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Abstract

Invariant risk minimization (IRM) has recently emerged as a promising
alternative for domain generalization. Nevertheless, the loss function is dif-
ficult to optimize for nonlinear classifiers and the original optimization ob-
jective could fail when pseudo-invariant features and geometric skews exist.
Inspired by IRM, in this paper we propose a novel formulation for domain
generalization, dubbed invariant information bottleneck (IIB). IIB aims at
minimizing invariant risks for nonlinear classifiers and simultaneously miti-
gating the impact of pseudo-invariant features and geometric skews. Specifi-
cally, we first present a novel formulation for invariant causal prediction via
mutual information. Then we adopt the variational formulation of the mutual
information to develop a tractable loss function for nonlinear classifiers. To
overcome the failure modes of IRM, we propose to minimize the mutual in-
formation between the inputs and the corresponding representations. IIB sig-
nificantly outperforms IRM on synthetic datasets, where the pseudo-invariant
features and geometric skews occur, showing the effectiveness of proposed
formulation in overcoming failure modes of IRM. Furthermore, experiments
on DomainBed show that IIB outperforms 13 baselines by 0.7% on average
across 7 real datasets.
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Introduction

In most statistical machine learning algorithms, a fundamental assumption is that
the training data and test data are independently and identically distributed (i.i.d.).
However, the data we have in many real-world applications are not i.i.d. Distribu-
tional shifts are ubiquitous. Under such circumstances, classic statistical learning
paradigms with strong generalization guarantees, e.g., Empirical Risk Minimiza-
tion (ERM) [48], often fail to generalize due to the violation of the i.i.d. assump-
tion. It has been widely observed that the performance of a model often deteriorates
dramatically when it is faced with samples from a different domain, even under a
mild distributional shift [5]. On the other hand, collecting training samples from
all possible future scenarios is essentially infeasible. Hence, understanding and
improving the generalization of models on out-of-distribution data is crucial.

Domain generalization (DG), which aims to learn a model from several differ-
ent domains so that it generalizes to unseen related domains, has recently received
much attention. From the perspective of representation learning, there are several
paradigms towards this goal, including invariant representation learning [33, 56],
causality [5, 21], meta-learning [7, 12], and feature disentanglement [12, 39]. Of
particular interest is the invariant learning methods. Some early works, e.g., DANN
[16], CDANN [30], aim at finding representations that are invariant across do-
mains. Nevertheless, learning invariant representations fails for domain adaptation
or generalization when the marginal label distributions change between source and
target domains [55]. Recently, Invariant Causal Prediction (ICP), and its follow-
up Invariant Risk Minimization (IRM), have attracted much interest. ICP assumes
that the data are generated according to a structural causal model (SCM) [37].
The causal mechanism for the data generating process is the same across domains,
while the non-causal mechanisms can vary among different domains. Under such
data generative assumptions, IRM [5] attempts to learn an optimal classifier that is
invariant across domains. Theoretical analysis in ICP reveals that under the SCM,
such a classifier can generalize across domains.

Despite the intuitive motivations, IRM falls short in several aspects. First, the
proposed loss function in [5] is difficult to optimize when the classifier is nonlinear.
Furthermore, it has been shown that IRM fails when the pseudo-invariant features
[42] or geometric skews exist [34]. Under such circumstances, the classifier will
utilize both the causal and spurious features, leading to a violation of invariant
causal prediction. To address the first issue, we propose an information-theoretical
formulation of invariant causal prediction and adopt a variational approximation
to ease the optimization procedure. To tackle the second issue, we emphasize that
the use of pseudo-invariant features or geometric skews will inevitably increase
the mutual information between the inputs and the representations. Thus, to miti-
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gate the impact of pseudo-invariant features and geometric skews, we propose to
constrain this mutual information, which naturally leads to a formulation of in-
formation bottleneck. Our empirical results show that the proposed approach can
effectively improve the accuracy when the pseudo-invariant features and geometric
skews exist.

