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Mixture Matrix Approximation for Collaborative
Filtering

Dongsheng Li, Member, IEEE, Chao Chen, Tun Lu, Stephen M. Chu, Ning Gu

Abstract—Matrix approximation (MA) methods are integral parts of today’s recommender systems. In standard MA methods, only one
feature vector is learned for each user/item, which may not be accurate enough to characterize the diverse interests of users/items. For
instance, users could have different opinions on a given item, so that they may need different feature vectors for the item to represent
their unique interests. To this end, this paper proposes a mixture matrix approximation (MMA) method, in which we assume that the
user-item ratings follow mixture distributions and the user/item feature vectors vary among different stars to better characterize the
diverse interests of users/items. Furthermore, we show that the proposed method can tackle both rating prediction and the top-N
recommendation problems. Empirical studies on MovieLens, Netflix and Amazon datasets demonstrate that the proposed method can
outperform state-of-the-art MA-based collaborative filtering methods in both rating prediction and top-N recommendation tasks.

Index Terms—Collaborative filtering, matrix approximation.
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1 INTRODUCTION

MATRIX approximation (MA) is one of the most success-
ful collaborative filtering (CF) methods, in both rating

prediction [3], [23], [26], [41], [49] and top-N recommenda-
tion [19], [34], [38], [47]. In collaborative filtering tasks, the
user-item ratings (either multivariate or binary) are partially
observed, and a general goal of MA methods is to recover
the unobserved ratings based on the observed ratings. Gen-
erally, MA methods first learn a low-dimensional feature
vector for every user/item from the observed ratings. Then,
the unobserved ratings can be predicted by the dot products
of the corresponding user feature vectors and item feature
vectors [23]. User ratings on items are usually sparse, so
that MA methods which can address the data sparsity
issue by dimension reduction can achieve superior accuracy
compared with other methods [39], [42], [44].

The user-item ratings are typically quantized in collabo-
rative filtering tasks, e.g., 1-star to 5-star in the MovieLens
1M dataset, which causes the users’ interests to be diverse
on the same item [46]. For instance, given a particular item,
the users who like the item will give 4/5-star ratings and
the neutral users will give 3-star ratings, but meanwhile
the users who dislike the item will give 1/2-star ratings.
Therefore, a global matrix approximation model, i.e., us-
ing a globally optimized item feature vector for all kinds
of users, cannot accurately represent the diverse interests
of users on the item. Our case study on the MovieLens
dataset shows that the optimal item feature vectors vary
for different users and the globally optimized item feature
vectors cannot achieve optimal recommendation accuracy
for all users. Recently, categorical matrix approximation
methods [5], [9] have been proposed to address the matrix
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approximation problem on quantized data. These methods
can indeed improve the model performance over previous
methods, but cannot address the issue mentioned above
because they also learn global user/item feature vectors to
recover unobserved ratings.

This paper proposes a mixture matrix approximation
(MMA) method, in which we assume that the user-item
ratings follow mixture distributions over the stars and the
user/item feature vectors vary among the stars to bet-
ter characterize the diverse interests of users/items. More
specifically, each user-item rating is described by a mixture
of biased MA models, in which each biased MA model tries
to learn the partial interests of users/items on a specific star.
Then, for each rating, a mixture distribution is exploited to
describe the relationship between the user/item/rating and
different biased MA models. Therefore, we can have three
variants of mixture matrix approximation method — the
user-based MMA (U-MMA), the item-based MMA (I-MMA)
and the rating-based MMA (R-MMA) by placing mixture
assumptions over user ratings, item ratings, and individual
ratings, respectively. In addition, we can naturally extend
the proposed method from rating prediction to the top-N
recommendation problem without much effort. To improve
model performance and learning speed, we propose to
pretrain the proposed MMA models, which can effectively
solve the non-convex optimization problem associated with
MMA. Based on the pretrained models, two learning meth-
ods are proposed to learn the probability to choose each
component in the mixture model. Our empirical studies on
the MovieLens, Netflix and Amazon datasets demonstrate
that the proposed method can achieve higher accuracy com-
pared with state-of-the-art MA-based collaborative filtering
methods in both rating prediction (i.e., predict how a user
will rate a movie or product) and top-N recommendation
(i.e., predict if a user will rate a movie or buy a product or
not) tasks while achieving high scalability.
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Fig. 1: The left figure shows the distribution of different
ratings (1-star to 5-star) on the MovieLens 1M dataset. The
right figure shows the rating specific RMSE, i.e., the RMSEs
are computed based on all ratings of the same star.

2 PROBLEM FORMULATION

This section first introduces the background of low-rank
matrix approximation, and then motivates the targeted
problem using three case studies on the MovieLens datasets.

2.1 Low-Rank Matrix Approximation

Given a user-item rating matrix R ∈ Rm×n, a general goal
of matrix approximation is to find two rank r feature matrix
U ∈ Rm×r and V ∈ Rn×r so that

R ≈ R̂ = UV T . (1)

Here, we say U is the user feature matrix and V is the
item feature matrix. Each row of U or V — Ui or Vj is
the corresponding feature vector of the i-th user or the j-
th item. Typically, r is much lower than m and n, so we can
also call it low-rank matrix approximation.

To learn proper U and V , we can minimize the discrep-
ancy between the rating matrix R and its approximation R̂.
The mean square error with `2 regularization is one of the
popular losses in collaborative filtering [23], [41], which can
be described as follows:

L =
∑
i,j

1i,j(Ri,j − R̂i,j)2 + µ1||U ||2F + µ2||V ||2F . (2)

Here, Ri,j is the entry at the i-th row and j-th column
of R. 1i,j is an indication function, which is 1 if Ri,j is
observed and 0 otherwise. || · ||F is the Frobenius norm,
and µ1 and µ2 are the `2 regularization coefficients of U and
V , respectively.

When the observed ratings are binary, i.e., implicit feed-
back of users on items, surrogate loss functions, e.g., expo-
nential loss [28], are adopted to address the top-N recom-
mendation problem. Therefore, we can change Equation 2
as follows:

L′ =
∑
i,j

1i,j exp{−Ri,jR̂i,j}+ µ1||U ||2F + µ2||V ||2F . (3)

2.2 Case Study

Here, we conduct three case studies on the MovieLens 1M
dataset using the RSVD method [35]. In RSVD, we use 0.001
as the learning rate and 0.02 as the regularization coefficient.
For each study, we randomly split the data into a training
set and a test set by the ratio of 9:1, and stop training when
the test errors start to grow.
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Fig. 2: The rating distributions of four movies on the Movie-
Lens 1M dataset. “Overall” means the distribution over all
ratings, “first 1/3” means the distribution of the earliest 1/3
ratings for the movie, and so forth. The x-axis is the stars of
the ratings and the y-axis is the frequency of the ratings for
each movie.

