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Abstract

The success of supervised learning hinges on the assumption that the training and test data come
from the same underlying distribution, which is often not valid in practice due to potential distribution
shift. In light of this, most existing methods for unsupervised domain adaptation focus on achieving
domain-invariant representations and small source domain error. However, recent works have shown
that this is not sufficient to guarantee good generalization on the target domain, and in fact, is provably
detrimental under label distribution shift. Furthermore, in many real-world applications it is often feasible
to obtain a small amount of labeled data from the target domain and use them to facilitate model training
with source data. Inspired by the above observations, in this paper we propose the first method that aims
to simultaneously learn invariant representations and risks under the setting of semi-supervised domain
adaptation (Semi-DA). First, we provide a finite sample bound for both classification and regression
problems under Semi-DA. The bound suggests a principled way to obtain target generalization, i.e., by
aligning both the marginal and conditional distributions across domains in feature space. Motivated by this,
we then introduce the LIRR algorithm for jointly Learning Invariant Representations and Risks. Finally,
extensive experiments are conducted on both classification and regression tasks, which demonstrate that
LIRR consistently achieves state-of-the-art performance and significant improvements compared with the
methods that only learn invariant representations or invariant risks.

1 Introduction

The success of supervised learning hinges on the key assumption that test data should share the same
distribution with the training data. Unfortunately, in most of the real-world applications, data are dynamic,
meaning that there is often a distribution shift between the training (source) and test (target) domains. To
this end, unsupervised domain adaptation (UDA) methods aim to approach this problem by adapting the
predictive model from labeled source data to the unlabeled target data. Recent advances in UDA focus on
learning domain-invariant representations that also lead to a small error on the source domain. The goal
is to learn representations, along with the source predictor, that can generalize to the target domain (Long
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et al., 2015; Ganin et al., 2016; Tzeng et al., 2017; Long et al., 2018; Chen et al., 2019; Zhao et al., 2018).
However, recent works (Zhao et al., 2019a; Wu et al., 2019; Combes et al., 2020) have shown that the above
conditions are not sufficient to guarantee good generalizations on the target domain. In fact, if the marginal
label distributions are distinct across domains, the above method provably hurts target generalization (Zhao
et al., 2019a).

On the other hand, while labeled target data is usually more difficult or costly to obtain than labeled source
data, it can lead to better accuracy (Hanneke & Kpotufe, 2019). Furthermore, in many practical applications,
e.g., vehicle counting, object detection, speech recognition, etc., it is often feasible to at least obtain a small
amount of labeled data from the target domain so that it can facilitate model training with source data (Li &
Zhang, 2018; Saito et al., 2019). Motivated by these observations, in this paper we focus on a more realistic
setting of semi-supervised domain adaptation (Semi-DA). In Semi-DA, in addition to the large amount of
labeled source data, the learner also has access to a small amount of labeled data from the target domain.
Again, the learner’s goal is to produce a hypothesis that well generalizes to the target domain, under the
potential shift between the source and the target. Semi-DA is both a more-realistic and generalizable setting
that allows practitioners to design better algorithms that can overcome the aforementioned limitations in
UDA. The key question in this scenario is: how to maximally exploit the labeled target data for better model
training?

In this paper, we address the above question under the Semi-DA setting. In order to first understand how
performance discrepancy occurs, we derive a finite-sample generalization bound for both classification and
regression problems under Semi-DA. Our theory shows that, for a given predictor, the accuracy discrepancy
between two domains depends on two terms: (i) the distance between the marginal feature distributions, and
(ii) the distance between the optimal predictors from source and target domains. Our observation naturally
leads to a principled way of learning invariant representations (to minimize discrepancy between marginal
feature distributions) and risks (to minimize discrepancy between conditional distributions over the features)
across domains simultaneously for a better generalization on the target. In light of this, we introduce our novel
bound minimization algorithm LIRR, a model of jointly Learning Invariant Representations and Risks for
such purposes. As a comparison, existing works focus on either learning invariant representations only (Ganin
et al., 2016; Tzeng et al., 2017; Zhao et al., 2018; Chen et al., 2019), or learning invariant risks only (Arjovsky
et al., 2019; Chang et al., 2020), which are not sufficient to reduce the accuracy discrepancy for good
generalizations on the target. Different from these methods, LIRR jointly learns invariant representations and
risks, and as a result, better mitigates the accuracy discrepancy across domains. To better understand our
method, we illustrate the proposed algorithm, LIRR, in Fig. 1.

Our Contributions In summary, our work provides the following contributions:

• Theoretically, we provide finite-sample generalization bounds for Semi-DA on both classification (Theo-
rem 3.1) and regression (Theorem 3.2) problems. Our bounds inform new directions for simultaneously
optimizing both marginal and conditional distributions across domains for better generalization on the
target. To the best of our knowledge, this is the first generalization analysis in the Semi-DA setting.

• To bridge the gap between theory and practice, we provide an information-theoretic interpretation of our
theoretical results. Based on this perspective, we propose a bound minimization algorithm, LIRR, to
jointly learn invariant representations and invariant optimal predictors, in order to mitigate the accuracy
discrepancy across domains for better generalizations.

• We systematically analyze LIRR with extensive experiments on both classification and regression tasks.
Compared with methods that only learn invariant representations or invariant risks, LIRR demonstrates
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Figure 1: Overview of the proposed model. Learning invariant representations induces indistinguishable
representations across domains, but there can still be mis-classified samples (as stated in red circle) due to
misaligned optimal predictors. Besides learning invariant representations, LIRR model jointly learns invariant
risks to better align the optimal predictors across domains.

significant improvements on Semi-DA. We also analyze the adaptation performance with increasing labeled
target data, which shows LIRR even surpasses oracle method Full Target trained only on labeled target
data, suggesting that LIRR can successfully exploit the structure in source data to improve generalization
on the target domain.