Contributions: In this paper, we propose a novel information-theoretic formu-
lation for domain generalization, termed as invariant information bottleneck (IIB).
IIB aims at minimizing invariant risks for non-linear classifiers while mitigating the
impact of pseudo-invariant features and geometric skews. Specifically, our contri-
butions can be summarized as follows:

(1) We propose a novel formulation for invariant causal prediction via mutual
information. We further adopt variational approximation to develop tractable loss
functions for nonlinear classifiers.

(2) To mitigate the impact of pseudo-invariant features and geometric skews,
inspired by the information bottleneck principle, we propose to constrain the mu-
tual information between the inputs and the representations. The effectiveness is
verified by the synthetic experiments of failure modes [1, 34], where IIB signifi-
cantly improves the performance of IRM.

(3) Empirically, we analyze IIB’s performance with extensive experiments on
both synthetic and large-scale benchmarks. Compared to existing DG algorithms,
IIB is able to eliminate the spurious information better than other methods. and
achieves consistent improvements on 7 datasets by 0.7% on DomainBed [18].

Related Works

Domain Generalization

Existing methods of DG can be divided into three categories: (1) Data Manipu-
lation: Machine learning models typically rely on diverse training data to enhance
the generalization ability. Data manipulation/augmentation methods [36, 41] aim
to increase the diversity of existing training data with operations including flipping,
rotation, scaling, cropping, adding noise, etc. Domain randomization [10, 51, 52]
provides more complex operations for image data, such as altering the location/tex-
ture of objects, replicating and resizing objects, modifying the illumination, con-
trastness and angle of view. In addition, there are some methods [41, 40, 28, 45,
4, 46, 59] that exploits generated data samples to enhance the model generaliza-
tion ability. (2) Ensemble Learning methods [32, 44] assume that any sample in
the test domain can be regarded as an integrated sample of the multiple-source do-
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Figure 1: Illustrations of features in OOD generalization. For all the bears in train-
ing domains, the predictions P (Y | Z) conditioning on the invariant features (e.g.
outline) will be correct and invariant, and also the most generalizable. While the
predictions conditioning on pseudo invariant features (possibly fur color in this ex-
ample) are misleading and may affect the generalization ability on test domains.
Geometric skews are the spurious features used as a short-cut for max-margin clas-
sifiers. In this example, ERM will use all 5 features as they are informative to
labels. IRM, with the invariance constraint, will utilize the first 3 features. IIB, by
selecting the minimal sufficient features, only includes the shape or outline.

mains, so the overall prediction should be inferred by a combination of the models
trained on different domains. (3) Meta-Learning aims at learning a general model
from multiple domains. In terms of domain generalization, MLDG [26] divides
data from the multiple domains into meta-train and meta-test to simulate the do-
main shift situation to learn the general representations. In particular, Meta-Reg [7]
learns a meta-regularizer for the classifier, and Meta-VIB [12] learns to generate the
weights in the meta-learning paradigm by regularizing the KL divergence between
marginal distributions of representations of the same category but from different
domains.

Mutual Information-based Domain Adaptation

Domain Adaptation is an important topic in the direction of transfer learning [29,
15, 47, 30, 58, 60, 57, 23]. The mutual information-based approaches have been
widely applied in this area. The key idea is to learn a domain-invariant representa-
tion that are informative to the label, which can be formulated as [54, 24]

max I(Z, Y )− λI(Z,A) (1)

whereA is the identity of domains,Z denotes the representation, and Y denotes the
labels. Commonly adopted implementations of (1) are DANN [16] and CDANN
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[30]. These implementations are also often adopted in domain generalization as
baselines [18].

Invariant Risk Minimization

The above approaches enforces the invariance of the learned representation. Invari-
ant Risk Minimization (IRM) suggest the invariance of feature-conditioned label
distribution. Specifically, IRM seeks for an invariant causal prediction such that
E[Y e|Φ(Xe)] = E[Y e′ |Φ(Xe′)], for all e, e′ ∈ E . The objective of IRM is given
by

min
w,Φ

∑
e∈Etrain

Re(w ◦ Φ),

s.t. w ∈ argmin
ŵ

Re(ŵ ◦ Φ),

whereRe is the cross-entropy loss for environment e, Φ is the feature extractor and
w is a linear classifier. Note that the above objective is a bilevel optimization and
difficult to optimize. Thus, in [5], first-order approximation is adopted and the loss
function is given by

min
Φ

∑
e∈Etrain

Re(Φ) + λ · ‖∇w|w=1.0R
e(w ◦ Φ)‖, (2)

where w ∈ R is a dummy classifier.