2.2.1 Case Study 1: Rating vs. Error
This case study analyzes the relationship between rating
distribution and recommendation accuracy on the Movie-
Lens 1M dataset. As shown in Figure 1 (left), the ratings
are actually highly biased, i.e., there are much more 3/4/5-
star ratings than 1/2-star ratings. In addition, we can see
from Figure 1 (right) that the recommendation accuracy for
4-star ratings (the most frequent ratings) is much higher
than the accuracy for 1-star ratings (the most infrequent
ratings). This study indicates that the globally learned MA
model is biased towards frequent ratings and thus achieves
suboptimal performance for other ratings, i.e., user interests
on 1/2/3/5-star movies are suboptimal. Therefore, it is
necessary to learn different biased MA models towards
different stars to better characterize the diverse interests of
users.

2.2.2 Case Study 2: The Mixture Distribution
This case study analyzes the rating distribution of individu-
al movies in the MovieLens 1M dataset. Here, we select four
movies from the dataset and compare their ratings distribu-
tions in different time intervals. More specifically, we divide
the ratings of each movie into three part by chronological
order, i.e., the earliest 1/3 ratings, the middle 1/3 ratings
and the latest 1/3 ratings. As shown in Figure 2, the rating
distributions of overall ratings and partial ratings are very
similar for all four movies, i.e., the probability of a particular
rating occurring can be regarded as constant. Therefore, we
can conclude that 1) the mixture distribution of each movie’s
ratings is very stable over time so that we can learn a
mixture model and use it for future recommendations and 2)
the rating distributions of the movies are very different from
each other, which indicates that different mixture model pa-
rameters should be used to describe different users/items.

2.2.3 Case Study 3: Rating vs. Model
In this study, we first train an optimal MA model using
RSVD with lowest RMSE on the test set. Then, we fix the
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Fig. 3: Case study: comparison of parameter values for
the movie “Toy Story” optimizing towards different stars.
“Global” means the optimal parameter values based on all
ratings of the movie, “1/2-star” means the optimal parame-
ter values based on 1/2-star ratings only, and so forth.

user feature vectors and update the item feature vector for
the movie “Toy Story” based on specific stars. For instance,
“1/2-star” means we only train the optimal item feature
vector based on 1/2-star ratings of “Toy Story”.

Figure 3 shows the learned item feature vectors for
different cases with rank = 50. We can see from the results
that the optimal feature vectors are indeed different among
the stars. For instance, in the first dimension, the parameter
value for 1/2-star is negative, but the values are positive for
3-star and 4/5-star. Besides, the global model shows larger
variance among the parameter values, which should be due
to a compromise among diverse user interests.

In addition, we also compared the accuracy of the global
model and the biased models learned on specific stars, and
we observe a huge performance improvement of the biased
models on the specific stars. For instance, the global model
achieves a RMSE of 0.7999 on 4/5-star, but the RMSE on
4/5-star is 0.6326 if we train the model using only 4/5-star
ratings. This further confirms that globally optimized matrix
approximation models cannot capture the diverse character-
istics of users/items and thus achieve inferior performances
in recommendation tasks.

3 MIXTURE MATRIX APPROXIMATION

Following the PMF method [41], we describe the user-item
ratings using a probabilistic model with Gaussian noise. As
shown in Figure 4, the conditional distribution over the
observed user-item ratings for the mixture matrix approx-
imation can be defined as follows:

Pr(R|U, V,Π, σ2) =
m∏
i=1

n∏
j=1

[
∑
k∈S

Πk
i,jN (Ri,j |Uki (V kj )

T
, σ2)]1i,j .

(4)
Here, N (·|µ, σ2) denotes the probability density function of
a Gaussian distribution with mean µ and variance σ2. S de-
notes the set of possible ratings, e.g., 1-star to 5-star in rating
prediction and 0/1 in top-N recommendation. For simplici-
ty, the term “rating” means both 1-5 star ratings and binary
ratings unless otherwise specified. Pr(Ri,j = k) = Πk

i,j for
any k ∈ S, i.e., Πk

i,j denotes the probability of choosing the

model focused on k-star ratings. Uk and V k are the feature
matrices of the matrix approximation model focusing on k-
star ratings, and Uki and V kj denote the feature vectors for
the i-th user and j-th item, respectively. 1i,j is an indication
function, which is 1 if Ri,j is observed and 0 otherwise.
Intuitively, the MMA method tries to learn |S| = K different
biased MA models, each of which can be very accurate on a
specific star. Then, the final prediction is a weighted sum of
the predictions from different biased MA models.

We adopt a zero mean isotropic Gaussian prior [14], [41]
on the user and item feature vectors as follows:

Pr(Uk|σ2
U ) =

m∏
i=1

N (Uki |0, σ2
UI),

Pr(V k|σ2
V ) =

n∏
j=1

N (V kj |0, σ2
V I).

We place a multinomial prior on Π, so the probability of Π
can be given as follows:

Pr(Π) =
m∏
i=1

n∏
j=1

(Πi,j)
1i,j .

Here, Πi,j denotes the multinomial distribution correspond-
ing to user i and item j. Πi,j should change when different
variants of MMA are adopted, e.g., Πi,j does not change
with j if we use U-MMA.

Assuming that U , V and Π are independent to each
other, then the posterior distribution over the user and item
feature matrices U, V and rating distribution Π can be given
as follows:

Pr(U, V,Π|R, σ2, σ2
U , σ

2
V ) ∝

Pr(R|U, V,Π, σ2) Pr(U |σ2
U ) Pr(V |σ2

V ) Pr(Π). (5)

Then, assuming that σ2, σ2
U and σ2

V are constants, we can
derive the log of the posterior distribution over U , V and Π
as follows:

l = ln Pr(U, V,Π|R, σ2, σ2
U , σ

2
V )

∝
m∑
i=1

n∑
j=1

1i,j

[
ln
∑
k∈S

Πk
i,jN (Ri,j |Uki (V kj )T , σ2)

]
−

1

2σ2
U

∑
k∈S

m∑
i=1

(Uki )2 − 1

2σ2
V

∑
k∈S

n∑
j=1

(V ki )2 + (6)

m∑
i=1

n∑
j=1

1i,j ln Πi,j + C.

Here, C is a constant that does not depend on any pa-
rameters, which will be omitted in the objective. There are
summations within the logarithm operations in Equation 6,
which makes the above optimization problem be difficult
to solve. Therefore, we first obtain the lower bound of
Equation 6 using Jensen’s inequality, and then we minimize
the negative log likelihood as follows:

l′ =

m∑
i=1

n∑
j=1

1i,j

[∑
k∈S

Πk
i,j(Ri,j − Uk

i (V k
j )T )2

]
+
σ2

σ2
U

∑
k∈S

m∑
i=1

(Uk
i )2

+
σ2

σ2
V

∑
k∈S

n∑
j=1

(V k
i )2 − 2σ2

m∑
i=1

n∑
j=1

1i,j ln Πi,j .
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Fig. 4: The graphical model for the proposed mixture matrix approximation method. Here, we show the plate notations of
three variants of MMA, i.e., the user-based MMA (U-MMA), the item-based MMA (I-MMA) and the rating-based MMA
(R-MMA) by placing mixture assumptions over user ratings, item ratings, and individual ratings, respectively.