2 Preliminaries

Unsupervised Domain Adaptation We use X and Y to denote the input and output space, respectively.
Similarly, Z stands for the representation space induced from X by a feature transformation g : X 7→ Z .
Accordingly, we use X,Y, Z to denote random variables which take values in X ,Y,Z . Throughout the paper,
a domain corresponds to a joint distribution on the input space X and output space Y . We use DS (DT )
to denote the source (target) domain and subsequently we also use DS(Z)(DT (Z)) to denote the marginal
distributions of DS(DT ) over Z. Furthermore, let D be a categorical variable that corresponds to the index
of domain, i.e., D ∈ {S, T}. The overall sampling process for our data can then be specified by first drawing
a value of D, and then depending on the value of D, we sample from the corresponding distribution DD.
Under this setting, the probabilities of Pr(D = T ) and Pr(D = S) then determine the relative sample sizes
of our target and source data.

A hypothesis over the feature space Z is a function h : Z → [0, 1]. The error of a hypothesis h
under distribution DS and feature transformation g is defined as: εS(h, f) := EDS

[|h(g(X)) − f(X)|].
In classification setting, in which f and h are binary classification functions, above definition reduces to
the probability that h disagrees with f under DS : EDS

[|h(g(X)) − f(X)|] = PrDS
(h(g(X)) 6= Y ). In

regression, the above error is then the usual mean absolute error, i.e., the `1 loss. As a common notation,
we also use ε̂S(h) to denote the empirical risk of h on the source domain. Similarly, εT (h) and ε̂T (h) are
the true risk and the empirical risk on the target domain. For a hypothesis classH, we use V Cdim(H) and
Pdim(H) to denote the VC-dimension and pseudo-dimension ofH, respectively.

Semi-supervised Domain Adaptation Formally, in Semi-DA the learner is allowed to have access to a
small amount of labeled data in target domain DT . Let S = {(x(S)

i , y
(S)
i )}ni=1 be a set of labeled data
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sampled i.i.d. from DS . Similarly, we have T = {(x(T )
j )}kj=1 as the set of target unlabeled data sampled

from DT , and we let T̃ = {(x(T̃ )
j , y

(T̃ )
j )}mj=1 be the small set of labeled data where m ≤ k. Usually, we also

have m� n, and the goal of the learner is to find a hypothesis h ∈ H by learning from S, T and T̃ so that h
has a small target error εT (h).

Clearly, with the additional small amount of labeled data T̃ , one should expect a better generalization
performance than what the learner could hope to achieve in the setting of unsupervised domain adaptation.
To this end, we first state the following generalization upper bound from Zhao et al. (2019a) in the setting of
unsupervised domain adaptation:

Theorem 2.1. (Zhao et al., 2019a) Let 〈DS(X), fS〉 and 〈DT (X), fT 〉 be the source and target domains. For
any function classH ⊆ [0, 1]X , and ∀h ∈ H, the following inequality holds:

εT (h) ≤ εS(h) + dH(DS(X),DT (X)) + min{EDS
[|fS − fT |],EDT

[|fS − fT |]}. (1)

The dH(·, ·) is known as the H-divergence (Ben-David et al., 2010), a pseudo-metric parametrized by
H to measure the discrepancy between two distributions. It should be noted that the above theorem is a
population result, hence it does not give a finite sample bound. Furthermore, the setting above is noiseless,
where fS and fT correspond to the groundtruth labeling functions in source and target domains. Nevertheless,
it provides an insight on achieving domain adaptation through bounding the error difference on source and
target domains: to simultaneously minimize the distances between feature representations and between the
optimal labeling functions.

3 Generalization Bounds for Semi-supervised Domain Adaptation

In this section, we derive a finite-sample generalization bound for Semi-DA, where the model has access to
both a large amount of labeled data S from the source domain, and a small amount of labeled data T̃ from the
target domain. For this purpose, we first introduce the definition ofH on both classification and regression
settings, and then present our theoretical results of the generalization upper bounds for Semi-DA.

Definition 3.1. LetH be a family of binary functions from Z to {0, 1}, and AH be the collection of subsets
of Z defined as AH := {h−1(1) | h ∈ H}. The distance between two distributions D and D′ based onH is:
dH(D,D′) := supA∈AH

|PrD(A)− PrD′(A)|.

With the definition, we have the symmetric difference w.r.t. itself as: H∆H = {h(z)⊕h′(z) | h, h′ ∈ H},
where ⊕ is the XOR operation. Next, considering that for a joint distribution D over Z × Y in our setting,
there may be noise in the conditional distribution PrD(Y | Z). It is then necessary to define a term to measure
the noise level of each domain. To this end, in classification, we define the noise on the source domain
nS := ES [|Y − fS(Z)|], where fS : Z → [0, 1] is the conditional mean function, i.e., fS(Z) = ES [Y | Z].
Similar definition also applies to the target domain, where we use nT to denote the noise in target. In
regression, with `1 loss, we define fS : Z → R to be the conditional median function of Pr(Y | Z), i.e.
fS(Z) := infy{y ∈ R : 1/2 ≤ Pr(Y ≤ y | Z)}. Now we are ready to state the main results in this section:

Theorem 3.1. (Classification generalization bound in Semi-DA). LetH be a hypothesis set with functions
h : Z → {0, 1} and V Cdim(H) = d. For 0 < δ < 1, then w.p. at least 1− δ over the n samples in S and
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m samples in T̃ , for all h ∈ H, we have:

εT (h) ≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH∆H(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m
|nS + nT |+O

(√
(

1

m
+

1

n
)log

1

δ
+
d

n
log

n

d
+
d

m
log

m

d

)
.

Theorem 3.2. (Regression generalization bound in Semi-DA). Let H be a hypothesis set with functions
h : Z → [0, 1] and Pdim(H) = d. Then we define H̃ := {I|h(x)−h′(x)|>t : h, h′ ∈ H, 0 ≤ t ≤ 1}. For
0 < δ < 1, then w.p. at least 1− δ over the n samples in S and m samples in T̃ , for all h ∈ H, we have:

εT (h) ≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m

(
dH̃(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

)
+

n

n+m
|nS + nT |+O

(√
(

1

m
+

1

n
)log

1

δ
+
d

n
log

n

d
+
d

m
log

m

d

)
.

