
Knowledge-Based Systems 67 (2014) 290–304
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Item-based top-N recommendation resilient to aggregated information
revelation
http://dx.doi.org/10.1016/j.knosys.2014.04.038
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding authors. Tel.: +86 21 69589979.
E-mail addresses: qin.lv@colorado.edu (Q. Lv), ninggu@fudan.edu.cn (N. Gu).
Dongsheng Li a, Qin Lv b,⇑, Li Shang a,b, Ning Gu c,*

a Tongji University, Shanghai 201804, PR China
b University of Colorado Boulder, Boulder, CO 80309, USA
c Fudan University, Shanghai 200433, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 June 2013
Received in revised form 17 April 2014
Accepted 25 April 2014
Available online 23 May 2014

Keywords:
Recommendation
Item-based
Collaborative filtering
Aggregated information revelation
Security
In item-based top-N recommender systems, the recommendation results are generated based on item
correlation computation among all users. Therefore, recommendation results can be used to infer the cor-
relations among recommended items. This is not an issue as long as the total amount of queries produced
by a typical user is small, and the queried items among users are largely uncorrelated. However, by sys-
tematically probing the recommender system, a large amount of correlated recommendation results can
be obtained and combined, and valuable aggregated knowledge, such as system-wide cross-user item
popularity ranking and item clustering, can be accurately inferred. Such aggregated knowledge is of sig-
nificant commercial value to online service providers, and therefore need be restricted from open access.

In this work, four aggregated knowledge attack methods are proposed to demonstrate that aggregated
knowledge can be accurately inferred by attacking item-based top-N recommender systems. To make the
recommender systems resilient to aggregated information revelation, a supervised randomization tech-
nique is proposed, which can protect item-based top-N recommender systems from aggregated knowl-
edge attacks with bounded loss in recommendation accuracy. Detailed evaluation on real-world data
demonstrates that the proposed attack methods can identify aggregated knowledge with high accuracy,
and the proposed randomization technique can increase attack error or reduce attack precision signifi-
cantly. In addition, guidelines for designing recommender systems that are resilient to such aggregated
knowledge attacks are discussed in the paper.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recommender systems are widely adopted in today’s
mainstream online services, such as Amazon [1], YouTube [2],
and Google News [3], providing useful predictions of user ‘‘ratings’’
or ‘‘preferences’’ of online items, such as products, movies, books,
and news articles. Among existing recommendation techniques,
item-based Collaborative Filtering (CF) is a popular method
originally proposed by Amazon [1], and later adopted by other
online services, such as YouTube [2]. Item-based CF methods,
which leverage the idea that similar users are more likely to have
similar preferences on similar items, can be applied in two types of
application scenarios [4]: One is to predict item ratings, such as
movie ratings on a scale of 1–5; and the other is to generate a list
of recommended items. The latter is also referred to as item-based
top-N recommendation.
In item-based top-N recommendation, the recommendation
results are generated based on item correlation computation
among all users. Therefore, recommendation results can be used
to infer the correlations among recommended items. For instance,
any user can query a target item and obtain a list of, typically
ranked, recommended items and exam their relationship, e.g., sim-
ilarities. This is not an issue as long as the total amount of queries
produced by a typical user is small, and the queried items among
users are mostly uncorrelated. However, as demonstrated in later
sections, by systematically probing the recommender system, a
large number of correlated recommendation results are obtained
and combined. Valuable aggregated knowledge, such as system-
wide cross-user item popularity ranking and item clustering, can
be accurately inferred by malicious users.

Such system-wide aggregated knowledge is of significant com-
mercial value to various online business applications, such as
online vendor [1], e-business [13], e-service [14], trade exhibition
recommendation [30], and business partner recommendation
[31]. If its access is not carefully controlled, profits can be gained

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.04.038&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.04.038
mailto:qin.lv@colorado.edu
mailto:ninggu@fudan.edu.cn
http://dx.doi.org/10.1016/j.knosys.2014.04.038
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304 291
by third parties, competitors, and malicious users. For instance,
competitors can develop business strategies based on such aggre-
gated knowledge. More specifically, if an online retail provider
obtains the product popularity information from Amazon, it can
use such information to adjust its own online product recommen-
dation services to improve users’ shopping experience. It can
further optimize its own pricing policy accordingly to improve its
online sales. Furthermore, such aggregated knowledge can be lev-
eraged by malicious users. For instance, to make a specific product
be recommended more highly by the recommender system, mali-
cious users can use the following strategy (also known as item
popularity ranking attack). First, the malicious user creates multi-
ple fake user profiles on Amazon.com, based on the knowledge of
Amazon’s aggregated product popularity rankings, the malicious
users will identify and purchase some highly popular products
together with the specific product. This tactic (named as ‘‘push’’
attack) has been identified and investigated by previous work
[19], which shows that it can effectively make the specific product
be recommended more highly. In summary, the system-wide
aggregated knowledge needs to be protected, and recommender
systems that are resilient to aggregated information revelation
are desirable, and even essential, for the ever-increasing online
services.

In this paper, four aggregated knowledge attack methods are
designed and evaluated to analyze the aggregated information
revelation problem in item-based top-N recommendation. Three
attack algorithms, namely Naive Attack, Linear Attack and Page-
Rank Attack, are proposed to infer item popularity ranking, and
Cluster Attack is proposed to infer item clusters based on the rec-
ommendation results. The experimental results demonstrate that
the proposed attack methods can predict item popularity ranking
and item clusters with high accuracy. To protect against such
aggregated knowledge attacks, a supervised randomization tech-
nique is proposed to obfuscate the recommendation lists with
bounded recommendation accuracy loss while greatly reducing
the effectiveness of aggregated knowledge attacks in item-based
top-N recommendation. Detailed evaluation on a real-world data-
set demonstrates that the proposed randomization technique can
increase the item popularity ranking attack error and reduce the
clustering attack precision substantially. To the best of our
knowledge, this is the first work that analyzes and addresses the
aggregated information revelation problem of item-based top-N
recommender systems. The key contributions of this work are as
follows:

1. The problem of aggregated information revelation in item-
based top-N recommender systems is identified and analyzed.
Three item popularity ranking attack methods and an item
clustering attack method are proposed to demonstrate that
aggregated information is indeed revealed in item-based
top-N recommendation.

2. A supervised randomization technique is proposed to obfuscate
the recommendation results, which can protect item-based top-
N recommender systems from aggregated knowledge attacks
with bounded loss in recommendation accuracy.

3. The experimental study using real-world data demonstrates
that the proposed attack methods can predict item popularity
ranking with relative mean average errors between approxi-
mately 8% and 30%, and cluster items with precisions between
approximately 30% and 95%. Meanwhile, the proposed random-
ization technique can increase attack error or reduce the attack
precision by at least 54%.

The rest of this paper is organized as follows: Section 2 dis-
cusses related work. Section 3 formulates the target problem via
a case study on a real-world dataset. Section 4 presents in detail
the four attack methods. Section 5 presents the proposed random-
ization technique to protect recommender systems against
aggregated knowledge attacks. Section 6 presents and discusses
the detailed evaluation results. In Section 7, we conclude this paper
and provide guidelines for designing robust item-based top-N
recommender systems.
2. Related work

Recommender systems have been an active research field [10].
Compared with content-based recommendation techniques [9],
Collaborative Filtering (CF) is one of the most widely adopted
recommendation techniques thanks to its high accuracy, high effi-
ciency, and adaptability. A wide range of CF methods have been
proposed, which can be classified into three categories: user-based
CF [3,6], item-based CF [1,2,4], and hybrid methods [7,8,11,12].
Generally speaking, item-based CF methods achieve comparable
or better recommendation accuracy than user-based CF methods
[4,5] on different datasets. Item similarities are relatively more
stable than user similarities [4], and item similarities can be
estimated based on a subset of user ratings [1]. Therefore, item-
based methods are more scalable than user-based methods, and
the cold-start user problem is less of an issue in item-based recom-
mender systems. Today, item-based CF methods have been
adopted by mainstream online services, such as Amazon.com and
YouTube.com.