Then, by considering σ2/σ2
U , σ2/σ2

V and 2σ2 as the regu-
larization coefficients for U , V and Π, we can obtain the
final optimization objective for the proposed mixture matrix
approximation method as follows:

L =

m∑
i=1

n∑
j=1

1i,j

[∑
k∈S

Πk
i,j(Ri,j − Uk

i (V k
j )T )2

]
+ µ1

∑
k∈S

m∑
i=1

(Uk
i )2

+µ2

∑
k∈S

n∑
j=1

(V k
i )2 − µ3

m∑
i=1

n∑
j=1

1i,j ln Πi,j . (7)

Note that, different variants of the mixture matrix approxi-
mation method can be derived by placing the mixture model
assumption Π over different aspects, i.e., assuming that the
ratings of each user follow a mixture model, the ratings of
each item follow a mixture model, or each rating follows a
mixture model. Thus, we can opt for different variants of
MMA by using different mixture models (Figure 4).

The above loss function (Equation 7) can apply to general
CF tasks, e.g., both rating prediction and top-N recommen-
dation. However, it may not be optimal due to the implicit
feedback issue in top-N recommendation task [19], [34],
[38]. Therefore, we introduce surrogate loss functions, e.g.,
Exponential loss [28], into Equation 7 and formulate the loss
function for top-N recommendation as follows:

L′ =

m∑
i=1

n∑
j=1

1i,j

[∑
k∈S

Πk
i,j exp{−Ri,j(U

k
i (V k

j )T )}
]

+ µ1

∑
k∈S

m∑
i=1

(Uk
i )2 + µ2

∑
k∈S

n∑
j=1

(V k
i )2 − µ3

m∑
i=1

n∑
j=1

1i,j ln Πi,j .

Note that other surrogate loss functions, e.g., mean
square loss and log loss, are also popular in ranking
tasks [25], [28] and could be applied in the above loss
function for top-N recommendation. Therefore, the optimal
surrogate loss should be determined empirically.

4 LEARNING MMA MODELS

Stochastic gradient descent (SGD) is one of the possible
methods to minimize the non-convex objective defined in E-
quation 7. However, our empirical studies show that directly
minimizing Equation 7 using SGD will easily be trapped
by local minimum and achieve very poor generalization
performance (Figure 5). Therefore, we propose to pretrain

each component in MMA. More specifically, we proposed
a weighted matrix approximation method to help pretrain
the biased MA models, in which we set larger weights for
k-star ratings if we want the learned MA model to be biased
towards k-star ratings. Then, two learning methods are pro-
posed to learn the probability of choosing each component
in the mixture model.

4.1 The Weighted Matrix Approximation

Given a targeted star k ∈ S, let R̂k be the biased MA model
towards k-star ratings. The weighted matrix approximation
should be performed by solving the following problem:

R̂k = arg min
R′
||W k ⊗ (R−R′)||2F . (8)

Here, W k is the weight matrix for star k, and ⊗ denotes the
element-wise product.

To learn biased MA models, the proposed weighted
matrix approximation method should satisfy the following
two requirements: 1) ratings that are close to k-star in
the training set should be given larger weights than far
away ratings; 2) users/items who have more k-star ratings
should be given larger weights than the other users/items.
Considering the above two requirements, we propose the
weighting strategy on training example Ri,j for R̂k as
follows:

W k
i,j = (1− α|Ri,j − k|)F (k) + β. (9)

α, β > 0 are two hyperparameters for the proposed weight-
ed MA method. F (k) stands for the frequency of k-star
ratings for the user and/or the item, e.g., the frequency of
k-star ratings from user i if we use user-based MMA. Here,
(1−α|Ri,j −k|) ensures that ratings that are closer to k-star
are given larger weights, and F (k) ensures that users/items
who have more k-star ratings are given larger weights. β
is a constant to prevent W from being too small, which is
set to 0.1 empirically in this paper. Note that other distance
measures between Ri,j and k could be adopted here instead
of the absolute function, e.g., Gaussian kernel and Laplacian
kernel are both popular when little prior knowledge is
known about the data [18]. However, our studies show that
absolute distance is more desirable in collaborative filtering
due to better empirical performances (Figure 10).
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After defining W k
i,j , we can learn the biased MA model

for rating k — R̂k using SGD as follows:

Uki ← Uki − λW k
i,j((R̂i,j −Ri,j)V kj + µ1U

k
i ),

V kj ← V kj − λW k
i,j((R̂i,j −Ri,j)Uki + µ2V

k
j ).

4.2 Learning the Mixture Distributions
Since we have different variants of MMA, we propose
two different learning methods: 1) SGD-based method to
learn the models for U-MMA and I-MMA efficiently and
2) classification-based method to learn the models for R-
MMA, in which we learn classification models to predict
the probability of choosing each component in the mixture
model. The reason for the classification-based method is that
the probability distributions are rating-specific for R-MMA,
so that we cannot have the learned distributions for test
ratings in R-MMA if we use SGD because test ratings do
not exist in training data.

4.2.1 SGD-based Method
After learning the biased MA models for each star, we can
set the initial values of all the parameters in U and V .
Meanwhile, Π can be initialized based on the empirical
rating distributions of users/items, e.g., Πk

i,j = F (k). Then,
we can learn Π and update U and V using standard SGD
method. For each training example Ri,j and each star k, the
gradient update rules for Uk and V k can be described as
follows:

Uki ← Uki − λ1((R̂ki,j −Ri,j)V kj Πk
i,j + µ1U

k
i ).

V kj ← V kj − λ1((R̂ki,j −Ri,j)Uki Πk
i,j + µ2V

k
j ).

The gradient update rules for Πk in U-MMA and I-MMA
can be described as follows:

Πk
i,∗ ← Πk

i,∗ − λ2((Ri,j − R̂(k)
i,j )2 − µ3/Π

k
i,∗).

Πk
∗,j ← Πk

∗,j − λ2((Ri,j − R̂(k)
i,j )2 − µ3/Π

k
∗,j).

4.2.2 Classification-based Method
We can use classification algorithms to learn Π by regarding
the probabilities in the mixture distributions as classification
probabilities. Many off-the-shelf multi-class classification
methods, e.g., random forest (RF) [8], multinomial logistic
regression (MLR) [7] and deep neural network (DNN) [12],
can be applied. Here, we choose DNN as an example to
illustrate how to apply classification methods to learn Π in
MMA.

Deep neural network (DNN) with rectified linear unit
(ReLU) and dropout has been successfully applied in speech
recognition [12], which is efficient due to the adoption of
ReLU [15] and generalizes well due to the adoption of
dropout [43]. In this paper, we can use DNN as the classifier
to determine the probabilities of choosing different biased
MA models given their scores. More specifically, the input
of the DNN is the recommendation scores from all biased
MA models and the output of the DNN is the probabilities
of choosing different biased MA models.