Preliminaries

Recently, some works have focused on characterizing the failure modes of OOD
generalization [42, 34], as discussed in the sequel.

Pseudo-invariant Features

[42] The first problem is that the invariant features in the training dataset may
not be the invariant features in the test dataset. Specifically, we denote the causal
feature and spurious feature as zc and zs respectively. According to the analysis
in [42], there exists a transformation Φ such that [zc,Φzs] are invariant features
across the training dataset. Furthermore, the classifier will utilize [zc,Φzs] instead
of zc to achieve a lower training error. The OOD generalization may fail due to
the inclusion of zs, which can be arbitrary in the test dataset. An illustration of
pseudo-invarinat features is shown in Fig. 1.
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Geometric Skews

[34] The OOD generalization can fail even if we assume the invariant features in the
training dataset are invariant features in the test dataset due to the geometric skews.
It is observed in [34] that as the number of training points increase, the `2-norm of
this max-margin classifier grows. For imbalanced data, the spurious feature can be
used as a short-cut for classification. Specifically, we consider an invariant feature
zinv is concatenated with a spurious feature zsp such that P[zsp · y > 0] > 0.5.
The dataset consists of a majority group Smaj where zsp · y > 0 (e.g., cows/camels
with green/yellow backgrounds) and a minority group Smin where zsp · y < 0
(e.g., cows/camels with yellow/green backgrounds). Letwall denote the least-norm
classifier using invariant features to classify all samples andwmin denote the least-
norm classifier using invariant features to classify the samples in Smin, and we have
‖wmin‖ � ‖wall‖. We can use the spurious feature as a short-cut to classify Smaj
and Smin, and then adopt wmin to classify the remaining Smin. This classifier using
spurious feature will have a smaller norm than the invariant classifier, which leads
to the failure of OOD generalization.

Y

X

D 		𝑍!

		𝑍"

Figure 2: A structural causal model explaining that different parts of an input X
have different probabilistic relationships with the model output Y . Observed vari-
ables are shaded, while others are with dotted outlines.

Methodology Design

In this section, we propose a novel information-theoretic objective of finding in-
variant causal relationship and overcoming the issues in OOD generalization.
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Invariant Causal Prediction via Mutual Information

Like other casual related works [11, 31], we begin with a structural causal model,
shown in Figure 2. For simplicity, we leave out all the unnecessary elements. In
general, we can see that an input X can be divided into two variables, the causal
feature Zc and environmental feature Za. In Figure 2, we can readout that both
features are highly correlated with Y , but only Zc is regarded as a plausible expla-
nation. Through the concept of d-separation [37], we can readout the conditional
independence conditions that all data distributions P(D,X, Y ) should satisfy:

1. Y 6⊥⊥ D means the marginal distribution of class label Y can change across
domains.

2. Y ⊥⊥ D | Zc means the class label Y is independent of domain D condi-
tioned on causal feature Zc. The underlying causal mechanism determines
that the value of Y comes from its unique causal parent Zc, which does not
change across domains.

3. Y 6⊥⊥ D | Zc, Za means the conditional independence won’t hold true if
conditioned on both causal and environmental features since Za is a collider
between D and Y .

The conditional independence tells us that only the real causal relation is stable and
remains invariant across domains. In other words, we should eliminate the spurious
environmental feature Za by seeking the causal feature Zc that is independent ofD
from Φ(X). Particularly, the representation Z = Φ(X) should have the following
two merits: (1) Z does not change with different domains for the same class label
Y , hence achieving the conditional invariance of Y ⊥⊥ D | Z; (2) Z should be
informative of the class label Y (otherwise even a constant φ(·) would minimize
the above loss). The above two conditions coincide with the objective of IRM [5],
and also suggest the following learning objective:

max
Φ

I(Φ(X), Y )− λI(Y,D | Φ(X)), (3)

where Φ is the feature extractor.