Existing recommender systems are open, in other words, any
user can obtain item recommendations, influence recommenda-
tion results [18,22], or infer certain knowledge by attacking the
recommender system [26]. Several attack models have been pro-
posed in recent years to attack collaborative filtering recommender
systems [18,21,22,26]. Lam et al. proposed and analyzed the ‘‘shil-
ling’’ attack models, which create a group of users (real users or
agents) to give false ratings to items to mislead other users [22].
Their experimental results showed that item recommendation
scores can be influenced by a group of false ratings. However, they
found that the impact on item-based methods is much less than
that on user-based methods. Mobasher et al. proposed a new
attack model which creates a group of users with similar tastes
and demonstrated that such attack model can be highly successful
against item-based recommendation [18]. However, their method
can only target a small set of similar items, and scales poorly for
large datasets. Li et al. discovered that user privacy can be revealed
by following a user’s public interest in online social communities
[26]. Their experimental results showed that an attacker can
indeed build high correlation with a target user, and obtain private
interest information of the target user from the recommendation
results. Bryan et al. discovered that Hv-score is effective for
detecting attack strategies [21]. Given a matrix ðI; JÞ; HvðI; JÞ ¼P

i2I;j2Jðaij � aIj � aiJ þ aIJÞ2
.P

i2I;j2Jðaij � aiJÞ2, where aij is the value
at position ði; jÞ in matrix ðI; JÞ; aiJ is the mean of the i-th row, aIj

is the mean of the j-th column and aIJ is the mean of the whole
matrix. The Hv-score can be used to detect certain types of fraud-
ulent user profiles that show a high correlation over a subset of
items in a recommender system [21]. Based on Hv-score, they pro-
posed an unsupervised attack profile retrieval algorithm in recom-
mender systems and showed that the proposed method performs
well in distinguishing attack profiles from genuine users. However,
their method is not effective enough for detecting attack profiles
proposed in this paper, because malicious users only need to
browse recommended items anonymously.

Since recommender systems are vulnerable to attacks, robust
recommender systems which are resilient to attacks have become

1 Fudan BBS: http://bbs.fudan.edu.cn.

292 D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304
an emerging research challenge during recent years [19,20,32].
Noh et al. [33,34] found that malicious users can manipulate the
recommendation results in the recommender systems with fake
identities (i.e., Sybils). They proposed the RobuRec method to iden-
tify fake item ratings from Sybils, so that recommendation results
are only generated by honest users. Jia et al. [35] found that the
recommendation accuracy of traditional recommender systems
can be easily affected by malicious users. They proposed a multi-
dimensional trust model to measure the credibility of user ratings
on items. Using the trust model, CF methods can select reliable
neighbor sets and generate recommendations with better robust-
ness. Roy and Yan [36] found that nearest neighbor based CF algo-
rithms are sensitive to manipulation. They observed that linear CF
algorithms and asymptotically linear CF algorithms are more
robust to manipulation than commonly used nearest neighbor
based methods through empirical studies. Although many robust
collaborative filtering methods are proposed in the literature, most
of these methods focus on the case that malicious users create fake
identities to manipulate the recommendation results for various
purposes. Since the aggregated knowledge attack methods pro-
posed in this paper do not rely on fake identities, existing robust
CF methods cannot be directly applied to protect aggregated
knowledge against such attack methods.

Randomization techniques have been adopted by existing
privacy-preserving CF algorithms to protect true user ratings from
being obtained by recommender systems [15–17]. Polat and Du
proposed a randomized perturbation method which added noises
to user item ratings before sending ratings to the recommender
server [15]. This can help hide true user ratings while still achiev-
ing decent recommendation accuracy. Zhang et al. found that
randomized item ratings can be derived by some learning tech-
niques because users have the same perturbation variance [16].
They proposed a randomization technique which is guided by the
recommender server. Their method discloses less private informa-
tion and achieved similar recommendation accuracy, as compared
with same variance perturbations. Shokri et al. proposed a distrib-
uted offline user data aggregation method which is a randomiza-
tion method among different users [17]. In their method, similar
users can obfuscate rating data, thus the data sent to the server
is the aggregated results of many users. The randomization tech-
nique proposed in this work aims to address a different security
issue, which has not been analyzed or considered by prior work.
Furthermore, the randomization technique proposed in this paper
focuses on top-N recommendation, and is different from the afore-
mentioned techniques which can only be used for item rating
prediction.

To the best of our knowledge, this is the first work that analyzes
and addresses the aggregated information revelation problem of
item-based top-N recommendation. Existing works on robust
recommender systems mainly focus on the case that malicious
users manipulate recommendation results using item ratings of
fake identities. These methods are not applicable to protect
recommender systems from aggregated knowledge attacks,
because malicious users do not rely on fake identities to perform
aggregated knowledge attacks in this work. Furthermore, the
randomization technique proposed in this paper can protect the
aggregated knowledge of top-N recommender systems, and at
the same time keep the recommendation accuracy loss within
predefined threshold.

3. Problem formulation

This section first presents the technical details of standard
item-based top-N recommendation algorithm, and then defines
the aggregated information revelation problem using a case
study.
3.1. Item-based Top-N recommendation

Item-based recommendation [1] focuses on finding and recom-
mending items that have high similarity scores to the target item.
A good example of item-based top-N recommendation is the rec-
ommender system of Amazon.com, in which Amazon provides a
list of recommended products based on the specific product that
the user is searching and browsing. Item-based top-N recom-
mender systems work as follows [1,4]: (1) the server computes
the similarities among all item pairs; (2) recommendation scores
for items are computed by taking a weighted average of a target
user’s ratings on items in the past; and (3) the server chooses N
items with highest recommendation scores and recommend these
items to the target user. An example of item-based top-N recom-
mendation algorithm is provided later this section. Note that, the
proposed work is applicable to different Item-based Top-N recom-
mendation algorithms.

3.1.1. Item similarity computation
Given an item i, let~i ¼ fru1 ;i; ru2 ;i; . . . ; run ;ig be the vector that con-

tains user ratings on i, and ru;i is user u’s rating on item i. Let
Ii ¼ fi1; i2; . . . ; ikg be the set of items rated by users who also rated
i, then item similarities are computed and compared between i and
each item in Ii. There are different approaches to compute item
similarity. One common method is the cosine similarity [1,4],
which is computed as follows:

simði; jÞ ¼ cosð~i;~jÞ ¼
~i �~j
j~ij � j~jj

ð1Þ

Based on the equation above, we can obtain a set of similarity mea-
sures between i and items in Ii : fsimði; i1Þ; simði; i2Þ; . . . ; simði; ikÞg.

3.1.2. Top-N recommendation
Given a target item i, after similarity computation with similar

items, a weighted summation method [4] can be adopted to pre-
dict user u’s rating on item i as follows:

Pu;i ¼
P

j2Ii
simði; jÞ � ru;jP
j2Ii

simði; jÞ ð2Þ

If user u rated only one item i0 2 Ii in the past, then for all i0 2 Ii; ru;i0

is 0 except for ru;i0 . Since the denominator in Eq. (2) is a constant for
item i, the prediction score is totally determined by simði; i0Þ. This
means that if user u only rated one item i0 in the past, then the rec-
ommended items are the items which are most similar to i0. In this
case, user u can obtain the similarity ranking of the recommenda-
tion items to i0. For instance, if user u only clicks i0 and is recom-
mended with a list of similar items fi1; . . . ; ikg, then u can know
that simði0; i1ÞP simði0; i2ÞP . . . P simði0; ikÞ. The item similarity
order information is a type of aggregated information, which reveal
the correlations among items. These correlations among items can
be utilized to infer other aggregated knowledge as demonstrated
in later sections.

3.2. Case study

We implemented the above item-based top-N recommendation
algorithm on Fudan BBS,1 a popular online social community among
Chinese universities, which has over 60,000 users, 20,000 daily posts,
and 180,000 daily reads. Fudan BBS contains over 100 subcommuni-
ties, and this case study considered two of the most popular
subcommunities — Graduate and News. Key characteristics of the
two subcommunities are described in Table 1 in Section 6.1.1.

http://bbs.fudan.edu.cn

Table 1
Characteristics of eight subcommunities in Fudan BBS.

Subcommunity Astrology Auto Basketball Graduate Football Job Joke News

of users 3621 1514 1693 5155 1990 3251 6494 4578
of items 451 344 365 2047 599 386 768 1407

D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304 293
In this case study, the recommender system works the same as
the Amazon.com recommender system [1], except that the recom-
mended items are online articles rather than products. If a user
clicks an online article, a list of recommended articles are also
returned to the user. The number of articles in the recommended
article list is 50, which is similar as that in Amazon.com. In the case
study, malicious users work as follows: (1) click all articles and
record the recommended article list of each article and (2) infer
the item popularity ranking by a Naive Attack method, in which
popularity of each item is measured by the number of times that
item is recommended.

Fig. 1 shows the item popularity ranking attack performance of
the Naive Attack method in the two subcommunities. In Fig. 1,
‘‘Real Case’’ means that items are ranked by their real popularity
(i.e., the optimal case of item popularity ranking), ‘‘Naive Attack’’
means that items are ranked by the popularity obtained by the
Naive Attack method, and ‘‘Random Guess’’ means that items are
ranked by random guesses. If the item ranking of ‘‘Naive Attack’’
is the same as that of ‘‘Real Case’’, then we can conclude that all
knowledge about item popularity ranking is revealed. If the item
ranking of ‘‘Naive Attack’’ is very similar to that of ‘‘Random
Guess’’, then we can conclude that little knowledge about item
popularity ranking is revealed. As we can see from Fig. 1, item
ranking of ‘‘Naive Attack’’ is not as perfect as ‘‘Real Case’’, but is
much better than that of ‘‘Random Guess’’. The same studies are
also conducted on other subcommunities of Fudan BBS, and similar
results are obtained. These results indicate that ‘‘partial’’ knowl-
edge about item popularity ranking is revealed in the recommen-
dation results.