Remark It is worth pointing out that both nS and nT are constants that only depend on the underlying
source and target domains, respectively. Hence |nS + nT | essentially captures the the amplitude of noise.
The last two terms of the bound come from standard concentration analysis for uniform convergence.

Comparing with previous results (Ben-David et al., 2010; Zhao et al., 2019a), our bounds here contain
empirical error terms from both the source and target domains. Furthermore, the relative importance of these
two terms is naturally controlled by the relative number of data we have from S and T , which also explains
the importance of the availability of the target labeled data. More importantly, these bounds imply a natural
and principled way for a better generalization to the target domain by learning invariant representations and
risks simultaneously. Note that this is in sharp contrast to previous works where only invariant representations
are pursued (Ganin et al., 2016; Zhao et al., 2018).

4 Learning Invariant Representations and Risks

Motivated by the generalization error bounds in Theorem 3.1 and Theorem 3.2 in Sec. 3, in this section we
propose our bound minimization algorithm LIRR. Since the last two terms reflect the noise level, complexity
measures and error caused by finite samples, respectively, we then hope to optimize the upper bound by
minimizing the first four terms. The first two terms are the convex combination of empirical errors of h on S
and T , which can be optimized with the labeled source and target data. The third term measures the distance
of representations between the source and target domains, which is a good inspiration for us to learn the
invariant representation (Ganin et al., 2016) across domains. The fourth term corresponds to the distance
of the optimal classifiers between S and T . To minimize this term, the model is forced to learn the data
representations that induce the same optimal predictors for both source and target domains, which exactly
corresponds to the principle of invariant risk minimization (Arjovsky et al., 2019).
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4.1 Information Theoretic Interpretation

To better understand why the bound minimization strategy can solve the intrinsic problems of Semi-DA, in
what follows we provide interpretations from an information-theoretic perspective.

Invariant Representations Learning invariant representations corresponds to minimizing the third term
of the bound Theorem 3.1 and bound Theorem 3.2. We consider a feature transformation Z = g(X)
that can obtain the invariant representation Z from input X . The invariance on representations can be
described as achieving statistical independence D ⊥ Z, where D stands for the domain index. This
independence is equivalent to the minimization of mutual information I(D;Z). To see this, if I(D;Z) = 0,
then DS(Z) = DT (Z), so the third term in the bounds will vanish. Intuitively, this means that by looking at
the representations Z, even a well-trained domain classifier C(·) cannot correctly guess the domain index D.
We also call the learned feature transformation g : X → Z the invariant encoder.

Invariant Risks Learning invariant risks corresponds to minimizing the fourth term of the bound Theo-
rem 3.1 and bound Theorem 3.2. Inspired by Arjovsky et al. (2019), we want to identify a subset of feature
representation through feature transformation Z = g(X) that best supports an invariant optimal predictor for
source and target domains. That means the identified feature representation Z = g(X) can induce the same
optimal predictors. This objective can be interpreted with a conditional independence D ⊥ Y | Z, which is
equivalent to minimizing I(D;Y | Z). To see this, when the conditional mutual information of I(D;Y | Z)
equals 0, the two conditional distributions PrS(Y | Z) and PrT (Y | Z) coincide with each other. As a result,
the Bayes optimal predictors, which only depend on the conditional distributions of Y | Z, become the same
across domains, so the fourth term in our bounds Theorem 3.1, Theorem 3.2 will vanish.

In summary, our learning objective on invariant representations and invariant risks are achievable with
the joint minimization of I(D;Z) and I(D;Y | Z). It is instructive to present the integrated form as in Eq. 2.
In words, the integrated form suggests the independence of D ⊥ (Y, Z). We regard the independence as an
intrinsic objective for domain adaptation since it implies an alignment of the joint distributions over (Y, Z)
across domains, as opposed to only the marginal distributions over Z in existing works.

I(D;Y, Z) = I(D;Z)︸ ︷︷ ︸
Invariant Representation

+ I(D;Y | Z)︸ ︷︷ ︸
Invariant Risk

(2)

4.2 Algorithm Design

To learn invariant representations, we adopt the adversarial training method as in Ganin et al. (2016). The
invariant representation objective focuses on learning the feature transformation g(·) to obtain the invariant
feature representations from input X , which can fool the domain classifier C. This part of the objective
function can be described as in Eq. 3.

Lrep(g, C) = EX∼DS(X)[log(C(g(X)))] + EX∼DT (X)[log(1− C(g(X)))]. (3)

To learn invariant risks, we convert the conditional mutual information I(Y ;D | Z) to the difference of
the two conditional entropies, as in Eq. 4.

I(Y ;D | Z) = H(Y | Z)−H(Y | D,Z) (4)

The following proposition gives a variational form of the conditional entropy as infimum over a family of
croess-entropies, where L denotes the cross-entropy loss.

6



Proposition 4.1. (Farnia & Tse, 2016) H(Y | Z) = inff E[L(Y ; f(Z))].

Using the above variational form, the minimization of the conditional entropy over g could be transformed
to a minimization of the cross-entropy over both f and g. Hence, the learning objective of Eq. 2 can be
achieved with the following loss functions.

min
g,fi

max
fd
Lrisk(g, fi, fd) = E(x,y)∼DS ,DT̃

[L(y, fi(g(x)))]

− Ed∼D E(x,y)∼DS ,DT̃
[L(y, fd(g(x), d))]

(5)

Note that in Eq. 5, the difference between the discriminators fi and fd is that besides the features given by
g(·), fd also takes the domain index D as its input whereas fi can only have access to the features Z = g(X).
This difference is due to the conditioning variables in H(Y | Z) and H(Y | D,Z) respectively.

In general, as the factorization in Eq. 2 suggests, in order to achieve improved adaptation performance
by minimizing the accuracy discrepancy between domains, we need to enforce the joint independence of
(Y,Z) ⊥ D by learning feature transformation g. To achieve it, we propose our learning objective of LIRR
as in Eq. 6, where λrisk and λrep are set to 1 by default.

min
g,fi

max
C,fd

LLIRR(g, fi, fd, C) := λriskLrisk(g, fi, fd) + λrepLrep(g, C) (6)

At a high level, the first term Lrisk(g, fi, fd) in the above optimization formulation stems from the minimiza-
tion of I(Y ;D | Z), and the second term Lrep(g, C) is designed to minimize I(D;Z).

