly Peace 0.6101 Groundhog Day 0.9146
Man of the Century 0.6079 Fargo 0.8779

Mamma Roma 0.6071 Face/Off 0.8693
Dry Cleaning 0.6071 2001: A Space Odyssey 0.8608

Dear Jesse 0.6063 Shakespeare in Love 0.8553
Skipped Parts 0.6057 Saving Private Ryan 0.8480

The Hour of the Pig 0.6055 The Fugitive 0.8404
Inheritors 0.6042 Braveheart 0.8247

Dangerous Game 0.6034 Fight Club 0.8153

To better understand how users/items weigh different sub-models in the mixture model of MRMA,
we present the top 10 movies which have largest β values for sub-models with rank=20 and rank=200,
show their β values, and compare their average numbers of ratings in the training set in Table 4.
Intuitively, the movies with more ratings (e.g., over 1000 ratings) should weigh higher towards more
complex models, and the movies with less ratings (e.g., under 10 ratings) should weigh higher towards
simpler models in MRMA.

As shown in Table 4, the top 10 movies with largest β values for the sub-model with rank 20 have
only 2.4 ratings on average in the training set. On the contrary, the top 10 movies with largest β values
for the sub-model with rank 200 have 1781.4 ratings on average in the training set, and meanwhile
these movies are very popular and most of them are Oscar winners. This confirms our previous claim
that MRMA can indeed weigh more complex models (e.g., rank=200) higher for movies with more
ratings to prevent underfitting, and weigh less complex models (e.g., rank=20) higher for the movies
with less ratings to prevent overfitting. A similar phenomenon has also been observed from users
with different α values, and we omit the results due to space limit.

7 Conclusion and Future Work

This paper proposes a mixture-rank matrix approximation (MRMA) method, which describes user-
item ratings using a mixture of low-rank matrix approximation models with different ranks to achieve
better approximation and thus better recommendation accuracy. An ICM-based learning algorithm is
proposed to handle the non-convex optimization problem pertaining to MRMA. The experimental
results on MovieLens and Netflix datasets demonstrate that MRMA can achieve better accuracy than
six state-of-the-art matrix approximation-based collaborative filtering methods, further pushing the
frontier of recommender systems. One of the possible extensions of this work is to incorporate other
inference methods into learning the MRMA model, e.g., variational inference [8], because ICM may
be trapped in local maxima and therefore cannot achieve global maxima without properly chosen
initial values.

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant
No. 61332008 and NSAF under Grant No. U1630115.

8

References
[1] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B

(Methodological), pages 259–302, 1986.

[2] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Communications of the
ACM, 55(6):111–119, 2012.

[3] E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE
Transactions on Information Theory, 56(5):2053–2080, 2010.

[4] C. Chen, D. Li, Q. Lv, J. Yan, S. M. Chu, and L. Shang. MPMA: mixture probabilistic matrix approxi-
mation for collaborative filtering. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI ’16), pages 1382–1388, 2016.

[5] C. Chen, D. Li, Y. Zhao, Q. Lv, and L. Shang. WEMAREC: Accurate and scalable recommendation
through weighted and ensemble matrix approximation. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15), pages 303–312,
2015.

[6] D. Dueck and B. Frey. Probabilistic sparse matrix factorization. University of Toronto technical report
PSI-2004-23, 2004.

[7] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient descent,
2015. arXiv:1509.01240.

[8] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for
graphical models. Machine learning, 37(2):183–233, 1999.

[9] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceed-
ings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD

’14), pages 426–434. ACM, 2008.

[10] Y. Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’09), pages 447–456. ACM,
2009.

[11] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer,
42(8), 2009.

[12] J. Lee, S. Kim, G. Lebanon, and Y. Singer. Local low-rank matrix approximation. In Proceedings of The
30th International Conference on Machine Learning (ICML ’13), pages 82–90, 2013.

[13] D. Li, C. Chen, Q. Lv, J. Yan, L. Shang, and S. Chu. Low-rank matrix approximation with stability. In The
33rd International Conference on Machine Learning (ICML ’16), pages 295–303, 2016.

[14] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using probabilistic matrix
factorization. In Proceedings of the 17th ACM conference on Information and knowledge management
(CIKM ’08), pages 931–940. ACM, 2008.

[15] L. W. Mackey, M. I. Jordan, and A. Talwalkar. Divide-and-conquer matrix factorization. In Advances in
Neural Information Processing Systems (NIPS ’11), pages 1134–1142, 2011.

[16] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo.
In Proceedings of the 25th international conference on Machine learning (ICML ’08), pages 880–887.
ACM, 2008.

[17] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in Neural Information
Processing Systems (NIPS ’08), pages 1257–1264, 2008.

[18] M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for L1 regularization: A comparative
study and two new approaches. In European Conference on Machine Learning (ECML ’07), pages 286–297.
Springer, 2007.

[19] K.-C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized linear
least squares problems. Pacific Journal of Optimization, 6(15):615–640, 2010.

[20] T. Yuan, J. Cheng, X. Zhang, S. Qiu, and H. Lu. Recommendation by mining multiple user behaviors with
group sparsity. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI ’14), pages
222–228, 2014.

9

	Introduction
	Related Work
	Problem Formulation
	Mixture-Rank Matrix Approximation (MRMA)
	Learning MRMA Models
	Experiments
	Mixture-Rank Matrix Approximation vs. Fixed-Rank Matrix Approximation
	Sensitivity of Rank in MRMA
	Accuracy Comparison
	Rating Prediction Comparison
	Item Ranking Comparison

	Interpretation of MRMA

	Conclusion and Future Work