Proposition 1. Assume I(Y,D|Z) = 0, we achieve invariant causal prediction in
the sense that E[Y |Φ(X) = x] is fixed.

Proof. Note that I(Y,D|Z) = 0 implies Y and D are independent conditioned
on Φ(X). The conditional independence indicates that P(Y |Φ(X) = x,D) =
P(Y |Φ(X) = x), which shows that P(Y |Φ(X) = x) is fixed across domain D.
Thus E[Y |Φ(X) = x] is fixed and we can achieve invariant causal prediction.
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Figure 3: IIB optimizes a model consisting of three parts: (1) an invariant predictor
fi(Z); (2) a domain-dependent predictor fd(Z,D); (3) an encoder g(X). The three
loss terms on the right hand side respectively correspond to the optimization of the
three mutual information terms.

On the Failures of OOD Generalization

In this subsection, we first scrutinize the failure conditions of OOD generalization,
i.e., pseudo-invariant features and geometric skews. Then we propose to utilize the
least informative feature, as well as minimizing I(X,Z) as a solution.

With pseudo-invariant features and geometric skews, the failure of OOD gen-
eralization is due to the inclusion of (transformations of) spurious features. We first
give an example when the features are one-dimensional and the classifier is linear
[34]. Denote the invariant feature, pseudo-invariant feature, feature causing geo-
metric skews, spurious feature as Zi, Zp, Zsk, and Zsp. The overall features are
Z = [Zi, Zp, Zsk, Zsp]. In the ERM model, all the features will be adopted and
OOD generalization fails. We consider the following optimization problem

min
w

∑
e∈Etrain

Re(w ·Z),

s.t. ‖w‖0 ≤1,w ∈ argmin
ŵ

Re(ŵ ·Z), (4)

where ‖w‖0 ≤ 1 is the sparsity constraint, and w ∈ argminŵ Re(ŵ · Z) is the
invariant risk constraint of IRM. Due to the sparsity constraint, there are only four
choices. Choosing Zsp cannot satisfy the invariant constraint while choosing Zp or
Zsk cannot minimize the empirical risk. Thus, the only optimal solution is w =
[w∗1, 0, 0, 0]. Without the sparisty constraint, the optimization problem becomes
IRM and Zi, Zp, Zsk will be used for classification. Without invariance constraint,
Zsp might be chosen as the spurious feature for a lower empirical risk.

We then extend this intuition into the loss function design of deep neural net-
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works in the view of mutual information. Suppose Z1, Z2 are features extracted
fromX , we have I(X, [Z1, Z2]) ≥ I(X,Z1) asZ1 is a subset of [Z1, Z2]. Thus, we
expect that the sparse feature selection can be done by penalizing a larger I(X,Z).
To this end, we formulate our objective as

max
Φ

I(Φ(X), Y )− λI(Y,D | Φ(X))− βI(X,Φ(X)). (5)

The term I(Z, Y ) − βI(X,Z) is the information bottleneck and I(Y,D | Z) is
an invariant constraint. As a result, we refer (5) as invariant information bottleneck
(IIB).

Loss Function Design

The objective in (5) is still not a tractable loss function as the mutual information
of high dimensional vectors is hard to estimate. We further leverage variational
approximation to solve this issue. According to variational IB [3], the loss of infor-
mation bottleneck can be written as

I(Z, Y )− βI(Z,X)

≥ Epx,y,z
[

log q(y | z)
]
− βEpx,z

[
log

p(z | x)

r(z)

]
. (6)

Optimizing (6) is still a difficult task. As a result, we follow the reparametrization
operation in VIB [3], we use an encoder of the form p(z|x; g) = N (z|gµ(x), gΣ(x)).
g outputs aK-dimensional mean µ of z and aK×K covariance matrix Σ. Then we
have q(z|x)d(z) = q(ε)dε, where z = g(x, ε), ε ∼ N (0, 1), so we can optimize
(6) by optimizing

Li(g, fi) + βLz(g), (7)

whereLi = ming,fi Ex,y
[
L(y, fi(g(x)))

]
andLz = ming Ex

[
KL[q(z|x; g)‖r(z)]

]
.

such that KL is the KL-divergence, g(x) is the feature extractor, fi is the classifier,
and L is the cross-entropy loss.