5 Experiments

To empirically corroborate the effectiveness of LIRR, in this section we conduct experiments on both
classification and regression tasks under the setting of Semi-DA and compare LIRR to existing methods.
We first introduce the experimental settings, and then present analysis to the experimental results. We also
provide ablation study for the experiments on both classification and regression tasks. More experimental
settings, implementation details, and results are discussed in the Appendix.

5.1 Image Classification

Datasets To verify the effectiveness of LIRR on image classification problems, we conduct experiments
on NICO (He et al., 2020), VisDA2017 (Peng et al., 2017), OfficeHome (Venkateswara et al., 2017), and
DomainNet (Peng et al., 2019) datasets. NICO is dedicatedly designed for O.O.D. (out-of-distribution)
image classification. It has two superclasses animal and vehicle, and each superclass contains different
environments1, e.g. bear on grass or snow. VisDA2017 contains Train (T) domain and Validation (V) domain
with 12 classes in each domain. Office-Home includes four domains: RealWorld (RW), Clipart (C), Art
(A), and Product (P), with 65 classes in each domain. DomainNet is the largest domain adaptation dataset
for image classification with over 600k images from 6 domains: Clipart (C), Infograph (I), Painting (P),
Quickdraw (Q), Real (R), and Sketch (S), with 345 classes in each domain. For each dataset, we randomly
pick source-target pairs for evaluation. To meet the setting of Semi-DA, we randomly select a small ratio (1%
or 5%) of the target data as labeled target samples for training.

1For animal, we sample 8 classes from environments grass and snow as two domains. For vehicle, we sample 7 classes from
environments sunset and beach as two domains.
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Table 1: Accuracy (%) comparison (higher means better) on NICO, OfficeHome, DomainNet, and
VisDA2017 with 1% (above) and 5% (below) labeled target data (mean ± std). Highest accuracies are
highlighted in bold.

1% labeled target NICO Animal NICO Traffic OfficeHome Domainnet VisDA2017
Method Grass to Snow Snow to Grass Sunset to Beach Beach to Sunset Art to Real Real to Prod. Prod. to Clip. Real to Clip. Sketch to Real Clip. to Sketch Train to Val.
S+T 70.06±2.14 80.08±1.21 71.37±1.54 70.07±1.28 69.20±0.15 74.63±0.13 48.65±0.12 48.37±0.08 57.44±0.07 44.16±0.05 76.17±0.15
DANN 83.80±1.73 81.57±1.51 72.69±1.35 72.03±1.05 72.20±0.23 78.13±0.26 52.47±0.21 51.53±0.19 60.23±0.15 46.36±0.15 78.91±0.25
CDAN 82.33±0.59 78.25±0.74 75.53±0.55 74.31±0.47 72.98±0.33 79.15±0.31 53.80±0.33 50.67±0.25 60.53±0.23 44.66±0.22 80.23±0.41
ADR 73.06±1.20 76.74±0.89 72.85±0.95 69.47±0.81 70.55±0.27 76.62±0.28 49.47±0.31 49.94±0.21 59.63±0.22 44.73±0.21 80.40±0.36
IRM 78.55±0.34 78.27±0.51 64.58±2.41 69.10±2.36 71.13±0.25 77.60±0.24 51.53±0.21 51.86±0.13 58.04±0.12 46.96±0.15 80.79±0.27
MME 87.12±0.76 79.52±0.43 78.69±0.86 74.21±0.78 72.66±0.18 78.07±0.17 52.78±0.16 51.04±0.12 60.35±0.12 45.09±0.14 80.52±0.35
LIRR 86.80±0.61 84.78±0.53 71.85±0.58 72.04±0.75 73.12±0.19 79.58±0.22 54.33±0.24 52.39±0.15 61.20±0.10 47.31±0.11 81.67±0.22
LIRR+CosC 89.67±0.72 89.73±0.68 81.00±0.89 79.98±0.95 73.62±0.21 80.20±0.23 53.84±0.19 53.42±0.09 61.79±0.11 47.83±0.10 82.31±0.21
Full T 94.52±0.74 97.98±0.23 99.80±0.87 97.64±0.96 83.67±0.12 91.42±0.05 78.27±0.23 72.40±0.05 77.11±0.07 62.66±0.07 89.56±0.14

5% labeled target NICO Animal NICO Traffic OfficeHome Domainnet VisDA2017
Method Grass to Snow Snow to Grass Sunset to Beach Beach to Sunset Art to Real Real to Prod. Prod. to Clip. Real to Clip. Sketch to Real Clip. to Sketch Train to Val.
S+T 75.83±1.89 83.38±1.23 86.45±1.08 86.13±0.87 72.10±0.13 78.84±0.12 54.51±0.10 59.80±0.13 66.14±0.11 51.71±0.09 82.87±0.12
DANN 76.13±0.73 84.61±1.21 84.13±1.20 87.50±1.09 75.47±0.22 80.41±0.21 59.37±0.20 61.31±0.14 68.21±0.20 52.78±0.22 83.95±0.10
CDAN 82.33±0.59 83.08±2.13 86.97±0.47 87.50±0.56 74.92±0.29 80.57±0.33 59.14±0.31 62.18±0.22 68.49±0.19 53.77±0.21 83.31±0.32
ADR 80.36±0.31 80.97±0.98 84.50±0.91 75.29±0.87 75.47±0.27 79.27±0.26 58.24±0.27 61.22±0.38 67.96±0.37 53.19±0.32 83.57±0.43
IRM 81.57±1.01 84.29±1.10 85.71±2.20 83.61±2.17 74.71±0.21 79.67±0.25 58.98±0.22 60.69±0.30 67.81±0.28 52.31±0.25 82.62±0.29
MME 87.80±0.87 85.50±0.95 92.02±0.85 90.76±0.81 75.24±0.22 82.45±0.18 61.75±0.19 62.31±0.11 69.02±0.18 53.88±0.14 84.12±0.22
LIRR 85.90±0.98 85.24±0.73 90.77±0.42 88.90±0.39 76.14±0.18 83.64±0.21 62.61±0.17 62.74±0.21 69.35±0.13 54.05±0.17 84.47±0.19
LIRR+CosC 88.97±0.45 88.22±0.55 92.70±0.87 91.50±1.05 76.63±0.19 83.45±0.22 62.84±0.23 63.03±0.17 69.52±0.09 54.44±0.12 85.06±0.17
Full T 94.52±0.74 97.98±0.23 99.80±0.87 97.64±0.96 83.67±0.12 91.42±0.05 78.27±0.23 72.40±0.05 77.11±0.07 62.66±0.07 89.56±0.14

Table 2: Mean absolute error (MAE, lower means better) comparison on Citycam with 1% and 5% labeled
target data (mean ± std). The best is emphasized in bold.