The output of the t-th layer of the DNN can be described
as follows [12]:

~yt = f(
1

1− d
~yt−1 ⊗ ~m · ~x+~b), (10)

where d is the dropout probability, ~m ∼ B(1, 1 − d) is
the binary mask indicating which units are not dropped
out, ~x represents the weights and ~b represents the bias in
this layer. Here, “⊗” denotes element-wise product and “·”
denotes dot product. In particular, the activation function f
is defined as follows: f(x) = max{0, x}. For simplicity, we
use the same number of units for all hidden layers. We use
the `2 norm as the regularization term and Adam [21] to
adaptively tune the learning rate in SGD. The output layer
of the DNN is transformed using the softmax function to
obtain the probability of choosing the biased MA model
towards k-star as follows:

Πk
i,j =

exp{y(k)}∑K
a=1 exp{y(a)}

. (11)

Here, y(k) is the output of the DNN for the k-th class.
Πk
i,j is the probability of choosing the biased MA model

towards k-star. Note that U and V need not be updated in
the classification-based method.

4.3 Model Prediction
After learning U , V and Π, we can predict user ratings on
unseen items using the mixture model. More specifically, we
can compute the recommendation scores as follows:

R̂i,j =
∑
k∈S

Πk
i,jU

k
i (V kj )T . (12)

Πk
i,j denotes the probability of choosing the biased MA

model towards k-star in R-MMA, so that we should replace
it with Πk

i,∗/ Πk
∗,j if we use U-MMA/I-MMA, respectively.

4.4 Efficiency Analysis
Compared with stand alone methods, e.g., RSVD [35], the
proposed method requires higher overall computation over-
head due to the learning of multiple biased MA models
and mixture distributions. However, the extra overhead
of MMA is linear compared with RSVD, e.g., around K
times computations on a dataset with K stars. In addition,
the above two steps can both be performed in parallel to
improve the scalability.

For the weighted MA method, the biased MA models
can be easily learned in parallel, because they have no
dependencies on each other. For each biased MA model, we
can further increase the scalability by adopting other learn-
ing algorithms, e.g., alternating least squares [19], which are
amenable to parallelization.

For learning the mixture model distributions, the SGD-
based method cannot be easily parallelized. However, since
all the biased MA models and the mixture distributions are
initialized properly, the learning process will converge very
fast, e.g., within 50 epochs in our empirical studies. For
the classification-based method, the scalability depends on
the selected classification method itself. For instance, in the
learning of DNN, the parameter matrices can be updated in
parallel by adopting parallel matrix computations.

Note that the proposed method can be applied in on-
line recommendation for relatively stable users and items
because each recommendation score can be computed via a
few dot products, which is similar to existing matrix approx-
imation methods [27], [29], [35]. For fast changing users and
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items, we can adopt existing online matrix approximation
methods [17] to update the biased MA models in MMA.
Then, we can choose R-MMA to combine the biased MA
models because the classification model can be re-trained
online via cost-sensitive online classification methods [45].

5 GENERALIZATION ERROR ANALYSIS

This section analyzes the generalization error bounds of the
weighted matrix approximation method and the proposed
MMA method.

5.1 The Weighted Matrix Approximation Method

Since many ratings have equal weights in the proposed
weighted MA method, we can ignore the regularization
term and rephrase the loss function as follows:

L′(R, R̂k) =
K′∑
s=1

λs
|Ωs|

∑
(i,j)∈Ωs

(Ri,j − R̂ki,j)2, (13)

where Ωs is the set of ratings with equal weight. Without
loss of generality, we can assume that λ1 + ... + λK′ = 1,
because we can scale Equation 13 with a scaler if λ1 + ... +
λK′ 6= 1. Here, we prove that the weighted loss function can
achieve lower generalization error bound, i.e., potentially
better generalization performance, than unweighted loss
function in the following Theorem 1. The following results
are adopted in the proof of Theorem 1.

Lemma 1 (Markov’s Inequality). Let X be a real-valued non-
negative random variable. Then, for any ε > 0, Pr(X ≥ ε) ≤
E[X]
ε .

Lemma 2 (Hoeffding’s Lemma). Let X be a real-valued ran-
dom variable with zero mean and Pr (X ∈ [a, b]) = 1. Then, for
any z ∈ R, E

[
ezX

]
≤ exp

(
1
8z

2(b− a)2
)
.

Theorem 1. Let L = 1/|Ω|
∑

(i,j)∈Ω(Ri,j − R̂si,j)
2, L′ be

defined as in Equation 13, and E[L] = E[L′] = µ. For any
ε > 0, if Pr[|L′−µ| < ε] ≥ 1−δ′ and Pr[|L−µ| < ε] ≥ 1−δ,
then δ′ ≤ δ.

Proof. Based on Markov’s inequality and Hoeffding’s Lem-
ma, for any ε, t > 0, we have

Pr[L−µ ≥ ε] = Pr[et(L−µ) ≥ etε]
(a)

≤ E[et(L−µ)]

etε

(b)

≤ e
1
8 t

2(a−b)2

etε
,

where µ is the expectation of L, a = sup{L − µ} and b =
inf{L − µ}. (a) holds due to Markov’s inequality, and (b)
holds due to Hoeffding’s Lemma. Similarly, we have

Pr[µ− L ≥ ε] ≤ e 1
8 t

2(a−b)2/etε. (14)

Combining the above two inequalities, we have

Pr[|L − µ| < ε] ≥ 1− 2e18t2(a−b)2/etε,

i.e.,

δ = 2e
1
8 t

2(a−b)2/etε. (15)

Let L′s = 1
|Ωs|

∑
(i,j)∈Ωs

(Ri,j − R̂
(s)
i,j )2 (s ∈ {1, ...,K ′}).

Then, we know that L′s and L have the same expectation
µ. Therefore, we can derive δ′ for L′ as follows:

Pr[
∑

s∈{1,...,K′}

λsL′s − µ ≥ ε]

(a)

≤ E[et(
∑
s λsL

′
s−µ)]/etε = E[et(

∑
s λs(L

′
s−µ))]/etε

(b)

≤
∑
s

λsE[et(L
′
s−µ)]/etε

(c)

≤
∑
s

λse
1
8 t

2(as−bs)2/etε,

where (a) holds due to Markov’s inequality, (b) holds due to
the convexity of exponential function, and (c) holds due to
Hoeffding’s Lemma. as = sup{L′s−µ} and bs = inf{L′s−µ}.
Then, we have

δ′ = 2
∑

s∈{1,...,K′}

λs
e

1
8 t

2(as−bs)2

etε
. (16)

∀s ∈ {1, ...,K ′}, since Ωs ⊆ Ω, we know sup{L′s} ≤
sup{L} and inf{L′s} ≥ inf{L}. Therefore, sup{L′s − µ} ≤
sup{L − µ} and inf{L′s − µ} ≥ inf{L − µ}, i.e., as ≤ a
and bs ≥ b. Then, we have (a − b)2 ≥ (as − bs)

2, i.e.,
e
1
8
t2(as−bs)2

etε ≤ e
1
8
t2(a−b)2

etε ∀s ∈ {1, ...,K ′}. Then, by the as-
sumption that

∑
s λs = 1, we can conclude that δ′ ≤ δ.

Remark. The above theorem demonstrates thatL′ will be
close to its expectation µ with higher probability than L, i.e.,
minimizing L′ can achieve small generalization error with
higher probability than minimizing L. In other words, the
proposed weighted loss function (Equation 13) can be better
estimation of test error than unweighted loss function.