This case study demonstrates that aggregated information is
indeed revealed by the recommendation results of item-based
top-N recommender system, and aggregated knowledge, such as
item popularity ranking, can be easily inferred by attackers. It is
therefore important to design item-based top-N recommender
systems which are resilient to aggregated knowledge attacks in
real-world applications.

4. Aggregated knowledge attack in item-based Top-N
recommendation

This section first presents how malicious users can crawl rec-
ommendation results from recommender systems. Next, four
attack methods for inferring item popularity ranking and item
clustering based on crawled data are proposed.

4.1. Multi-agent based crawling

Given a target item-based top-N recommender system, any
user can browse online items and obtain recommendations.
Similarly, malicious users can crawl item recommendations from
the recommender system. However, the recommender server
can identify such crawlers if the crawling strategy contains clear
browsing patterns [27]. Thus, a multi-agent based crawling
method is proposed to obfuscate crawling patterns among differ-
ent agents, so that the recommender server cannot easily detect
the crawling behavior. The basic idea of the proposed multi-agent
based crawling method is to conduct a Depth First Search on the
items, while the agents are randomly selected to crawl data
during the search procedure. As a result, the recommender server
cannot identify a clear browsing pattern from each agent. The
detailed procedure of the multi-agent based crawling (MABCraw-
ling) is presented in Algorithm 1.

Algorithm 1. MABCrawlingðA; i;visited;QÞ
Require: A is a set of agents which run on different computers
and collaborate together to crawl data, and i is the target
item to crawl. visited is a HashTable containing all visited
items. Q ¼ fQ1;Q2; . . . ;Q jAjg, in which Qi is the queue to
store items for the i-th agent to crawl.

1: if visited:containsðiÞ ¼¼ false then
2: visited:putðiÞ;
3: the malicious user randomly chooses a 2 A;
4: Qa:enQueueðiÞ;
5: the malicious user clicks i and receives a list of

recommended items Li;
6: for each j 2 Li do
7: MABCrawlingðA; j;visited;QÞ;
8: end for
9: end if
10: if all items are visited then
11: for each a 2 A do
12: a crawls all items in Qa;
13: end for
14: end if

After running the MABCrawling algorithm, a malicious user can
obtain a set of items, each of which is associated with a list of
similar items (recommended items). Please note that, the size of
the recommendation list N is an important factor which deter-
mines how much information can be gained from crawling the
recommender system. N may differ in different recommender sys-
tems. For instance, N is around 4–60 in YouTube.com [2], and
around 50–100 in Amazon.com as observed from its website.
Smaller N values (e.g. 5 or 10) may result in poor user experience,
but reveal less information. Larger N values (e.g. 100), on the
other hand, may deliver good user experience, but reveal more
information.

During the crawling process, if the recommender system adap-
tively changes its recommendation results based on the behavior
of each agent, the similarity measure between the recommended
items and the target item may vary. Thus, aggregated knowledge
attacks cannot be easily performed. However, in the MABCrawling
algorithm, each agent is first assigned a set of items to crawl by the
malicious user. After assignments, each agent starts to crawl its
assigned items as soon as possible. Please note that the crawling
time of each agent depends on: (1) the number of items to crawl
and (2) the loading time of web pages. The malicious users can
increase the number of agents to ensure that each agent can finish
its crawling process within a predefined time scale (e.g., 1–2 min).
As a result, the recommender system is not able to update user

 0

 200

 400

 600

 800

 0 500 1000 1500 2000

Ite
m

 P
op

ul
ar

ity

Items Ranked by Real Popularity

Graduate (Real Case)

 0

 200

 400

 600

 800

 0 500 1000 1500 2000

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Graduate (Naive Attack)

 0

 200

 400

 600

 800

 0 500 1000 1500 2000

Ite
m

 P
op

ul
ar

ity

Items Ranked by Guessed Popularity

Graduate (Random Guess)

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400

Ite
m

 P
op

ul
ar

ity

Items Ranked by Real Popularity

News (Real Case)

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400
Ite

m
 P

op
ul

ar
ity

Items Ranked by Attacked Popularity

News (Naive Attack)

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400

Ite
m

 P
op

ul
ar

ity

Items Ranked by Guessed Popularity

News (Random Guess)

Fig. 1. Aggregated information revelation in item-based top-N recommendation: a case study on Fudan BBS.

294 D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304
profile and re-compute personalized recommendations for each
agent in that short period of time.

4.2. Item popularity ranking attack

In item-based top-N recommender system, the crawled recom-
mendation lists, which contain inherent relationships among
items, can be utilized to infer item popularity ranking. In this sec-
tion, three different attack methods are proposed to identify item
popularity ranking, which have different complexities and differ-
ent performance.

4.2.1. Naive Attack
The Naive Attack method exploits the observation that popular

items will be recommended more frequently than unpopular
items. Thus, the item popularity ranking can be estimated based
on the number of times that each item is recommended. In the
Naive Attack method, the popularity of each item is estimated by
the following equation:

PopularityðiÞ ¼
X
j2I

1ðRj; iÞ ð3Þ

where i is the item to be estimated, Rj is the recommended item set
when clicking item j. 1ðRj; iÞ is an indicator function, 1ðRj; iÞ ¼ 1 if
i 2 Rj, otherwise 1ðRj; iÞ ¼ 0. After estimating the popularity of all
items using Eq. (3), item popularity ranking can be obtained via a
simple sorting process.

In the Naive Attack method, each recommendation list is
checked once to compute Eq. (3), so the complexity is
OðN �mÞ, where N is the size of each recommendation list (we
assume that the recommender server provides the same number
of recommendations to each item) and m is the total number of
items. Then, a sorting algorithm is used to rank all items. The
complexity of the sorting is OðmÞ if we use the Counting
Sort method. Thus, the total complexity of Naive Attack is
OðN �mÞ þ OðmÞ ¼ OðN �mÞ.

4.2.2. Linear Attack
Besides the number of times an item is recommended, the Lin-

ear Attack exploits another observation that items recommended
to a target item will not differ dramatically in popularity compared
to the target item, i.e., similar items are very likely to have similar
popularity. Thus, we propose the Linear Attack method which is
the linear combination of two factors: (1) the number of times
an item is recommended (as in Naive Attack) and (2) the popularity
of recommended items. Then, the item popularity is estimated by
the following equation:

PopularityðiÞ ¼ a
X
j2I

1ðRj; iÞ þ ð1� aÞ
P

j2Ri

P
l2I1ðRl; jÞ

� �

jRij
ð4Þ

where 1ðRj; iÞ is defined as above, Ri is the set of items that are rec-
ommended when clicking i. a 2 ð0;1Þ is an empirical value, which is
used to weigh the two factors in Eq. (4).

In the Linear Attack method, the same computation as Naive
Attack should be performed once, and the complexity of which is
OðN �mÞ. Then linear combination is performed to obtain the final
popularity estimation, and the complexity is OðN �mÞ again. Thus,
the total complexity of Linear Attack is OðN �mÞ.

4.2.3. PageRank attack
PageRank [23] is the ranking algorithm used by the Google

Search Engine. The basic idea of PageRank is to analyze linking
relationship among web pages, which assigns a numerical weight
to each element of a hyperlinked set of web pages to measure its
relative importance. A web page is more important if it is linked
by more links or important links. The PageRank value can be com-
puted as follows [23]:

Step 1: For each web page pi, the initial PageRank value
PRðpiÞ ¼ 1=M, where M is the number of web pages.

Step 2: The PageRank values are re-computed as:
PRðpiÞ ¼
1� d

M
þ d

X
pj2Wi

PRðpjÞ
LðpjÞ
where d is a damping factor usually set to 0.85 [23], Wi is the set of
web pages that link to pi and LðpjÞ is the number of outbound links
of pj.
Step 3: Repeat Step 2 until convergence is reached.

After the PageRank computation, higher PR value of a web page
indicates that the web page is more important.

In item popularity ranking estimation, if items are considered as
web pages and item recommendations are considered as ‘‘links’’
between items, then PageRank algorithm can also be applied to
estimate item popularity ranking. Thus, we propose the PageRank
Attack method in Algorithm 2.

D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304 295
Algorithm 2. PageRank AttackðI;R; dÞ

Require: I is a set of items, R is the set of recommendation
lists that are crawled and Ri 2 R is the recommendation list
when clicking item i. d is the damping factor.