Method
253 to 398 170 to 398 511 to 398

1% 5% 1% 5% 1% 5%
S+T 3.20±0.03 2.42±0.02 3.12±0.02 2.07±0.01 3.45±0.02 2.82±0.04
ADDA 3.13±0.01 2.34±0.03 3.05±0.03 2.05±0.01 2.87±0.03 2.45±0.02
DANN 3.08±0.02 2.38±0.02 3.01±0.04 2.01±0.02 2.95±0.03 2.41±0.04
IRM 3.11±0.02 2.27±0.03 2.91±0.02 2.02±0.01 2.89±0.05 2.33±0.03
LIRR 2.96±0.02 2.13±0.01 2.84±0.01 1.98±0.02 2.80±0.03 2.25±0.01
Full T 1.68±0.01 1.68±0.01 1.68±0.01 1.68±0.01 1.68±0.01 1.68±0.01

Baselines We compare our approach with the following representative domain adaptation methods: DANN (Ganin
et al., 2016), CDAN (Long et al., 2018), IRM (Arjovsky et al., 2019), ADR (Saito et al., 2017), and
MME (Saito et al., 2019); S+T, a model trained with the labeled source and the few labeled target samples
without using unlabeled target samples; and Full T, a model trained with the fully labeled target. All these
methods are implemented and evaluated under the Semi-DA setting.

5.2 Traffic Counting Regression

Datasets To verify the effectiveness of LIRR on regression problems, we conduct experiments on WebCamT
dataset (Zhang et al., 2017) for the Traffic Counting Regression task. WebCamT has 60,000 traffic video
frames annotated with vehicle bounding boxes and counts, collected from 16 surveillance cameras with
different locations and recording time. We pick three source-target pairs with different visual similarities:
253→398, 170→398, 511→398 (digit denotes camera ID).

Baselines The baseline models for this task are generally aligned with our classification experiments except
the methods that can not be applied to the regression task (e.g. MME, ADR, and CDAN). Thus, for the
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Figure 2: Performance comparison with increasing number of labeled target data, from Domain Art to
RealWorld on Officehome dataset. X axis: the ratio of labeled target data; Y axis: accuracy.

traffic counting regression task, we compare with the baseline methods: ADDA (Tzeng et al., 2017), DANN,
IRM, S+T, and FullT.

5.3 Experimental Results Analysis

Classification Tasks The classification results are shown in Table 1 with 1% and 5% labeled target
data. LIRR outperforms the baselines on all the five adaptation datasets, which consistently indicates its
effectiveness. As our learning objective suggests, LIRR can be viewed as achieving D ⊥ (Y, Z), which
combines the benefits of achieving D ⊥ Y and D ⊥ Y | Z. In contrast, DANN, CDAN, and ADDA can be
viewed as only achieving D ⊥ Z or its variant form; and IRM can be viewed as an approximation to achieve
D ⊥ Y | Z using gradient penalty. LIRR outperforms all these methods on different datasets with 1% or
5% labeled target data, demonstrating simultaneously learning invariant representations and risks achieves
better generalization for domain adaptation than only learning one of them. Such results are consistent with
our theoretical analysis and algorithm design objective. Besides, when applying LIRR along with the cosine
classifier (CosC) module, which is also used in MME, the performance further outperforms MME by a larger
margin.

Regression Tasks The traffic counting regression results are shown in Table 2 with 1% and 5% labeled
target data. The superiority of LIRR over baseline methods is supported by its lowest MAE on all the settings.
DANN and ADDA are the representative methods of learning invariant representations, while IRM is the
representative method of learning invariant risks. Both DANN, ADDA, and IRM achieve lower error than
S+T, which means learning invariant representations or invariant risks can benefit Semi-DA to some extent
on the regression task. Similar with the observations from the classification experiments, LIRR outperforms
both DANN, ADDA, and IRM, demonstrating simultaneously learning invariant representations and risks
achieves better adaptation than only aligning one of them.
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5.4 Ablation Study

Comparisons with Optimizing Single Invariant Objective As pointed out in Sec. 5.3, LIRR is simulta-
neously learning invariant representations and risks, while DANN, CDAN, ADDA can be viewed as only
achieving invariant representations or its variant forms, and IRM is an approximation to solely achieve
invariant risks. From the results on both classification and regression tasks, we can further acknowledge the
importance of simultaneously optimizing these two invariant items together. As shown in Table 1 and 2,
all the methods that only minimize one single invariant objective perform worse than LIRR, indicating our
method is effective and consistent to the theoretical results.

Increasing Proportions of Labeled Target Data Revisiting Theorem 3.1 and Theorem 3.2, we know that
as the proportion of the labeled target data rises, the upper bound of εT (h) gets tighter. Accordingly, the
margin between LIRR and other methods becomes larger, as shown in Fig. 2. Another riveting observation
from Fig. 2 is, LIRR and its variant LIRR+CosC even achieve better performance than the oracle by large
margin with 25% or 30% labeled target data. Stunning but plausible, with source and a few labeled target
data, LIRR can learn more robust and generalized representations and achieve better performance on the
target, comparing with the model trained by the fully labeled target data.