We next proceed to deal with I(Y,D|Z). Following the rules of variational
approximation [14], we have

I(Y,D | Z) = H(Y | Z)−H(Y | D,Z), (8)

whereH(Y | Z) = − supq Epy,z
[

log q(y|z)
]

andH(Y | D,Z) = − suph Epy,z,d
[

log h(y |

z, d)
]
. Thanks to the universal approximation ability of neural networks, (8) can

be written as the subtraction of two classification loss [14]:
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Table 1: Accuracy on CS-CMNIST experiment. We split 20% from train set as
validation set.

Methods Validation Acc. (%) ↑ Test Acc.(%) ↑

ERM [48] 95.38 ± 0.03 11.16 ± 0.31

IRM [6] 97.59 ± 1.39 57.98 ± 0.86

IB-ERM [1] 97.64 ± 0.04 58.47 ± 0.86

IB-IRM [1] 97.51 ± 1.09 71.79 ± 0.70

IIB (λ = 0) 92.95 ± 0.50 69.52 ± 0.80

IIB (β = 0) 92.39 ± 0.50 66.93 ± 0.33

IIB 98.11 ± 0.84 74.23 ± 4.80

I(Y,D | Z) = min
fi,g

Ex,y
[
L(y, fi(g(x)))

]
︸ ︷︷ ︸

Li

−min
fd,g

Ex,y,d
[
L(y, fd(g(x), d))

]
︸ ︷︷ ︸

Ld

, (9)

where fi takes feature z as the input, and fd, d = 1, · · · , D takes both feature z
and domain index d as the input. Overall, we can maximize RIIB by optimizing
its tractable lower bound:

min
g,fi

max
fd
Li(g, fi) + λ||Li(g, fi)− Ld(g, fd)||+ βLz(g).

Guided by this objective, as illustrated in Figure 3, IIB optimizes a model con-
sisting of three parts: (1) an invariant predictor fi(Z); (2) an domain-dependent
predictor fd(Z,D); (3) an encoder g(X).

Synthetic Experiments

Experimental Setup

To validate IIB’s efficacy of mitigating the impact of pseudo-invariant features
and geometric skews, we adopt two types of synthetic experiments. Both pseudo-
invariant features and geometric skews exist in the two experiments.
CS-CMNIST [1] CS-CMNIST is a ten-way classification task. The images are all
drawn from MNIST. There are three environments, two training environments con-
tain each 20,000 images, one test environment contains 20,000 images. There are
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Figure 4: (a) The above figure represents the image examples in majority/minority
group in train set in Cross Lines experiment, while colored lines are not included in
the test data. The below figure represents the image examples in train/test sets with
different spurious feature scales in Vertical Line experiment. (b) Accuracy at test
domains with different spurious feature scales B. The upward-pointing red triangle
denotes different B at training domains (we set them to 4 and 0 respectively).

Table 2: Accuracy on Cross-Lines experiment. We split 20% from train set as vali-
dation set.

Methods Validation Acc. (%) ↑ Test Acc.(%) ↑

ERM [48] 90.12 ± 0.12 65.60 ± 0.27

IRM [6] 63.82 ± 0.25 42.68 ± 0.32

IB-ERM [1] 83.93 ± 0.10 69.70 ± 0.42

IB-IRM [1] 81.61 ± 0.69 65.82 ± 0.77

IIB (λ = 0) 79.97 ± 0.50 69.52 ± 0.80

IIB (β = 0) 78.47 ± 0.50 66.93 ± 0.33

IIB 92.86 ± 0.29 71.04 ± 0.37

ten colors associated with ten digit class correspondingly. The probability pe de-
notes that the image is colored with associated color. In two training environments,
pe is set to 1 and 0.9, which means the images with certain class are colored with
associated color with probability pe and are colored with random color with proba-
bility 1−pe. In test environment, pe is set to 0, which means all images are colored
at random. Overall, the color of images in training domains can be fully predictive
to label with spurious features, i.e. using the associated color, but the information
disappear at test domain.