Note that the above theorem can be applied to general
weighted matrix approximation methods. However, differ-
ent weighting strategies can derive different δ′, i.e., a well-
designed weighting strategy can achieve better generaliza-
tion performance than random weighting because a well-
designed weighting strategy can achieve smaller δ′.

5.2 The MMA Method
Similar to the weighted MA method, we can rephrase the
loss function of the proposed MMA method as a weighted
combination of loss functions as follows:

L′′(R, R̂) =
1

|Ω|
∑

(i,j)∈Ω

∑
k

W k
i,j(Ri,j − R̂ki,j)2

∝
K′′∑
x=1

λx
|Ωx|

∑
(i,j)∈Ωx

(Ri,j − R̂sxi,j)
2. (17)

Here, Ωx can be regarded as the set of entries sharing the
same weight in Equation 12. sx stands for the star that the
model biased towards for the entries in Ωx. Again, we can
assume that λ1 + ...+ λK′′ = 1 here.

Similarly, we can prove that L′′ can achieve lower gener-
alization error bound, i.e., potentially better generalization
performance, than L in the following Theorem.

Theorem 2. Let L = 1/|Ω|
∑

(i,j)∈Ω(Ri,j − R̂i,j)
2, L′′ be

defined as in Equation 17, and E[L] = E[L′′] = µ. For any
ε > 0, if Pr[|L′′−µ| < ε] ≥ 1−δ′′ and Pr[|L−µ| < ε] ≥ 1−δ,
then δ′′ ≤ δ.

Proof. Proof can be similarly derived as Theorem 1.
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6 EXPERIMENTS

This section first describes our experimental setup. Then, we
present the empirical results of the proposed mixture matrix
approximation method on well-known real-world datasets,
and compare its performance with state-of-the-art methods.

6.1 Experimental Setup
6.1.1 Dataset Description.
We evaluate the proposed MMA method using five well-
known real-world datasets: 1) MovieLens 100K dataset
(∼100,000 ratings from 943 users on 1682 movies); 2) Movie-
Lens 1M dataset (∼1 million ratings from 6,040 users on
3,706 movies); 3) MovieLens 10M dataset (∼10 million rat-
ings from 69,878 users on 10,677 movies); 4) Netflix Prize
dataset (∼100 million ratings from 480,189 users on 17,770
movies); 5) Amazon Instant Video Dataset (37,126 ratings
from 5,130 users on 1,685 products). For rating prediction,
we predict how will a user rate a movie/product. For top-N
recommendation, we predict if a user will rate a movie/buy
a product or not [20], [28]. For each experiment, we ran-
domly split the dataset into a training set and a test set by
the ratio of 9:1 unless otherwise specified. All the results
are reported by averaging the numbers over five different
random splits unless otherwise specified.

6.1.2 Hyperparameter Setting.
For learning the biased matrix approximation models, we
use the learning rate λ = 1e-3 and regularization coefficients
µ1 = µ2 = 0.02. We set α = 0.1 and β = 0.2 in Equation 9
unless otherwise specified. Convergence is reached if the
training RMSE reduction is less than 2e-4 or the number of
iterations reaches 500. For learning the mixture model distri-
butions using SGD, we use the learning rates λ1 = 1e-5 and
λ2 = 1e-6 and µ1 = µ2 = 0.02 and µ3 = 0.001. Convergence
is reached if the training RMSE reduction is less than 1e-6 or
the number of iterations reaches 100. The hyperparameters
of the classification-based method are chosen based on the
sensitivity analysis on the training sets from MovieLens 1M
dataset in Section 6.4. The hyperparameters of the compared
method are adopted from the original papers because all the
compared methods evaluated their methods on the same
datasets. The hyperparameters of the proposed method are
fixed for all the comparisons with state-of-the-art methods,
i.e., better results could be obtained if we tune hyperpa-
rameters for each dataset. Note that although the proposed
method has more hyperparameters than standalone meth-
ods, e.g., SMA [29], but the hyperparameters tuned on
a small dataset, e.g., MovieLens 1M, can achieve better
performance than state-of-the-art methods as demonstrated
in Table 3 and Figure 14. Therefore, the proposed method
can be efficiently applied on large datasets, in which the
hyperparameter tuning can be performed on subsets of the
data.

6.1.3 Compared Methods.
We compare the proposed method with two kinds of state-
of-the-art methods: a) categorical matrix approximation
methods and b) state-of-the-art matrix approximation-based
collaborative filtering methods.

The proposed MMA method is compared with the fol-
lowing two categorical matrix approximation methods. 1)

Categorical matrix completion (CMC) [9] maximizes the
likelihood ratio with nuclear norm constraint and maps the
entries through multinomial logistic regression link func-
tions. 2) Matrix completion from quantized measurements
(MCQM) [5] considers maximum likelihood estimation un-
der a constraint on the entry-wise infinity-norm and an exact
rank constraint. There are different variants of MCQM, and
we compare MMA with “Alg. 3 (log-barrier + unknown bin-
s): logistic” which achieved the best empirical performance
in the original paper.

For rating prediction, we compare the proposed method
with the following six state-of-the-art matrix approximation-
based methods. 1) DFC [32] uses a divide and conquer
method on matrix factorization to improve both scalabil-
ity and accuracy; 2) GSMF [48] applies a group sparsity
regularization when learning user/item features in matrix
approximation. 3) LLORMA [26] first learns biased models
by weighted matrix approximation and then combines the
approximations from different biased models using kernel
smoothing. 4) WEMAREC [11] combines different biased
matrix approximation models from co-clustering-based ap-
proximation using weighted average to achieve higher ac-
curacy; 5) SMA [29] derives a stable matrix approximation
problem that can achieve good generalization performance
and recommendation accuracy. 6) MRMA [27] combines a
set of low-rank matrix approximation with different rank
values to achieve better accuracy.

For top-N recommendation, we compare the proposed
method with the following five matrix approximation-based
methods. 1) WRMF [19] sets higher weights to positive rat-
ings and lower weights for unknown ratings in matrix fac-
torization to address the implicit feedback issue; 2) BPR [38]
defines a pair-wise loss function for top-N recommendation
problem. Different versions of BPR methods were proposed
in their paper, and we compare MMA with the BPR-MF;
3) SLIM [33] generates top-N recommendations by aggre-
gating weighted user ratings learned by solving an L1 and
L2 regularized optimization problem. 4) AOBPR [37] im-
proves the classic BPR method by oversampling informative
pairs to achieve faster convergence and higher accuracy;
5) eALS [17] adopts a non-uniform weighting on missing
ratings and proposes an element-wise Alternating Least
Squares (eALS) technique to improve both effectiveness and
efficiency of matrix factorization.

6.1.4 Evaluation Metrics.
For rating prediction, we evaluate the proposed method
using the following two popular metrics. 1) Root mean
square error (RMSE), which is defined as follows: RMSE(R̂)
=
√

1/|Ω|
∑

(i,j)∈Ω(Ri,j − R̂i,j)2, in which Ω stands for
the set of examples in the test set. 2) Mean average
error (MAE), which is defined as follows: MAE(R̂) =
1/|Ω|

∑
(i,j)∈Ω |Ri,j − R̂i,j |.