Cosine Classifier As introduced in Saito et al. (2019), cosine classifier is proved to be helpful for improving
the model’s performance on Semi-DA. As shown in Table. 1, the same phenomenon can be found when
comparing the performance of LIRR and LIRR+CosC. For almost all the cases, LIRR plus cosine classifier
module achieves higher accuracy than LIRR alone.

6 Related Work

Domain Adaptation Most existing research on domain adaptation focuses on the unsupervised setting,
i.e. the data from target domain are fully unlabeled. Recent deep unsupervised domain adaptation (UDA)
methods usually employ a conjoined architecture with two streams to represent the models for the source and
target domains, respectively (Zhuo et al., 2017). Besides the task loss on the labeled source domain, another
alignment loss is designed to align the source and target domains, such as discrepancy loss (Long et al.,
2015; Sun et al., 2016; Zhuo et al., 2017; Adel et al., 2017; Kang et al., 2019; Chen et al., 2020), adversarial
loss (Bousmalis et al., 2017; Tzeng et al., 2017; Shrivastava et al., 2017; Russo et al., 2018; Zhao et al.,
2019b), and self-supervision loss (Ghifary et al., 2015, 2016; Bousmalis et al., 2016; Carlucci et al., 2019;
Feng et al., 2019; Kim et al., 2020; Mei et al., 2020). Semi-DA deals with the domain adaptation problem
where some target labels are available (Donahue et al., 2013; Li et al., 2014; Yao et al., 2015; Ao et al., 2017).
Saito et al. (2019) empirically observed that UDA methods often fail in improving accuracy in Semi-DA and
proposed a min-max Entropy approach that adversarially optimizes an adaptive few-shot model. Different
from these works, our proposed method aims to align both the marginal feature distributions as well as the
conditional distributions of the label over the features, which can arguably overcome the limitations that exist
in UDA methods that only align feature distributions (Zhao et al., 2019a).

Invariant Risk Minimization In a seminal work, Arjovsky et al. (2019) consider the question that data
are collected from multiple envrionments with different distributions where spurious correlations are due
to dataset biases. This part of spurious correlation will confuse model to build predictions on unrelated
correlations (Lake et al., 2017; Janzing & Scholkopf, 2010; Schölkopf et al., 2012) rather than true causal
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relations. IRM (Arjovsky et al., 2019) estimates invariant and causal variables from multiple environments
by regularizing on predictors to find data represenation matching for all environments. Chang et al. (2020)
extends IRM to neural predictions and employ the environment aware predictor to learn a rationale feature
encoder. As a comparison, in this work we provably show that IRM is not sufficient to ensure reduced
accuracy discrepancy across domains, and we propose to align the marginal features as well simultaneously.

Transferability Transferability of deep networks has been researched in the field of transfer learning (Yosin-
ski et al., 2014), which is normally performed by taking a standard neural architecture along with its pretrained
weights on large-scale datasets such as ImageNet, and then fine-tuning the weights on the target task. This
method offers little benefit to large-scale tasks but greatly improve the expressive ability of the model on
small data sets with light weighted model (Raghu et al., 2019). Existing work (Yosinski et al., 2014) shows
an decreasing trend of transferability when going deeper into the deep network. This phenomenon has also
been applied in applications such as (Long et al., 2015), which adapts the network to the target domain with
multiple layers within the backbone network. Some works (Li et al., 2019; Liu et al., 2019b,a) in few-shot
learning also utilize features of multiple appended layers to handle the hierarchy of classes.

7 Conclusion

In this paper, we argue that, compared with UDA, the setting of Semi-DA is more realistic and enjoys broader
practical applications with potentially better utility. To this end, in this paper we propose the first finite-sample
generalization bounds for both classification and regression problems under Semi-DA. Our results shed new
light on Semi-DA by suggesting a principled way of simultaneously learning invariant representations and
risks across domains, leading to a bound minimization algorithm - LIRR. Extensive experiments on real-world
datasets, including both image classification and traffic counting tasks, demonstrate the effectiveness of LIRR
as well as its consistency to our theoretical results. We believe our work takes an important step towards more
robust supervised learning methods that resist potential distributional shift between model training and model
deployment.
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Appendix A Omitted Proofs

In this section, we provide a detailed proof of Theorem 3.1 and Theorem 3.2 in sequence.

A.1 Proof of Classification Bound

Before we reach the proof to the main theorem, we first introduce and prove the following lemmas, which
will be used in proving the main theorem:

Lemma A.1. [Blitzer et al. (2008)] Let h ∈ H := {h : Z → {0, 1}}. Then for any distribution DS(Z),
DT (Z) over Z , we have

|εS(h)− εT (h)| ≤ dH∆H(DS(Z),DT (Z)).

Lemma A.2. Let H := {h : Z → {0, 1}} be a hypothesis class over Z with V Cdim(H) = d. Define the
noises on the source and target domains as nS := ES [|Y − fS(Z)|] and nT := ET [|Y − fT (Z)|], where
f : Z → [0, 1] is the conditional mean function, i.e., f(Z) = E[Y |Z]. Then ∀h ∈ H and for any distributions
DS(Z), DT (Z) over Z , we have:∣∣εS(h)− εT (h)

∣∣ ≤ |nS + nT |+ dH∆H(DS(Z),DT (Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

Proof. To begin with, we first show that for the source domain, εS(h) cannot be too large if h is close to the
optimal classifier fS on source domain for ∀h ∈ H:

|εS(h)− ES [|h(Z)− fS(Z)|]| =
∣∣ES [|h(Z)− Y |]− ES [|h(Z)− fS(Z)|]

∣∣
≤ ES

[∣∣|h(Z)− Y | − |fS(Z)− h(Z)|
∣∣]

≤ ES [|Y − fS(Z)|]
= nS .

Similarly, we also have an analogous inequality hold on the target domain:

|εT (h)− ET [|h(Z)− fT (Z)|]| ≤ nT .

Combining both inequalities above, yields:

εS(h) ∈ [ES [|h(Z)− fS(Z)|]− nS ,ES [|h(Z)− fS(Z)|] + nS ],

−εT (h) ∈ [−ET [|h(Z)− fT (Z)|]− nT ,−ET [|h(Z)− fT (Z)|] + nT ].