1: PopularityðiÞ ¼ 1=jIj;
2: while convergence is not reached do
3: for each i 2 I do
4: for each j 2 I do
5: if Rj contains i then
6: PopularityðiÞþ ¼ d � PopularityðjÞ=jRjj;
7: end if
8: end for
9: PopularityðiÞþ ¼ ð1� dÞ=jIj;
10: end for
11: end while

In the PageRank Attack method, estimated popularity of each
item is computed iteratively. Inside each iteration, the complexity
is OðN �mÞ, as each item will ‘‘transfer’’ a share of its popularity
value to its associated N recommended items. Assuming that r iter-
ations are required to reach convergence, then the total complexity
of the PageRank Attack is Oðr � N �mÞ.
4.3. Item clustering attack

Cluster analysis is an important technique to understand statis-
tical information or structure of given data, which is applied in
many domains, such as social science, statistics, biology, and data
mining. In cluster analysis, computing and comparing item similar-
ities are the key operations. Since (relative) item similarities are
revealed in the recommendation results, malicious users can
potentially identify clusters of items based on the crawled recom-
mendation results.

In the proposed item clustering attack method, k-centroid clus-
tering [25], a variant of the classic k-means clustering method [24],
is adopted. The basic steps of k-centroid clustering are as follows:
(1) choose k items as the initial centroids; (2) for each item, com-
pute and compare its distance (or similarity) to each centroid, and
assign the item to the cluster of the centroid with the smallest dis-
tance (or largest similarity); (3) for each cluster, compute the pair-
wise item distances (or similarities) inside the cluster, and choose
the item with the smallest average distances (or largest similarity)
to other items in the same cluster as the new centroid; and (4)
repeat step 2 and 3 until convergence (centroids do not change).

During the process of k-centroid clustering, the main operation
is computing and comparing item distances or item similarities.
Leveraging the recommendation results that are crawled, a mali-
cious user can compare item similarities between i and each cen-
troid if the centroids appear in i’s recommendation list. But
recommender systems only provide N most similar items as rec-
ommendations, which means that not all item similarities can be
compared. However, we can assume that the ‘‘similar’’ relation-
ships among items are transitive, i.e., if i1 is similar to i2 and i2 is
similar to i3, then we can infer that i1 is also similar to i3. Based
on this assumption, we can perform clustering attack as follows:
(1) randomly choose k items as the initial centroids; (2) for each
item i, if centroids are contained in Ri (Ri is the set of recommended
items when clicking i), then i is assigned to the cluster of the first
centroid in Ri. Otherwise, if items in Ri have been assigned to clus-
ters, then i joins the cluster of the first assigned item in Ri; (3)
repeat Step 2, until all items are assigned to clusters; (4) for each
cluster c, choose the item in c that appears most times in the rec-
ommendation lists of all other items in c as the new centroid of c;
and (5) repeat Steps 2–4 until centroids do not change. The details
of the Clustering Attack method are presented in Algorithm 3.

Algorithm 3. Cluster AttackðI;RÞ
Require: I is the set of items, R is the set of recommendation
lists that were crawled, and Ri 2 R is the recommendation
list when clicking item i.

1: Randomly select k items from I as the set of initial centroids
C;

2: while convergence is not reached do
3: for each i 2 I do
4: for each j 2 Ri do
5: if j 2 C then
6: assign i to the cluster of j;
7: break;
8: end if
9: end for
10: end for
11: let I0 be the set of items that are not assigned;
12: while I0 – ; do
13: for each i 2 I0 do
14: for each j 2 Ri do
15: if j is assigned then
16: assign i to the cluster of j;
17: break;
18: end if
19: end for
20: end for
21: end while
22: for each cluster c, choose the item in c that appears most

times in the recommendation lists of all other items in c as
the new centroid;

23: end while

The complexity of the Clustering Attack method is not easy to
estimate as the complexity of the second while loop varies from
OðmÞ to Oðm2Þ, where m is the number of items in I. Here, we con-
sider the worst case complexity of item assignment, which is
Oðm2Þ. Meanwhile, centroids re-computation takes on average
OðkÞ � Oððm=kÞ2Þ ¼ Oðm2=kÞ steps, where k is the number of clus-
ters. As k is usually a small constant, the complexity of centroids
re-computation is Oðm2Þ. Assuming that r iterations are required
to achieve convergence, then the total complexity of the Clustering
Attack method is OðrÞ � ðOðm2Þ þ Oðm2ÞÞ ¼ Oðr �m2Þ.
5. Robust item-based recommendation

Considering the attack methods proposed in the previous
section, the key information utilized by malicious users is the
recommendation lists ranked based on the similarity to the items.
Thus, the most effective way to protect the recommender system
from these attacks is to break the similarity ordering among rec-
ommended items. This can be achieved by randomly shuffling
the recommended items, after which item correlations cannot be
correctly obtained by malicious users. For instance, if malicious
users does not know whether one item is similar to another item,
then item clustering cannot be performed.

In this section, a supervised randomization technique is pro-
posed to achieve robust item-based top-N recommendation, which
can randomize the recommendation results with bounded recom-
mendation accuracy loss.

296 D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304
5.1. Impact analysis of randomization

Randomization of recommendation results may result in loss of
recommendation accuracy. Thus, a key issue is how to maintain
low accuracy loss during randomization. The basic randomization
algorithm adopted in this paper is Fisher–Yates shuffle [29], which
is described in Algorithm 4.

Algorithm 4. ShuffleðIÞ
Require: I is a set of items, and jIj ¼ m.
1:for i from m to 1 do
2: randomly choose j 2 ½1; i�;
3: swap I½i� and I½j�;
4: end for

The basic operation in Fisher–Yates shuffle is item swap, and
recommendation accuracy loss occurs after each item swap. Con-
sidering items i and j, swapping i and j can affect users who like
only i or only j. This is because users who like both i and j will
not care about the order of i and j in the recommendation lists,
and it is the same for users who like neither i nor j. Then, the rec-
ommendation accuracy loss after swapping i and j can be measured
as follows:

Lðswapði; jÞÞ ¼ jUij � jUjjPn
u¼1

Pm
x¼1ru;x

ð5Þ

where Ui (Uj) is the set of users who like i (j). ru;x ¼ 1 if user u likes
item x, and ru;x ¼ 0 otherwise.

The goal of randomization is to break the similarity ordering
among items. The positions of the swapped items have significant
impacts on the ‘‘randomness’’ of item ordering. For instance,
swapping two nearby items will have smaller impact on the order-
ing compared with swapping two items that are far apart. We
define the increase of randomness after swapping items i and j as
follows:

Rðswapði; jÞÞ ¼ #Wafter �#Wbefore ð6Þ

where #Wafter is the number of incorrect orders after swapping and
#Wbefore is the number of incorrect orders before swapping.

Based on the accuracy loss and randomness increase definitions
above, swap operations with larger randomness increase and smal-
ler accuracy loss are preferred.

5.2. Item recommendation with supervised randomization

In this paper, item recommendation is performed with the
standard item-based method as described in Section 3.1. Here,
we focus on the randomization technique which can permute
recommendation results to prevent aggregated information revela-
tions while keeping recommendation accuracy loss within prede-
fined threshold.

Based on the above analysis of randomization operations, a
supervised randomization is proposed to ensure largest random-
ness increase per accuracy loss and meanwhile keep recommenda-
tion accuracy loss within a predefined threshold. The supervised
randomization method is based on Fisher–Yates shuffle, during
which all item swaps are first stored. Then, the algorithm itera-
tively chooses swaps with the largest randomness increase/ accu-
racy loss ratio to perform on real recommendation results, until
the accuracy loss threshold is reached. The detailed supervised ran-
domization algorithm is presented in Algorithm 5.
Algorithm 5. Supervised RandomizationðI;R;gÞ
Require: I is a set of items, R is the set of recommendation
results. For each i 2 I; Ri is the recommendation results
when clicking i. g is the predefined threshold of accuracy
loss.