For top-N recommendation, we evaluate the pro-
posed MMA method using NDCG@N and Precision@N.
1) NDCG@N = DCG@N/IDCG@N, in which DCG@N
=
∑n
i=1 (2reli − 1)/log2(i+ 1) and IDCG@N is the value of

DCG@N with optimal ranking (reli = 1 if the user rated
the i-th recommended item and reli = 0 otherwise); 2)
Precision@N = |Ir ∩ Iu|/|Ir|, in which Ir is the list of top-N
recommendations and Iu is the list of items that u has rated.
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6.2 Effectiveness of Pre-training

Since the optimization objective of MMA is non-convex and
the number of parameters is larger than that of stand-alone
MA method, it is non-trivial to learn accurate MMA models,
e.g., the learning process will be easily trapped by local
minimum. Figure 5 shows the training and test RMSEs of
1) a global mixture model with all components trained in
an end-to-end way and 2) a biased MA model for 4-star rat-
ings with increasing number of epochs. In this experiment,
we learn the global MMA model by directly minimizing
Equation 7 using SGD on MovieLens 1M dataset with rank
= 20, and then show the training and test RMSE trends.
For the individual model, we learn a biased MA model
for 4-star ratings based on the proposed weighted matrix
approximation method, and show the training and test
RMSE trends.

As shown in Figure 5, the global model converges when
test RMSE reaches 0.8545. However, the individual model
towards 4 star ratings converges at a lower test RMSE —
0.8440, which confirms that the global model learning is
indeed trapped by a bad local minimum. In addition, if
we first pretrain the biased MA models and then learn the
mixture distribution in MMA, the final test RMSE is around
0.8303 (as shown by the dotted black line). Therefore, we
can conclude that pretraining the MMA models using the
proposed weighted MA method is desirable because bad
local minimums can be avoided after pretraining. In addi-
tion, pretraining can be performed in parallel, i.e., different
biased MA models can be trained in parallel, which can
improve the scalability of model training. Therefore, we
use the proposed two-phase training mechanism in MMA
rather than an end-to-end way in existing neural matrix
factorization methods [16].

6.3 Comparison of MMA Variants

The proposed MMA method has three variants: 1) the user-
based MMA (U-MMA), 2) the item-based MMA (I-MMA)
and 3) the rating-based MMA (R-MMA) due to different
mixture model assumptions. Here, we compare the accuracy
and efficiency of the three variants on the MovieLens 1M
dataset.

6.3.1 Accuracy
Figure 6 compares the accuracy of U-MMA, I-MMA and R-
MMA with rank ranging from 20 to 100 on the MovieLens
1M dataset. As shown in the figure, I-MMA significantly
outperforms U-MMA with all rank values, which is because
the true rating distribution of each user is harder to estimate
than that of each item due to less ratings from the users.
Meanwhile, we can also see that R-MMA significantly out-
performs both U-MMA and I-MMA with all rank values.
The main reason is that U-MMA/I-MMA uses the same
mixture distribution for all ratings from the same user/item,
but R-MMA can adaptively change the distribution based
on the characteristics of the users and the items. For in-
stance, users could be very confirmative on some items, e.g.,
highly positive/negative ratings, but be very variable on
other items, e.g., neutral ratings [2], so that it is desirable
to use different mixture distributions to characterize the
differences.

6.3.2 Efficiency
Figure 7 compares the learning time of the mixture model
distributions for U-MMA, I-MMA and R-MMA with rank
ranging from 20 to 100 on the MovieLens 1M dataset. As
shown in Figure 7, I-MMA requires much less learning
time than U-MMA although both methods use SGD-based
learning. This is because the number of items is smaller than
the number of users in the dataset. And it is not surprising
to see that the time of learning the DNN models in R-MMA
do not change much when rank increases, which is because
the numbers of training examples are fixed for all ranks.
In addition, we only use a single thread to learn the DNN
models here, which means the efficiency of R-MMA can be
further improved if we use parallel learning for the DNN.

In summary, R-MMA is more desirable than U-MMA
and I-MMA due to higher accuracy and scalability. There-
fore, the rest of the experiments will be focused on R-MMA.

6.4 Analysis of the Classification-based Learning

Here, we first analyze the sensitivity of R-MMA with dif-
ferent α values, classification methods to learn Π, shapes
of the neural networks, weight functions in learning biased
MA models and surrogate functions for the optimization
objective of top-N recommendation. Then, we analyze the
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Lens 1M dataset. We use 4 threads in parallel to learn all classification models.
For random forest (RF) [8], we use 100 trees in total. For multinomial logistic
regression (MLR) [7], we use the iteratively reweighted least square method to
improve convergence.

scalability of R-MMA. Note that the classification methods
in the experiments are implemented based on the JSAT
library [36].

6.4.1 Sensitivity with α

Figure 8 analyzes the sensitivity of R-MMA with α in the
weight function (Equation 9). From Equation 9, we know
that the learned biased MA models become more biased
when we increase α. As shown in Figure 8, the classification
accuracy of the DNN method increases when α increases,
which is because the biased MA models are more accurate
to predict the ratings on their targeted stars with large α.
Similarly, the recommendation accuracy of R-MMA also
increases when α increases from 0.05 to 0.2. However, when
α = 0.25, the recommendation accuracy of R-MMA decreas-
es significantly, which is because the learned MA models are
too biased and the recommendation accuracy on untargeted
stars are sacrificed significantly. For instance, the weight of
5-star ratings is only β when we learn biased MA model for
1-star ratings with α = 0.25, and vice versa.

6.4.2 Sensitivity with Classifiers

The classification algorithms also have impacts on the per-
formance of R-MMA. Here, we compare DNN with two
other popular methods in multi-class classification prob-
lems: Random Forest (RF) [8] and Multinomial Logistic
Regression (MLR) [7]. Figure 9 (a) shows the recommenda-
tion accuracy of the three different classification algorithms
in R-MMA. As shown in the results, the recommendation
accuracy of DNN and RF are comparable, and DNN-based
method shows slightly higher accuracy when rank k increas-
es from 10 to 50. However, the recommendation accuracy of
MLR is much lower than the other two methods, which is
because the targeted classification task is not suitable for
linear classifiers. Therefore, non-linear classifiers, e.g., DNN
and RF, are more appropriate for the proposed method.

We also compare the efficiency of the three classification
methods in Figure 9 (b). As shown in the figure, DNN
requires much lower learning time than RF with the same
computation configurations. This indicates that DNN is
more appropriate for the proposed method due to compa-
rable accuracy and higher efficiency.
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Fig. 10: Sensitivity of R-MMA with three different distance
measures in the weight function (Equation 9): Gaussian
kernel distance, Laplacian kernel distance and absolute
distance with rank = 20 on the MovieLens 100K and 1M
datasets.