Hence, ∣∣εS(h)− εT (h)
∣∣ ≤ |nS + nT |+

∣∣ES [|h(Z)− fS(Z)|]− ET [|h(Z)− fT (Z)|]
∣∣.

Now to simplify the notation, for e ∈ {S, T}, define εe(h, h′) = Ee[|h(Z)− h′(Z)|], so that∣∣ES [|h(Z)− fS(Z)|]− ET [|h(Z)− fT (Z)|]
∣∣ =

∣∣εS(h, fS)− εT (fT , h)
∣∣.

To bound
∣∣εS(h, fS)− εT (fT , h)

∣∣, on one hand, we have:∣∣εS(h, fS)− εT (fT , h)
∣∣ =

∣∣εS(h, fS)− εS(h, fT ) + εS(h, fT )− εT (fT , h)
∣∣

≤
∣∣εS(h, fS)− εS(h, fT )

∣∣+
∣∣εS(h, fT )− εT (fT , h)

∣∣
≤ ES [|fS(Z)− fT (Z)|] +

∣∣εS(h, fT )− εT (fT , h)
∣∣
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From A.1, we have:

≤ ES [|fS(Z)− fT (Z)|] + dH∆H(DS(Z),DT (Z)).

Similarly, by the same trick of subtracting and adding back εT (h, fS) above, the following inequality also
holds: ∣∣εS(h, fS)− εT (fT , h)

∣∣ ≤ ET [|fS(Z)− fT (Z)|] + dH∆H(DS(Z),DT (Z)).

Combine all the inequalities above, we know that:∣∣εS(h)− εT (h)
∣∣ ≤ |nS + nT |+ dH∆H(DS(Z),DT (Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}. �

Lemma A.3. [Mohri et al. (2018), Corollary 3.19] Let h ∈ H := {h : Z → {0, 1}}, where V Cdim(H) = d.
Then ∀h ∈ H,∀0 < δ < 1, w.p. at least 1− δ over the choice of a sample size m, the following inequality
holds:

ε(h) ≤ ε̂(h) +

√
2d

m
log

em

d
+

√
1

2m
log

1

δ
.

Lemma A.4. Let h ∈ H := {h : Z → {0, 1}}, where V Cdim(H) = d. Then ∀h ∈ H, ∀0 < δ < 1, w.p. at
least 1− δ over the choice of a sample size n, the following inequality holds:

εT (h) ≤ ε̂S(h) + dH∆H(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d

n
log

en

d
+

√
1

2n
log

1

δ
.

Proof. Invoking the upper bound in A.2, we have w.p.b at least 1− δ:

εT (h) ≤ εS(h) + dH∆H(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}
+ |nS + nT |

≤ ε̂S(h) + dH∆H(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d

n
log

en

d
+

√
1

2n
log

1

δ
. �

With the above tools, now we are ready to prove Theorem 3.1:

Theorem 3.1. (Classification generalization bound in Semi-DA). LetH be a hypothesis set with functions
h : Z → {0, 1} and V Cdim(H) = d. For 0 < δ < 1, then w.p. at least 1− δ over the n samples in S and
m samples in T̃ , for all h ∈ H, we have:

εT (h) ≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH∆H(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m
|nS + nT |+O

(√
(

1

m
+

1

n
)log

1

δ
+
d

n
log

n

d
+
d

m
log

m

d

)
.
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Proof. With Lemma A.3, A.4, we can use a union bound to combine them with coefficients m/(n+m) and
n/(n+m) respectively:

εT (h) ≤ m

n+m

(
ε̂T (h) +

√
2d

m
log

em

d
+

√
1

2m
log

1

δ

)
+

n

n+m
(ε̂S(h) + dH∆H(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m

(
|nS + nT |+

√
2d

n
log

en

d
+

√
1

2n
log

1

δ

)
.

From Cauchy-Schwartz inequality, we obtain

εT (h) ≤ m

n+m

(
ε̂T (h) +

√
4d

m
log

em

d
+

1

m
log

1

δ

)
+

n

n+m
(ε̂S(h) + dH∆H(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m

(
|nS + nT |+

√
4d

n
log

en

d
+

1

n
log

1

δ

)
.

As m� n and applying Cauchy-Schwartz inequality one more time, we have

≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH∆H(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m

(
|nS + nT |+

√
8d

m
log

em

d
+

2

m
log

1

δ
+

8d

n
log

en

d
+

2

n
log

1

δ

)
.

≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH∆H(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m
(|nS + nT |) +O(

√
(

1

m
+

1

n
)log

1

δ
+
d

m
log

m

d
+
d

n
log

n

d
). �

A.2 Proof of Regression Bound

For regression generalization bound, we follow the proof strategy in the previous section, but with slight
change of definitions. We letH = {h : Z → [0, 1]} be a set of bounded real-valued functions from the input
space Z to [0, 1]. We use Pdim(H) to denote the pseudo-dimension ofH, and let Pdim(H) = d. We first
introduce and prove the following lemmas that will be used in proving the main theorem:

Lemma A.5. (Zhao et al., 2018) For h, h′ ∈ H := {h : Z → [0, 1]} with Pdim(H) = d, and for any
distribution DS(Z), DT (Z) over Z , the following inequality holds:

|εS(h, h′)− εT (h, h′)| ≤ dH̃(DS(Z),DT (Z)),

where H̃ := {I|h(x)−h′(x)|>t : h, h′ ∈ H, 0 ≤ t ≤ 1}.
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Lemma A.6. For h, h′ ∈ H := {h : Z → [0, 1]} with Pdim(H) = d, and for any distribution DS(Z),
DT (Z) over Z , we define H̃ := {I|h(x)−h′(x)|>t : h, h′ ∈ H, 0 ≤ t ≤ 1}. Let fS(fT ) : Z → R be the
conditional median function over DS(Z)(DT (Z)), then ∀h ∈ H, the following inequality holds:∣∣εS(h)− εT (h)

∣∣ ≤ |nS + nT |+ dH̃(DT (Z),DS(Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}.