1: for each t 2 I do
2: R0t ¼ Rt;
3: Ql ¼ ; and Qr ¼ ; are two arrays to store accuracy loss

and randomness increase of each swap;
4: for i from jR0t j to 1 do
5: randomly choose j 2 ½1; i�;
6: swap R0t½i� and R0t ½j�;
7: Ql:addðLðswapði; jÞÞÞ;
8: Qr :addðRðswapði; jÞÞÞ;
9: end for
10: r ¼ 0. Let S ¼ ; be the set to store all chosen swaps;
11: while r 6 g do
12: choose swapði; jÞ with largest

Rðswapði; jÞÞ=Lðswapði; jÞÞ;
13: if rþ Lðswapði; jÞÞ 6 g then
14: S:addðswapði; jÞÞ;
15: rþ ¼ Lðswapði; jÞÞ;
16: end if
17: remove swapði; jÞ from Ql and Qr;
18: end while
19: for each swap s 2 S do
20: perform swap s on Rt;
21: end for
22: end for

Please note that, the total recommendation accuracy loss can be
kept within g in the proposed supervised randomization. This
argument is formally described and proved in Theorem 5.1.
Theorem 5.1. Given I;R;g, the total accuracy loss L0 6 g after
supervised randomization.
Proof. For each item t 2 I; Rt is randomized with the guarantee
that

P
s2St

LðsÞ 6 g, where St is the set of chosen swap operations
after the while loop for recommendation list Rt in Algorithm 5.
The total accuracy loss over all recommendation results is:

L0 ¼
P

t2I

P
s2St

LðsÞ

jIj . As
P

s2St
LðsÞ 6 g, then:

L0 ¼
P

t2I

P
s2St

LðsÞ
jIj 6

P
t2Ig
jIj ¼ g:

Thus, we have L0 6 g. h

In the supervised randomization method, the complexity of
Fisher–Yates shuffle is OðNÞ, where N is the size of the recom-
mended item list. During each swap, accuracy loss and randomness
increase are calculated, and total complexity of which is OðnÞ,
where n is the number of users. Then, swaps with the largest
randomness increase/accuracy loss ratio are chosen with complex-
ity of OðN2Þ. Finally, the chosen swaps are performed on real
recommendation results with complexity of OðNÞ. Thus, the total
complexity of supervised randomization is OðNÞ � ðOðnÞþ
OðN2ÞÞ ¼ OðNnþ N3Þ. As N is reasonably small in real applications
(less than 100), this total complexity is acceptable.

D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304 297
6. Experimental results

This section evaluates the severity of aggregated information
revelation of item-based top-N recommendation, and demon-
strates the effectiveness of the proposed supervised randomization
technique in aggregated information protection. First, a description
of the dataset is presented, as well as the evaluation metrics to
measure the attack performance and protection performance.
Then, the proposed item popularity ranking attack methods and
clustering attack method are evaluated and compared. Finally,
the proposed supervised randomization is evaluated in detail.

6.1. Dataset description and evaluation metrics

6.1.1. Dataset description
The evaluation is conducted with Fudan BBS, a popular online

social community among Chinese universities, which has over
60,000 users, 20,000 daily posts, and 180,000 daily reads. Eight of
the most active subcommunities, which have various numbers of
users and items, are considered in the experiments. More impor-
tantly, these subcommunities have diverse item popularity distri-
butions and internal clustering structures. Together, these eight
subcommunities offer a comprehensive evaluation dataset of the
proposed attack methods and randomization algorithm. The
dataset was collected during two consecutive weeks. The overall
characteristics of the eight subcommunities are listed in Table 1.

6.1.2. Evaluation metrics
The following metrics are adopted to measure item popularity

ranking accuracy, item clustering accuracy and recommendation
accuracy after randomization:

1. Item Popularity Ranking Evaluation Metric: Relative Mean
Average Error (RMAE) is typically used to measure how close
estimations are to the real values relatively. RMAE is computed
as follows [28]:
RMAE ¼ 1
n

Xn

i¼1

j fi � yi

n
j ð7Þ
where n is the number of items, fi is the estimated ranking and yi is
the real ranking. Intuitively, the RMAE value means the relative
ranking position error. A small RMAE value indicates high item
popularity ranking estimation accuracy, and a large RMAE value
indicates low accuracy.
2. Item Clustering Evaluation Metric: To evaluate the accuracy of

item clustering, two precision metrics are adopted. The first is
‘‘total precision’’, which is defined as the total fraction of cor-
rectly assigned items in clustering. The second is ‘‘cluster preci-
sion’’, which is defined as the average clustering precision of all
clusters. The two evaluation metrics are computed as follows:
Total Precision ¼
P

i2IAðiÞ
jIj ð8Þ

Cluster Precision ¼
P

c2C

P
i2Ic

AðiÞ
jcj

jCj ð9Þ
where I is the set of items, AðiÞ ¼ 1 if item i is assigned incorrectly
and AðiÞ ¼ 0 otherwise, and C is the set of clusters. In both item clus-
tering evaluation metrics, a large value indicates high clustering
accuracy, and a small value indicates low accuracy.
3. Recommendation Accuracy Evaluation Metric: In the sce-

nario of top-N recommendation, Precision and Recall are
widely adopted to measure the accuracy of recommendation
results [10]. The Precision and Recall values are computed as
follows:
Precision ¼ jIu \ Ir j
jIrj

; Recall ¼ jIu \ Ir j
jIuj

ð10Þ
where Iu is the set of items that user u rated or liked and Ir is the set
of items that are recommended. Higher Precision and Recall values
indicate better recommendation accuracy.
4. Item Position Shift Evaluation Metric: The positions of recom-

mended items are shifted in the recommendation list after ran-
domization, and greater shift indicates better protection of
aggregated knowledge. The following metric is proposed to
measure how the positions of recommended items are shifted
after randomization:
Position Shift ¼ mean jpi � p0ij
� �

ð11Þ
where pi is the position of item i in the recommendation list when i
is recommended by standard item-based CF method, and p0i is the
position of item i after randomization.

6.2. Observation analysis

In the proposed item popularity ranking attack methods, two
observations are adopted as the basis for inferring item popularity
ranking based on crawled recommendation lists. The first observa-
tion is ‘‘popular items will be recommended more frequently than
unpopular items’’, and the second observation is ‘‘similar items are
very likely to have similar popularity’’. Here, we present statistical
analysis results to help validate these observations.

6.2.1. Observation I
Fig. 2 shows the correlation between item popularity and the

number of times that the item is recommended (N is set to 50).
It shows that positive correlation between item popularity and
the number of times that the item is recommended indeed exists
in the two subcommunities. Meanwhile, similar results are
observed in all other subcommunities. This study helps confirm
that popular items will be recommended more frequently than
unpopular items.

6.2.2. Observation II
Fig. 3 shows the correlation between item popularity and the

average popularity of the ten most similar items to each item.
We can see that most of the data points are located around the
‘‘y ¼ x’’ line, so that linear relationship between item popularity
and the average popularity of similar items to each item indeed
exists in the two subcommunities. Also, similar results are
observed in all other subcommunities. This study helps confirm
that similar items are likely to have similar popularity.

6.3. Item popularity ranking attack performance

Fig. 4 shows the attack performance of the proposed item
popularity ranking attack methods in terms of RMAE (y-axis).
The x-axis N is the size of recommendation list, which determines
the amount of information revelation. Please note that, we choose
a ¼ 0:1 in the Linear Attack method, as we find that a around 0.1
achieves best attack performance in the evaluated eight subcom-
munities. From the results, we can see that the RMAE values range
from 30% to 7.8% in different subcommunities. Among the three
proposed attack methods, Linear Arrack outperforms Naive Attack
and PageRank Attack in all eight subcommunities, with average
RMAE reductions of 28.4% and 23.9% respectively. PageRank Attack
outperforms Naive Attack in six of the eight subcommunities and
achieves comparable results in the other two subcommunities
with average RMAE reduction of 13.5%. Note that Naive Attack only
considers the number of appearances in other items’ recommenda-
tion lists. In PageRank Attack, the relationships among items are

 0

 100

 200

 300

 0 100 200 300 400 500 600 700 800
#R

ec
om

m
en

da
tio

ns

Item Popularity

Graduate

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700 800

#R
ec

om
m

en
da

tio
ns

Item Popularity

News

Fig. 2. Item popularity vs. the number of times the item is recommended (N ¼ 50).

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800A
ve

ra
ge

 P
op

ul
ar

ity
 o

f
10

 M
os

t S
im

ila
r

Ite
m

s

Item Popularity

Graduate

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700 800A
ve

ra
ge

 P
op

ul
ar

ity
 o

f
10

 M
os

t S
im

ila
r

Ite
m

s

Item Popularity

News

Fig. 3. Item popularity vs. the average popularity of ten most similar items to each item.

0.1

0.15

0.2

0.25

0.3

 10 20 30 40 50 60 70 80 90 100

R
M

A
E

N

Astrology
Naive
Linear

PageRank

0.1

0.15

0.2

 10 20 30 40 50 60 70 80 90 100

R
M

A
E

N

Auto
Naive
Linear

PageRank

0.1

0.15

0.2

0.25

 10 20 30 40 50 60 70 80 90 100

R
M

A
E

N

Basketball
Naive
Linear

PageRank

0.1

0.15

0.2

 10 20 30 40 50 60 70 80 90 100

R
M

A
E

N

Graduate
Naive
Linear

PageRank

0.1

0.15

 10 20 30 40 50 60 70 80 90 100

R
M

A
E

N

Football
Naive
Linear

PageRank

0.15

0.2

 10 20 30 40 50 60 70 80 90 100

R
M

A
E

N

Job
Naive
Linear

PageRank

0.1

0.15

 10 20 30 40 50 60 70 80 90 100

R
M

A
E

N

Joke
Naive
Linear

PageRank

0.15

0.2

0.25

0.3

 10 20 30 40 50 60 70 80 90 100

R
M

A
E

N

News
Naive
Linear

PageRank

Fig. 4. Item popularity ranking attack performance in eight subcommunities.