6.4.3 Sensitivity with Neural Network Structure
Figure 12 shows the recommendation accuracy and efficien-
cy of the proposed R-MMA method with different shapes
of DNNs. As shown in Figure 12 (a), the recommendation
accuracy are comparable among three different networks,
deep network shows slightly better accuracy when the rank
r is greater than 30 and wide network shows slightly better
accuracy when the rank r is smaller than 30. The accuracy
of the biased MA models are low when the rank is small, so
that more complex network, i.e., wide network containing
more edges after dropout, can achieve better performance.
When the rank is large, the biased MA models can achieve
good performance, so that simple network, i.e., deep net-
work containing less edges after dropout, can achieve better
generalization performance. Meanwhile, Figure 12 (b) com-
pares the learning time of the three networks, and we can
see that wide network requires much higher computation
time than the other two networks due to more parameters
to learn. Therefore, the deep network structure is more
desirable due to higher efficiency and better accuracy when
r is large, because large ranks are usually adopted to achieve
better recommendation accuracy in practice.

6.4.4 Sensitivity with Weight Function
In the proposed weighted matrix approximation method,
we use absolute function to measure the distance between
targeted rating of the biased model and the training rat-
ing. Here, we replace the absolute function with Gaus-
sian kernel (exp{−(x − y)2/2σ2}) and Laplacian kernel
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loss functions: exponential loss, log loss and mean square
error on the MovieLens 100K dataset.

(exp{−|x − y|/σ}) and compare the recommendation ac-
curacy on the MovieLens 100K and 1M datasets. As shown
in Figure 10, both Gaussian and Laplacian kernel distances
are very sensitive to hyperparameters, i.e., the variance of
the distribution, and their performances increase when σ
increases. However, the effects of rating distance will be
eliminated if σ is too large, i.e., both Gaussian and Laplacian
kernel distances become very close to a constant. Therefore,
we can conclude that absolute distance is more desirable
than Gaussian and Laplacian kernels due to the following
two reasons: 1) no hyperparameters in the distance function
and 2) the distance between the targeted rating of the biased
model and the training example will not be eliminated,
which can help to improve accuracy as demonstrated in the
experiments. Therefore, we keep the absolute distance in the
weight function for all experiments.

6.4.5 Sensitivity with Surrogate Function
Figure 11 analyzes the sensitivity of R-MMA with three
different surrogate loss functions: exponential loss (Exp), log
loss (Log) and mean square error (MSE). As we can see from
the results, exponential loss achieves much higher accuracy
in terms of both NDCG@N and Precision@N than Log loss
and mean square error. Since MSE cannot directly reflect
ranking accuracy [30], using MSE as surrogate loss function
cannot achieve optimal top-N recommendation accuracy.
Exponential loss and log loss can both reflect ranking ac-
curacy, but exponential loss is more accurate which may be
due to its close relationship with the popular softmax loss in
neural networks. Similar results can be observed from other
datasets, so that we choose exponential loss as the surrogate
loss function in MMA for top-N recommendations.

6.4.6 Scalability Analysis
Figure 13 analyzes the efficiency of R-MMA with different
numbers of computational threads in parallel on the Movie-
Lens 1M dataset. Details of the parallel learning can be
found in Section 4.4. As shown in the results, the efficiency
of R-MMA can be significantly improved by increasing the
number of threads, e.g., about 2.5X speedup when we use
5 threads compared with 1 thread. Note that 5X speedup
cannot be achieved with 5 threads because the learning
time of the biased MA models are different from each
other. The efficiency of learning biased MA models cannot
be easily improved by increasing the number of threads
after 5, because we do not use parallel mechanism to learn
individual biased MA models. But the efficiency of learning
the DNN models can be easily improved by increasing the

TABLE 1: Mean average error (MAE) comparison be-
tween R-MMA and categorical matrix completion (CMC)
method [9] on the MovieLens 100K dataset. We adopt the
same experiment setting and compare with the result re-
ported in the paper.

MAE Improvement
CMC 0.708 -

R-MMA (r = 10) 0.6974 ± 0.0061 1.49%
R-MMA (r = 20) 0.6932 ± 0.0065 2.08%
R-MMA (r = 50) 0.6902 ± 0.0059 2.51%

TABLE 2: RMSE comparison between R-MMA and the
matrix completion from quantized measurements (MCQM)
method [5] on the MovieLens 1M dataset. We adopt the
same experiment setting and compare with the result re-
ported in the paper.

RMSE Improvement
MCQM 0.8568 ± 0.0014 -

R-MMA (r = 7) 0.8481 ± 0.0015 1.01%

number of threads due to better scalability of DNN. Our
empirical analysis shows that using 8 threads in R-MMA
can obtain about 3X speedup.

6.5 Accuracy Comparison
6.5.1 Comparison with Categorical Matrix Approximation
Methods
Table 1 compares the recommendation MAE between R-
MMA and one of the state-of-the-art categorical matrix
approximation methods — CMC [9] on the MovieLens 100K
dataset. Following the settings in their paper [9], we split
the dataset into training and test sets by 95%:5% and report
the test MAE by averaging over five random splits. Since
the rank in their experiment is not mentioned, we consider
ranks from 10 to 50 in the R-MMA method. As we can see
from the results, R-MMA significantly outperforms CMC
with all ranks, and the relative improvements range from
1.49% to 2.51% when the rank increases from 10 to 50.

Table 2 compares the recommendation RMSE between
R-MMA and another state-of-the-art categorical matrix ap-
proximation method — MCQM [5] on the MovieLens 1M
dataset. Following the setting in the original paper [5], we
randomly split the dataset into training and test sets by
80%:20%, set the rank to 7, and report the test RMSEs by
averaging over 20 random splits. The results show that R-
MMA can achieve significantly lower test RMSE compared
with MCQM and the relative improvement is about 1.01%.

The above results (Table 1 and Table 2) show that the
R-MMA method can achieve higher accuracy than state-of-
the-art categorical matrix approximation methods on rating
prediction task. The main reason is that MMA uses biased
matrix approximations as the link functions to transform the
predicted ratings. However, the CMC and MCQM methods
both adopt logistic regression methods as the link function,
which should not be as powerful as matrix approximation
models in collaborative filtering.

6.5.2 Comparison with State-of-the-art Methods
Table 3 compares the recommendation accuracy between the
proposed R-MMA method and six state-of-the-art matrix
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Fig. 12: Sensitivity analysis with the DNN structure on the MovieLens 1M dataset.
Here, we compare the accuracy and efficiency of three different structures: wide
network (2 × 512), deep network (64 × 16), and square network (32 × 32).
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Fig. 13: Efficiency analysis of R-MMA
with different computational threads on
the MovieLens 1M dataset.

TABLE 3: RMSE comparison between R-MMA and six
state-of-the-art matrix approximation-based collaborative
filtering algorithms [11], [26], [27], [29], [32], [48] on the
MovieLens (10M), Netflix Prize and Amazon Instant Video
datasets.