Proof. The proof of this lemma is completely symmetric to the one of Lemma A.2 except that in the
regression setting we use Lemma A.5 instead of Lemma A.1 as we did for classification problems, so we
omit it here. �

Lemma A.7 (Theorem 11.8 Mohri et al. (2018)). LetH be the set of real-valued function from Z to [0, 1].
Assume that Pdim(H) = d. Then ∀h ∈ H,∀0 < δ < 1, with probability at least 1− δ over the choice of a
sample size m, the following inequality holds:

ε(h) ≤ ε̂(h) +

√
2d

m
log

em

d
+

√
1

2m
log

1

δ
.

Lemma A.8. Let H be a set of real-valued functions from Z to [0, 1] with Pdim(H) = d, and H̃ :=
{I|h(x)−h′(x)|>t : h, h′ ∈ H, 0 ≤ t ≤ 1}. For 0 < δ < 1, then w.p. at least 1− δ over the draw of samples S
and T , for all h ∈ H, we have:

εT (h) ≤ ε̂S(h) + dH̃(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d

n
log

en

d
+

√
1

2n
log

1

δ
.

Proof. Invoking the upper bound in A.6 and A.7, we have w.p. at least 1− δ:

εT (h) ≤ ε̂S(h) + dH̃(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}
+ |nS + nT |

≤ ε̂S(h) + dH̃(DS ,DT ) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d

n
log

en

d
+

√
1

2n
log

1

δ
. �

Now we proceed to prove Theorem 3.2:

Theorem 3.2. (Regression generalization bound in Semi-DA). Let H be a hypothesis set with functions
h : Z → [0, 1] and Pdim(H) = d. Then we define H̃ := {I|h(x)−h′(x)|>t : h, h′ ∈ H, 0 ≤ t ≤ 1}. For
0 < δ < 1, then w.p. at least 1− δ over the n samples in S and m samples in T̃ , for all h ∈ H, we have:

εT (h) ≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m

(
dH̃(DS(Z),DT (Z)) + min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

)
+

n

n+m
|nS + nT |+O

(√
(

1

m
+

1

n
)log

1

δ
+
d

n
log

n

d
+
d

m
log

m

d

)
.

Proof. The proof is analogous to the one we have in proving Theorem 3.1: with A.5, A.6, A.7, A.8, we can
use a union bound to combine them with coefficients m/(n + m) and n/(n + m), respectively. We then
replace the dH∆H(DS ,DT ) with dH̃(DS ,DT ) in the proof of Theorem 3.1. �
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Appendix B More Experimental Results

B.1 Hyper-parameters

There are two fundamental parts in our proposed LIRR loss. One is the invariant representation item, the
other is the invariant risk item. We use λrep and λrisk represent the weights of invariant representation item
and invariant risk item respectively. In order to explore the best trade off between this two items, we conduct
extra experiments on Art to Real scenario in OfficeHome dataset. All other hyper-parameters settings are
set as same as Sec. 5.1. The results can be found in Table. 3. From which, we can see that the optimal
performance is achieved when λrisk = 0.1 and λrep = 0.01.

Table 3: The weights trade off between invariant representation part and invariant risk part under OfficeHome:
Art to Real scenarios (mean ± std).

λrisk

λrep 1 0.1 0.01
1 70.23±0.18 70.96±0.17 70.55±0.18

0.1 71.20±0.14 72.66±0.16 72.31±0.19
0.01 72.65±0.15 73.12±0.19 72.97±0.20

B.2 Implementation Details

For image classification task : we use ResNet34 as backbone networks. We adopt SGD with learning rate
of 1e-3, momentum of 0.9 and weight decay factor of 5e-4. We decay the learning rate with a multiplier 0.1
when training process reach three quarters of the total iterations. The batch size is set as 128 for VisDA2017
and Domainnet, 64 for officehome. For adversarial training, we use gradient reversal layer (GRL) to flip
gradient in the backpropagation between feature encoder g(·) and domain discriminator C(·) to obtain
domain-invariant representation w.r.t. source labeled data and target unlabeled data. For min-max training
objective in Eq. (6), we implement it with the difference on two losses , L(y, h(z)) and L(y, h(z, d)). h(z) is
realized by a common predictor which only takes feature z as input. h(z, d) indicates an additional predictor
which takes the combination of feature z and domain index d, e.g. we concatenate original feature z with
an additional full 0 (or 1) channel to represent source(or target) domain. It’s worth noting that according to
Saito et al. (2019), the utilization of entropy minimization hurts the performance. Thus, we implement the
CDAN method without entropy minimization. Our results are all obtained without heavy engineering tricks.
All code is implemented in Pytorch and will be made available upon acceptance.

For traffic counting regression task : we use VGG16 as encoder and FCN8s (Shelhamer et al., 2017) as
decoder. The model will output a density map as the regression result for input images. The optimizing goal
is a joint loss including both the euclidean loss between the groundtruth density map and the predicted one,
and the mean absolute counting error loss between the total predicted count and groundtruth count. We use
mean absolute error (MAE) metric for evaluation, which measure the absolute difference between the output
count and the ground-truth count. We adopt Adam optimizer with learning rate set to 1e-6. The batch size is
set as 24.
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B.3 Visualization

Grad-CAM Results on NICO dataset In order to vividly showcase the learned feature representation
which supports the invariant risks across domains. We employ Grad-CAM (Selvaraju et al., 2017) to visualize
the most influential part in prediction in Fig 3.

Traffic Counting Examples Visualization Fig. 4 visualizes the counting results of different algorithms
on Camera 511 to 398 scenario, WebCamT. The red line represents the LIRR method we proposed while
the black line represents the gt count. It’s rather clear to see that LIRR have a better ability of cross domain
regression fitting than other methods, especially the area within the green bounding box with dot lines.
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Origin Source+Target DANN IRM LIRR(Ours)

Figure 3: Grad-CAM (Selvaraju et al., 2017) results of different model. LIRR appropriately captures the
invariant part of the same object in different domains, e.g. the shape of horse and husky leads to invariant
prediction across snow and grass domain.
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Camera 511

Camera 398

Figure 4: The line chart of the regression results of different DA methods on Camera 511 to 398, WebCamT.
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