298 D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304

D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304 299
the dominating factor for measuring the popularity of an item. In
Linear Attack, the above two types of information are combined
linearly, and thus achieves better attack performance.

From the experimental results, we can also see that the RMAE
values decrease as N (the size of recommended item lists)
increases. This is reasonable, because more information are
revealed when more items are recommended. Thus, a smaller N
value should be adopted to increase system robustness when
designing item-based top-N recommender systems. When N is
higher than 50, the RMAE values are less than 18% in all subcom-
munities, which indicate fairly accurate popularity ranking estima-
tions. Thus, a N value less than 50 should be adopted in item-based
top-N recommender systems.

6.4. Item clustering attack performance

Fig. 5 shows the performance of the proposed Cluster Attack
method in all eight subcommunities. Please note that, in this exper-
iment, we use the clustering results by the standard K-centroids
algorithm as the true clustering. In the K-centroids clustering algo-
rithm, the initial seed selection will have great impact on the final
clustering results, thus we choose the same seeds in clustering
comparisons to eliminate the influence of seeding.
0.5

0.6

0.7

0.8

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

N

Astrology

total precision
cluster precision

0.5

0.6

0.7

0.8

0.9

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

N

Basketball

total precision
cluster precision

0.4

0.5

0.6

0.7

0.8

0.9

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

N

Football

total precision
cluster precision

0.4

0.5

0.6

0.7

0.8

0.9

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

N

Joke

total precision
cluster precision

Fig. 5. Clustering attack performa
We can see in Fig. 5 that the total precision values range from
approximately 50% to 95% in four of the eight subcommunities
with N varying from 10 to 100, from approximately 40% to 90%
in two of the rest four subcommunities, and from approximately
21% to 82% in the last two subcommunities. And similar results
can be observed for the clustering precisions. Also, we can see that
both the total precision and the clustering precision increase as N
increases, which is because larger N means more information rev-
elations. Thus, smaller N values (less than 50, for instance) should
be adopted to protect item-based top-N recommender systems
from clustering attacks.

6.5. Performance of randomization

The performance of the proposed randomization technique is
evaluated in two aspects: aggregated knowledge protection and
recommendation accuracy loss. In the following experiments,
‘‘unsupervised’’ is referred to an unsupervised randomization
method which works as follows: (1) recommended item lists are
divided into sublists of size k0; (2) each sublist is randomized by
Fisher–Yates shuffle; and (3) all sublists are reconnected as new
recommendation results. The proposed supervised randomization
is referred as ‘‘supervised’’ in the following experiments.
0.5

0.6

0.7

0.8

0.9

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

N

Auto

total precision
cluster precision

0.3

0.4

0.5

0.6

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

N

Graduate

total precision
cluster precision

0.5

0.6

0.7

0.8

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

N

Job

total precision
cluster precision

0.2

0.3

0.4

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

N

News

total precision
cluster precision

nce in eight subcommunities.

 0

 100

 200

 300

 0 50 100 150 200 250 300 350

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Basketball (Linear Attack)

RMAE = 7.80%

 0

 100

 200

 300

 0 50 100 150 200 250 300 350

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Basketball (Unsupervised)

RMAE = 19.98%

 0

 100

 200

 300

 0 50 100 150 200 250 300 350

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Basketball (Supervised)

RMAE = 21.12%

 0

 200

 400

 600

 800

 0 500 1000 1500 2000

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Graduate (Linear Attack)

RMAE = 8.81%

 0

 200

 400

 600

 800

 0 500 1000 1500 2000
Ite

m
 P

op
ul

ar
ity

Items Ranked by Attacked Popularity

Graduate (Unsupervised)

RMAE = 15.89%

 0

 200

 400

 600

 800

 0 500 1000 1500 2000

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Graduate (Supervised)

RMAE = 19.58%

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

News (Linear Attack)

RMAE = 13.62%

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

News (Unsupervised)

RMAE = 18.01%

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

News (Supervised)

RMAE = 22.11%

Fig. 6. Item popularity ranking attack performance of Linear Attack before and after randomizations in three subcommunities (Basketball, Graduate, News).

300 D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304
6.5.1. Aggregated information protection
In this experiment, we do not evaluate the performance of

Naive Attack, as the randomization techniques cannot change the
number of times each item is recommended, i.e., randomization
will have little effect against Naive attack. But, it should be men-
tioned that, Naive Attack is not accurate compared with the other
two item popularity ranking attack methods, and its RMAE values
are similar to those of the other two methods after randomization.
Thus, protections can be omitted for the Naive Attack method. In
 0

 100

 200

 300

 0 50 100 150 200 250 300 350

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Basketball (PageRank Attack)

RMAE = 12.20%

 0

 100

 200

 300

 0 50 100 150

Ite
m

 P
op

ul
ar

ity

Items Ranked by

Basketball (

R

 0

 200

 400

 600

 800

 0 500 1000 1500 2000

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Graduate (PageRank Attack)

RMAE = 10.12%

 0

 200

 400

 600

 800

 0 500 10

Ite
m

 P
op

ul
ar

ity

Items Ranked by

Graduate (U

R

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

News (PageRank Attack)

RMAE = 17.68%

 0

 200

 400

 600

 800

 0 200 400 600

Ite
m

 P
op

ul
ar

ity

Items Ranked by A

News (Uns

R

Fig. 7. Item popularity ranking attack performance of PageRank Attack before and
this experiment, we choose k0 ¼ 10 for the unsupervised method,
g ¼ 5% for the supervised method, and N ¼ 50 for both methods.
This is because the two randomization methods achieve similar
recommendation accuracy loss with this setting. Thus, we can
focus on comparing the performance of aggregated information
protection of the two randomization methods.

Figs. 6 and 7 show the item popularity ranking performance of
Linear Attack and PageRank Attack before (column 1) and after (col-
umn 2 and 3) randomization in three of the eight subcommunities.
 200 250 300 350

 Attacked Popularity

Unsupervised)

MAE = 20.02%

 0

 100

 200

 300

 0 50 100 150 200 250 300 350

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Basketball (Supervised)

RMAE = 20.59%

00 1500 2000

Attacked Popularity

nsupervised)

MAE = 23.74%

 0

 200

 400

 600

 800

 0 500 1000 1500 2000

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

Graduate (Supervised)

RMAE = 24.28%

 800 1000 1200 1400

ttacked Popularity

upervised)

MAE = 21.71%

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400

Ite
m

 P
op

ul
ar

ity

Items Ranked by Attacked Popularity

News (Supervised)

RMAE = 22.41%

after randomizations in three subcommunities (Basketball, Graduate, News).

Table 2
Overall performance comparison of randomization in item popularity ranking attack.

Item popularity ranking Unsupervised Supervised

Linear PageRank Linear PageRank

Average RMAE gain (%) 45.7 46.5 62.4 54.8

Table 3
Overall performance comparison of randomization in cluster attack.

Cluster attack Unsupervised (%) Supervised (%)

Average total precision loss 63.2 66.6
Average cluster precision loss 52.6 54.8

D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304 301
Intuitively, we can see that the attacked item popularity rankings
before randomization are better ‘‘ordered’’ than the attacked item
popularity rankings after randomization, and the proposed super-
vised randomization method achieves better protection (higher
RMAE) than that of unsupervised randomization in all three sub-
communities. Experiments with all the other subcommunities also
show similar results, and detailed statistics are listed in Table 2. The
main reasons that the proposed supervised randomization method
0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Astrology

standard
unsupervised
supervised

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Basketball

standard
unsupervised
supervised

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Football

standard
unsupervised
supervised

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Joke

standard
unsupervised
supervised

Fig. 8. Recommendation performance before and a
outperforms the unsupervised randomization method are: (1)
items are obfuscated in wider ranges and (2) swaps with larger ran-
domness increase can be selected by the supervised randomization
method.

Table 2 shows the detailed statistics of RMAE gain of item pop-
ularity ranking attack after randomization. As shown in Eq. (7),
lower RMAE value means better item popularity ranking attack
performance, so that higher RMAE gain indicates better protection
against item popularity ranking attack. We can see from the results
that randomization techniques can significantly reduce the perfor-
mance of item popularity ranking attack, and the proposed super-
vised randomization method can increase RMAEs of the proposed
Linear Attack and PageRank Attack by 62.4% and 54.8%, respec-
tively, on average over the eight subcommunities. The unsuper-
vised randomization method can also reduce the performance of
item popularity ranking attack, but can only increase RMAEs of
the proposed Linear Attack and PageRank Attack by 45.7% and
46.5%, respectively, which are worse than the supervised random-
ization method.