In CS-CMNIST, if the accuracy drops more at test time, it reflects that re-
lying more on spurious features during training. We will give results of IIB on
AC-CMNIST (in DomainBed it’s known as CMNIST) in next section.
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Geometric Skew CIFAR10 [34] There are two types of tasks (as shown in Figure 4
(a)). For the first type, we name it Cross Lines experiment, we create ten-valued
spurious feature and add a vertical line passing through the middle of each channel,
and also a horizontal line through the first channel. For these four lines added, we
take the value of (0.5± 0.5B) where B ∈ [−1, 1]. Four lines, each with 2 choices,
then we have a total of 24 = 16 configurations. Among them, we choose the first 10
and denote the 10 configurations to each class in CIFAR10. For i-th configuration,
corresponding to i-th class, we add this line with a probability of pii = 0.5; for
other j-th class, we set pij = (1 − pii)/10 = 0.05. Taking the probability means
50% data (the majority group) are correlated with spurious features (the specific
colored line corresponding to each class), while other 5% data (the minority group)
are correlated with other 9 configurations at random. For the second type, we name
it Vertical Line, we add a colored line to the last channel of CIFAR10, regardless
of the label during training, and vary its brightness during testing. In detail, we add
a line with value choose from B ∈ [−4, 4]. To avoid negative values, all pixels in
last channel are added by 4, and then added by B, and then divided by 9 to make
sure the values lie in the range of [0, 1]. Such an experiment would artificially
create non-orthogonal components, where each data-point is represented on the
plane of (xinv, xinv + xenv), rather than a more easy-to-disentangle representation
under (xinv, xenv). As discussed in [34], the model would be more susceptible to
spurious features that may shift during testing.

Observation for results on synthetic experiments

In CS-CMNIST, we compare IIB with several methods, including ERM [48], IRM [6],
IB-IRM [1]. Particularly, IB-IRM [1] is from a concurrent work, which propose to
combine information bottleneck and IRM to eliminate geometric skews. Among
them (see Table 1), IIB has observable improvements over two synthetic datasets
compared with other algorithms. Compare to IB-IRM, which is a direct combina-
tion of IB and IRM, our approach took a different approach to optimize the learning
objective, which led to further enhancements. In the Cross Lines experiment (see
Table 2), we train the network on images with colored cross lines (each color cor-
responds to a specific class in CIFAR10), and test on normal images. From the
improvements of IB over IRM, we observe that the information bottleneck struc-
ture can help mitigate the failure of IRM in geometric skews. In the Vertical Line
experiment (see Figure 4 (b)), we train the network on B = 4 or 0, and test on do-
mains with different spurious feature scale B. The results show that as the offset of
spurious feature scale increases, the accuracy of training and testing environments
decreases a lot. However, IIB still keeps good results even with large offset, indi-
cating that it’s effectiveness in alleviating the dependence on spurious feature. We
have similar observations that information bottleneck (IB) structure would over-
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come the geometric skews which fails IRM.

Table 3: Performance comparison (Acc. %) between the proposed IIB method
and the state-of-the-art domain generalization methods with leave one domain out
model selection strategy. The best accuracy in each dataset is presented in boldface.
The average accuracy over all the datasets is also reported.

Methods Colored-MNIST Rotated-MNIST VLCS PACS OfficeHome TerraIncognita DomainNet Average