ML-10M Netflix Amazon
DFC 0.8067 ± 0.0002 0.8453 ± 0.0003 0.9953 ± 0.0257

GSMF 0.8012 ± 0.0011 0.8420 ± 0.0006 1.1347 ± 0.0223
LLORMA 0.7855 ± 0.0002 0.8275 ± 0.0004 0.9871 ± 0.0221

WEMAREC 0.7775 ± 0.0007 0.8143 ± 0.0001 1.0093 ± 0.0219
SMA 0.7682 ± 0.0003 0.8036 ± 0.0004 0.9869 ± 0.0237

MRMA 0.7634 ± 0.0009 0.7973 ± 0.0002 0.9798 ± 0.0236
R-MMA 0.7606 ± 0.0002 0.7948 ± 0.0001 0.9682 ± 0.0284
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Fig. 14: NDCG@N and Precision@N comparison between R-
MMA and five state-of-the-art MA-based top-N recommen-
dation methods on the MovieLens 100K, MovieLens 1M and
Amazon Instant Video datasets.

approximation-based methods [11], [26], [27], [29], [32], [48].
Among the compared methods, DFC [32], LLORMA [26],
WEMAREC [11] and MRMA [27] are ensemble MA meth-
ods, in which multiple biased MA models are also used in

their recommendation steps. As shown in the results, the
proposed R-MMA method statistically significantly outper-
forms all the compared methods on MovieLens 10M, Netflix
and Amazon datasets. Compared with the most recent
work — MRMA, the proposed method can achieve 1.2%
relative improvement on the Amazon dataset, i.e., the im-
provement over MRMA should be considered as significant.
Note that the hyperparameters of R-MMA is only tuned on
MovieLens 1M dataset and then fixed for all comparisons
but the compared methods (e.g., MRMA) were tuned on
the MovieLens 10M and Netflix datasets directly, so that
larger improvements over the compared methods could be
obtained if we tune the hyperparameters for each dataset
individually. Figure 14 compares the recommendation ac-
curacy between R-MMA and five state-of-the-art MA-based
top-N recommendation methods [17], [19], [33], [37], [38].
As shown in the results, R-MMA statistically significantly
outperforms all the compared methods on MovieLens 100K,
MovieLens 1M and Amazon datasets with both NDCG@N
and Precision@N when N increases from 1 to 20.

The main reasons why the proposed method can achieve
higher accuracy are: 1) mixture model assumptions over
the user-item ratings are more appropriate in collaborative
filtering tasks; 2) the proposed method can more accurately
characterize the diverse user/item interests by learning
multiple biased matrix approximation models and 3) the
mixture model in MMA can be regarded as an ensemble
method which combines K different biased models in rec-
ommendation, which can naturally reduce the estimation
variance [24], [50].

7 RELATED WORK

Collaborative filtering methods are important in real-world
recommender systems [1], [4], [13], [31]. Among existing
CF algorithms, matrix approximation-based methods have
achieved great success in both rating prediction [3], [23],
[26], [29], [41], [49] and top-N recommendation [19], [38],
[47]. Since the user-item rating matrices in real-world rec-
ommender systems are typically very sparse, MA-based
methods which can address the data sparsity issue by
reducing the dimensionality of user/item feature vectors
can outperform the classic memory-based CF methods in
terms of accuracy [6], [23], [42]. To further improve the
performance, different variants of matrix approximation
methods, e.g., the PMF method [41], the BPMF method [40],
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the SVD++ method [22], the GSMF method [48], the SMA
method [29], etc., have been proposed to improve model
learning [29], [40], [41], [48] or incorporate more user-item
interactions [22]. Besides rating prediction task, some other
works tried to tackle the implicit feedback issue in top-N
recommendation by introducing different weights between
observed ratings and missing ratings [17], [19], [34] and
solving pair-wise loss functions during model learning [37],
[38].

Mixture or ensemble matrix approximation methods
have also been proposed recently to achieve higher ac-
curacy [10], [26], [27] and/or better scalability [11], [32].
The Divide-Factor-Conquer (DFC) framework [32] was pro-
posed to address the scalability issue of large-scale matrix
factorization, in which they divide the matrix into sub-
matrices, then factorize each sub-matrix in parallel, and
finally combine all sub models in prediction. The LLORMA
method [26] assumed the locally low-rank structure in the
rating matrix, in which they choose sub-matrices by kernel
distances to some anchors, then factorize each sub-matrix
using weighted matrix approximation, and finally integrate
the sub-matrix approximations using kernel smoothing. The
WEMAREC method [11] proposed a co-clustering-based
sub-matrices generation method. Then, they factorize each
sub-matrix using weighted matrix approximation. Finally,
all sub-matrix approximations are combined using weighted
average. Besides scalability, accuracy can also be boosted by
ensemble/mixture models. Chen et al. proposed the MPMA
method [10], in which a mixture of global and local matrix
approximation models is trained to capture the global inter-
ests and unique interests of users and items. Recently, Li et
al. proposed the MRMA method [27], in which they assume
that mixture low-rank structures exist in real-world rating
matrices and they proposed to combine the approximations
from matrix approximation models with different ranks to
improve the recommendation accuracy.

Categorical matrix approximation methods have been
recently proposed to address the matrix approximation
problem on categorical/quantized data [5], [9]. Cao and
Xie [9] proposed to consider the problem of completing a
matrix with categorical-valued entries from partial observa-
tions. They proposed to recover the targeted matrix by max-
imizing the likelihood ratio with nuclear norm constraint
and mapping the entries through multinomial logistic re-
gression link functions. Later, Bhaskar [5] considered the
recovery of a low rank real-valued matrix given a subset
of noisy and quantized measurements, in which maximum
likelihood estimation is considered under a constraint on
the entry-wise infinity-norm and an exact rank constraint.
Also, this method can achieve faster convergence rate when
the fraction of revealed observations is fixed.

Compared with the above works, the proposed method
mainly differs in the following two aspects. 1) Higher
accuracy. As demonstrated in the experiments, R-MMA
statistically significantly outperforms two categorical matrix
approximation methods and eleven state-of-the-art matrix
approximation-based collaborative filtering methods in both
rating prediction and top-N recommendation tasks. 2) De-
cent scalability. The biased matrix approximation models in
the proposed method can be learned in parallel, which can
significantly reduce the overall learning time. Meanwhile,
the learning of the mixture distributions can also be highly

scalable if we choose scalable classification methods, e.g.,
DNN. In addition, the proposed method requires much
lower overall computations compared with many existing
ensemble/mixture MA methods [11], [26], [27], [32] due to
much less number of base models.

8 CONCLUSION

The user-item ratings are typically quantized in collabora-
tive filtering tasks, so that different users can have diverse
interests on the same item. Many existing matrix approxima-
tion methods, which learn global user/item feature vectors,
cannot accurately characterize the diverse interests of users
on the items and thus achieve suboptimal recommenda-
tion accuracy. To this end, this paper proposes a mixture
matrix approximation method, in which we learn different
user/item feature vectors for different stars to better charac-
terize the diverse interests of users/items. Empirical stud-
ies on real-world datasets demonstrate that the proposed
method can achieve higher accuracy than state-of-the-art
matrix approximation-based collaborative filtering methods
in both rating prediction and top-N recommendation and
meanwhile achieve high scalability.
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