Table 3 shows the detailed statistics of total precision loss and
cluster precision loss of cluster attack after randomization. As
shown in Eq. (8), higher total precision and cluster precision values
mean better cluster attack performance, so that higher total preci-
sion loss and cluster precision loss indicate better protection
0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Auto

standard
unsupervised
supervised

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Graduate

standard
unsupervised
supervised

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Job

standard
unsupervised
supervised

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

News

standard
unsupervised
supervised

fter randomization in eight subcommunities.

302 D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304
against cluster attack. We can see from the results that randomiza-
tion techniques can dramatically reduce the performance of cluster
attack. The proposed supervised randomization method can
decrease total precision and cluster precision of Cluster Attack by
66.6% and 54.8%, respectively, on average over the eight subcom-
munities. The unsupervised randomization method can decrease
total precision and cluster precision of Cluster Attack by 63.2%
and 52.6%, respectively, on average over the eight subcommunities,
which are also worse than the supervised randomization method.

Overall, randomization techniques are effective in protecting
item-based top-N recommender systems from aggregated knowl-
edge attacks, and the proposed supervised randomization method
achieves better protection than the unsupervised method in all
scenarios.
 2
 4
 6
 8

 10
 12
 14

 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 S
hi

ft

N

Astrology
Unsupervised

Supervised

 3
 6
 9

 12
 15
 18
 21

 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 S
hi

ft

N

Basketball
Unsupervised

Supervised

 3
 6
 9

 12
 15
 18
 21
 24
 27

 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 S
hi

ft

N

Football
Unsupervised

Supervised

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 S
hi

ft

N

Joke
Unsupervised

Supervised

Fig. 9. Average item position shifts in the recommendatio

0.5

0.6

0.7

0.8

0.05 0.1 0.15 0.20 0.25

R
M

A
E

 G
ai

n

Recommendation Accuracy Loss

Linear Attack
PageRank Attack

Fig. 10. Recommendation accuracy loss vs. aggregated information protection in the supe
attacks, and the right figure shows the tradeoff for item clustering attack.)
6.5.2. Recommendation accuracy loss comparison
Fig. 8 shows the recommendation accuracies of item-based

top-N recommendation before and after randomization in eight
subcommunities. The predefined recommendation accuracy loss
threshold g is set to 5% in the supervised randomization. Results
show that recommendation precision losses after the supervised
randomization are less than 5% in all eight subcommunities
(4.89% on average). This means that the supervised randomization
can indeed keep the recommendation accuracy loss within the
predefined threshold (5%). We can also see that the two randomi-
zation techniques achieve similar recommendation accuracy. How-
ever, precisions of the supervised randomization are higher than
that of the unsupervised randomization when recalls are low (less
than 0.4), and lower when recalls are high. This is because items
 2
 4
 6
 8

 10
 12
 14

 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 S
hi

ft

N

Auto
Unsupervised

Supervised

 2
 4
 6
 8

 10
 12
 14

 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 S
hi

ft

N

Graduate
Unsupervised

Supervised

 2
 4
 6
 8

 10
 12
 14

 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 S
hi

ft

N

Job
Unsupervised

Supervised

 3
 6
 9

 12
 15
 18
 21
 24
 27

 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 S
hi

ft

N

News
Unsupervised

Supervised

n lists after randomization in eight subcommunities.

0.5

0.6

0.7

0.05 0.1 0.15 0.20 0.25

P
re

ci
si

on
 L

os
s

Recommendation Accuracy Loss

Total Precision
Cluster Precision

rvised randomization. (The left figure shows the tradeoff for item popularity ranking

D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304 303
are swapped in wider ranges in supervised randomization when
more items are recommended, resulting in slightly worse accuracy.
Typically, the number of recommended items is small in real world
applications, e.g., around 50 in Amazon.com and around 40 in
Youtube.com. Therefore, the supervised randomization method,
which achieves better recommendation accuracy and better aggre-
gated information protection, is a better choice for real world
applications.

6.5.3. Item position shift after randomization
The positions of items are shifted in the recommendation list

after randomization. The average PositionShift values can help us
clearly know how the proposed supervised randomization method
and the unsupervised method perform. Meanwhile, the results will
help us better understand why the proposed supervised randomi-
zation method achieves higher recommendation precision when
recalls are small and achieves lower precision when recalls are
large as presented above.

As shown in Fig. 9, the unsupervised method achieves the same
Position Shift values for all scenarios, which is because the unsu-
pervised method adopts the Fisher-Yates shuffle equally on all sub-
lists of the recommendation lists. However, the proposed
supervised method achieves relatively smaller PositionShift when
N is small (10–20) and achieves larger PositionShift when N is large.
Smaller position shifts (around 2–3) will have smaller impacts on
recommendation accuracy, thus the supervised method has higher
recommendation accuracy when recall is small. Similarly, larger
position shifts (around 3–25) will have larger impacts on recom-
mendation accuracy, thus the supervised method achieves lower
recommendation accuracy when recall is large. But, since the items
ranked in lower positions are less likely to be liked by users, even
large position shifts (10 or 20) will not affect too much the recom-
mendation accuracy (as shown in Fig. 8).

6.5.4. Tradeoff between recommendation accuracy loss and
aggregated information protection

In the proposed supervised randomization method, tradeoff
must be carefully weighed between recommendation accuracy
and aggregated information protection, i.e., better aggregated
information protection indicates higher recommendation accuracy
loss. As shown in Fig. 10, both RMAE gains of item popularity rank-
ing attack and precision losses of cluster attack after randomiza-
tion increase as recommendation accuracy loss increases. This
indicates that better aggregated information protection can be
achieved by compromising recommendation accuracy. In addition,
the study shows that no significant increase of RMAE gains of item
popularity ranking attack and precision losses of cluster attack are
obtained when recommendation accuracy losses increase from
around 10% to 25%. Therefore, a recommendation loss around
5–10% will be a good tradeoff, which can achieve desirable aggre-
gated information protection (with around 55–75% degradation on
performance of aggregated knowledge attacks) without severe
compromise in recommendation accuracy.
7. Conclusion

In today’s mainstream online services, item-based top-N
recommender systems have been widely adopted, which provide
recommendation services to end users based on inherent knowl-
edge regarding the patterns or relations among users and items,
such as their popularity or similarity. Such aggregated knowledge
is of great importance to online services, and need be properly
protected. In this paper, four attack methods are proposed and
evaluated to demonstrate the severity of aggregated information
revelation of item-based top-N recommendation. To make
recommender systems more resilient to these attacks, a supervised
randomization technique is proposed for item-based top-N recom-
mendation. Experimental results demonstrate that the proposed
attack methods can estimate the item popularity ranking and item
clustering with high accuracy. Meanwhile, the proposed super-
vised randomization method can reduce the attack performance
significantly. Based on the evaluation using real world dataset,
our study shows that item-based top-N recommender system
design should follow two guidelines in order to protect against
aggregated knowledge attacks: (1) reduce the number of items in
each recommendation list, and a number less than 50 will be a
good choice and (2) item recommendation lists should be random-
ized using the proposed method before sending to end users,
which can keep recommendation accuracy loss within a predefined
threshold while protecting recommender systems from aggregated
knowledge attacks.
Acknowledgements

This work was supported in part by the National Natural
Science Foundation of China under Grant Nos. 61233016,
61332008 and 61272533, the National Science Foundation under
awards CNS-0910995 and CNS-1162614, and the Shanghai Science
& Technology Committee Project under Grant Nos. 11JC1400800
and 13ZR1401900.
References

[1] Greg Linden, Brent Smith, Jeremy York, Amazon.com recommendations: item-
to-item collaborative filtering, IEEE Internet Comput. 7 (1) (2003) 76–80.

[2] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van
Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston,
Dasarathi Sampath, The YouTube video recommendation system, in:
Proceedings of the Fourth ACM Conference on Recommender Systems,
RecSys ’10, ACM, 2010, pp. 293–296.

[3] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, Shyam Rajaram, Google News
personalization: scalable online collaborative filtering, in: Proceedings of the
16th International Conference on World Wide Web, WWW ’07, ACM, 2007, pp.
271–280.

[4] Badrul Sarwar, George Karypis, Joseph Konstan, John Reidl, Item-based
collaborative filtering recommendation algorithms, in: Proceedings of the
10th International Conference on World Wide Web, WWW ’01, ACM, 2001, pp.
285–295.

[5] Manos Papagelis, Dimitris Plexousakis, Qualitative analysis of user-based and
item-based prediction algorithms for recommendation agents, Eng. Appl. Artif.
Intell. 18 (7) (2005) 781–789.

[6] Jonathan Herlocker, Joseph Konstan, Al Borchers, John Riedl, An algorithmic
framework for performing collaborative filtering, in: SIGIR ’99: Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 1999, pp. 230–237.

[7] Seung-Taek Park, David Pennock, Omid Madani, Nathan Good, Dennis DeCoste,
Naive filterbots for robust cold-start recommendations, in: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06, ACM, 2006, pp. 699–705.

[8] Dongsheng Li, Qin Lv, Xing Xie, Li Shang, Huanhuan Xia, Tun Lu, Ning Gu,
Interest-based real-time content recommendation in online social
communities, Knowl.-Based Syst. 28 (2012) 1–12.

[9] Marko Balabanović, Yoav Shoham, Fab: content-based collaborative
recommendation, Commun. ACM 40 (1997) 66–72.

[10] Gediminas Adomavicius, Alexander Tuzhilin, Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions, IEEE Trans. Knowl. Data Eng. 17 (6) (2005) 34–749 (June).

[11] Jesus Bobadilla, Fernando Ortega, Antonio Hernando, Javier Alcalá, Improving
collaborative filtering recommender system results and performance using
genetic algorithms, Knowl.-Based Syst. 24 (8) (2011) 1310–1316.

[12] Jin-Min Yang, Kin Fun Li, Da-Fang Zhang, Recommendation based on rational
inferences in collaborative filtering, Knowl.-Based Syst. 22 (1) (2009) 105–114.

[13] Qusai Shambour, Jie Lu, A trust-semantic fusion-based recommendation
approach for e-business applications, Decis. Support Syst. 54 (1) (2012) 768–
780.

[14] Qusai Shambour, Jie Lu, A hybrid trust-enhanced collaborative filtering
recommendation approach for personalized government-to-business e-
services, Int. J. Intell. Syst. 26 (9) (2011) 814–843.

[15] Huseyin Polat, Wenliang Du, Privacy-preserving collaborative filtering using
randomized perturbation techniques, in: Proceedings of the Third IEEE
International Conference on Data Mining, ICDM ’03, IEEE, 2003, pp. 625–628.

http://refhub.elsevier.com/S0950-7051(14)00168-3/h0035
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0035
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0040
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0040
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0040
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0040
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0040
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0040
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0045
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0045
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0045
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0045
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0045
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0050
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0050
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0050
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0050
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0050
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0055
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0055
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0055
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0060
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0060
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0060
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0060
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0060
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0065
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0065
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0065
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0070
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0070
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0075
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0075
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0075
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0080
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0080
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0080
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0085
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0085
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0090
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0090
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0090
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0095
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0095
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0095
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0100
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0100
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0100
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0100

304 D. Li et al. / Knowledge-Based Systems 67 (2014) 290–304
[16] Sheng Zhang, James Ford, Fillia Makedon, A privacy-preserving collaborative
filtering scheme with two-way communication, in: Proceedings of the 7th
ACM Conference on Electronic Commerce, EC ’06, 2006, pp. 316–323.

[17] Reza Shokri, Pedram Pedarsani, George Theodorakopoulos, Jean-Pierre
Hubaux, Preserving privacy in collaborative filtering through distributed
aggregation of offline profiles, in: Proceedings of the 3rd ACM Conference on
Recommender Systems, RecSys ’09, ACM, 2009, pp. 157–164.

[18] Bamshad Mobasher, Robin Burke, Runa Bhaumik, Chad Williams, Effective
attack models for shilling item-based collaborative filtering systems, in:
Proceedings of the 2005 WebKDD Workshop, ACM, 2005.

[19] Bamshad Mobasher, Robin Burke, Runa Bhaumik, Chad Williams, Toward
trustworthy recommender systems: an analysis of attack models and
algorithm robustness, ACM Trans. Internet Technol. 7 (4) (2007).

[20] Michael O’Mahony, Neil Hurley, Guénolé Silvestre, Recommender systems:
attack types and strategies, in: Proceedings of the 20th National Conference on
Artificial Intelligence, AAAI’05, AAAI Press, 2005, pp. 334–339.

[21] Kenneth Bryan, Michael O’Mahony, Pádraig Cunningham, Unsupervised
retrieval of attack profiles in collaborative recommender systems, in:
Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys
’08, ACM, 2008, pp. 155–162.

[22] Shyong Lam, John Riedl, Shilling recommender systems for fun and profit, in:
Proceedings of the 13th International Conference on World Wide Web, WWW
’04, ACM, 2004, pp. 393–402.

[23] Sergey Brin, Lawrence Page, The anatomy of a large-scale hypertextual Web
search engine, Comput. Netw. ISDN Syst. 30 (1–7) (1998) 107–117.

[24] James MacQueen, Some methods for classification and analysis of multivariate
observations, in: Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, University of California Press, 1967,
pp. 281–297.

[25] Friedrich Leisch, A toolbox for K-centroids cluster analysis, Comput. Stat. Data
Anal. 51 (2) (2006) 526–544.
[26] Dongsheng Li, Qin Lv, Huanhuan Xia, Li Shang, Tun Lu, Ning Gu, Pistis: a
privacy-preserving content recommender system for online social
communities, in: Proceedings of 2011 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT
’11, 2011, pp. 79–86.

[27] Pang-Ning Tan, Vipin Kumar, Discovery of web robot sessions based on their
navigational patterns, Data Min. Knowl. Discov. 6 (1) (2002) 9–35.

[28] Jin Li, Andrew Heap, A review of comparative studies of spatial interpolation
methods in environmental sciences: performance and impact factors, Ecol.
Informat. 6 (3–4) (2011) 228–241.

[29] U.S. National Institute of Standards and Technology, Dictionary of Algorithms
and Data Structures, 2005.

[30] Xuetao Guo, Jie Lu, Intelligent e-government services with personalized
recommendation techniques, Int. J. Intell. Syst. 22 (5) (2007) 401–417.

[31] Jie Lu, Qusai Shambour, Yisi Xu, Qing Lin, Guangquan Zhang, BizSeeker: a
hybrid semantic recommendation system for personalized government-to-
business e-services, Internet Res. 20 (3) (2010) 342–365.

[32] Neil Hurley, Robustness of recommender systems, in: Proceedings of the Fifth
ACM Conference on Recommender Systems (RecSys ’11), 2011, pp. 9–10.

[33] Giseop Noh, Chong-kwon Kim, RobuRec: robust Sybil attack defense in online
recommender systems, in: 2013 IEEE International Conference on
Communications (ICC), 2013, pp. 2001–2005.

[34] Giseop Noh, Young-myoung Kang, Hayoung Oh, Chong-kwon Kim, Robust
Sybil attack defense with information level in online recommender systems,
Expert Syst. Appl. 41 (4) (2014) 781–1791.

[35] Dongyan Jia, Fuzhi Zhang, Sai Liu, A robust collaborative filtering
recommendation algorithm based on multidimensional trust model, J. Softw.
8 (1) (2013) 1–18.

[36] Benjamin Van Roy, Xiang Yan, Manipulation robustness of collaborative
filtering, Manage. Sci. 56 (11) (2010) 1911–1929.

http://refhub.elsevier.com/S0950-7051(14)00168-3/h0105
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0105
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0105
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0105
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0105
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0110
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0110
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0110
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0110
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0115
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0115
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0115
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0120
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0120
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0120
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0120
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0125
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0125
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0125
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0125
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0125
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0130
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0130
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0130
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0130
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0135
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0135
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0140
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0140
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0140
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0140
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0140
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0145
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0145
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0150
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0150
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0155
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0155
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0155
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0160
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0160
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0165
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0165
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0165
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0170
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0170
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0170
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0175
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0175
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0175
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0180
http://refhub.elsevier.com/S0950-7051(14)00168-3/h0180

	Item-based top-N recommendation resilient to aggregated information revelation
	1 Introduction
	2 Related work
	3 Problem formulation
	3.1 Item-based Top-N recommendation
	3.1.1 Item similarity computation
	3.1.2 Top-N recommendation

	3.2 Case study

	4 Aggregated knowledge attack in item-based Top-N recommendation
	4.1 Multi-agent based crawling
	4.2 Item popularity ranking attack
	4.2.1 Naive Attack
	4.2.2 Linear Attack
	4.2.3 PageRank attack

	4.3 Item clustering attack

	5 Robust item-based recommendation
	5.1 Impact analysis of randomization
	5.2 Item recommendation with supervised randomization

	6 Experimental results
	6.1 Dataset description and evaluation metrics
	6.1.1 Dataset description
	6.1.2 Evaluation metrics

	6.2 Observation analysis
	6.2.1 Observation I
	6.2.2 Observation II

	6.3 Item popularity ranking attack performance
	6.4 Item clustering attack performance
	6.5 Performance of randomization
	6.5.1 Aggregated information protection
	6.5.2 Recommendation accuracy loss comparison
	6.5.3 Item position shift after randomization
	6.5.4 Tradeoff between recommendation accuracy loss and aggregated information protection

	7 Conclusion
	Acknowledgements
	References