ERM [48] 36.7 ± 0.1 97.7 ± 0.0 77.2 ± 0.4 83.0 ± 0.7 65.7 ± 0.5 41.4 ± 1.4 40.6 ± 0.2 63.2

DANN [16] 40.7 ± 2.3 97.6 ± 0.2 76.9 ± 0.4 81.0 ± 1.1 64.9 ± 1.2 44.4 ± 1.1 38.2 ± 0.2 63.4

CDANN [27] 39.1 ± 4.4 97.5 ± 0.2 77.5 ± 0.2 78.8 ± 2.2 64.3 ± 1.7 39.9 ± 3.2 38.0 ± 0.1 62.2

MLDG [26] 36.7 ± 0.2 97.6 ± 0.0 77.2 ± 0.9 82.9 ± 1.7 66.1 ± 0.5 46.2 ± 0.9 41.0 ± 0.2 64.0

IRM [5] 40.3 ± 4.2 97.0 ± 0.2 76.3 ± 0.6 81.5 ± 0.8 64.3 ± 1.5 41.2 ± 3.6 33.5 ± 3.0 62.0

GroupDRO [43] 36.8 ± 0.1 97.6 ± 0.1 77.9 ± 0.5 83.5 ± 0.2 65.2 ± 0.2 44.9 ± 1.4 33.0 ± 0.3 62.7

MMD [2] 36.8 ± 0.1 97.8 ± 0.1 77.3 ± 0.5 83.2 ± 0.2 60.2 ± 5.2 46.5 ± 1.5 23.4 ± 9.5 60.7

VREx [22] 36.9 ± 0.3 93.6 ± 3.4 76.7 ± 1.0 81.3 ± 0.9 64.9 ± 1.3 37.3 ± 3.0 33.4 ± 3.1 60.6

ARM [53] 36.8 ± 0.0 98.1 ± 0.1 76.6 ± 0.5 81.7 ± 0.2 64.4 ± 0.2 42.6 ± 2.7 35.2 ± 0.1 62.2

Mixup [50] 33.4 ± 4.7 97.8 ± 0.0 77.7 ± 0.6 83.2 ± 0.4 67.0 ± 0.2 48.7 ± 0.4 38.5 ± 0.3 63.8

RSC [20] 36.5 ± 0.2 97.6 ± 0.1 77.5 ± 0.5 82.6 ± 0.7 65.8 ± 0.7 40.0 ± 0.8 38.9 ± 0.5 62.7

MTL [9] 35.0 ± 1.7 97.8 ± 0.1 76.6 ± 0.5 83.7 ± 0.4 65.7 ± 0.5 44.9 ± 1.2 40.6 ± 0.1 63.5

SagNet [35] 36.5 ± 0.1 94.0 ± 3.0 77.5 ± 0.3 82.3 ± 0.1 67.6 ± 0.3 47.2 ± 0.9 40.2 ± 0.2 63.6

IIB(Ours) 39.9 ± 1.2 97.2 ± 0.2 77.2 ± 1.6 83.9 ± 0.2 68.6 ± 0.1 45.8 ± 1.4 41.5 ± 2.3 64.9

DomainBed Experiments

To empirically corroborate the effectiveness of IIB, we conduct experiments on
DomainBed [18]. From small to large, we experiment on 7 different datasets of
domain generalization task, including Colored-MINIST [5], Rotated-MNIST [17],
PACS [25], VLCS [13], Office-Home [49], Terra Incognita [8], DomainNet [38].

Model Selection Strategy We choose two types of model selection strategies
out of three in DomainBed. We don’t test on test-domain validation set, it’s too
optimistic to estimate an algorithm’s performance since it allows access to test do-
main while training. In training-domain validation set, the validation set is subset
of training set, we choose the model that performs best on the overall validation set
for each domain. This strategy characterizes the in-distribution generalization capa-
bility of the model. In leave-one-domain-out cross validation, the training domains
are separated from the test domain. This strategy characterizes the out-of-domain
distribution generalization capacity of the model. Due to the space limit, we give
results on leave-one-domain-out cross validation in Table 3, and put the results on
training-domain validation set in supplementary materials.
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Hyper-parameters and Implementation Details In both selection strategies,
for default hyper-parameters (e.g. learning rate, weight decay), we use default
settings in DomainBed (e.g. learning rate is set to 1e − 3 for small images and
with a selection range of lr ∈ [10−4.5, 10−2.5]). For IIB specific hyper-parameters,
we set λ ∈ [1, 102], and β ∈ [10−3, 10−4]. For backbone feature extractor, in
Rotated/Colored-MNIST, we use 4-layers 3x3 ConvNet. For VLCS and PACS, we
use ResNet-18 [19]. For larger datasets, we opt to ResNet-50. For classifier, we
both test linear and non-linear invariant (environment) classifiers. Specifically, in
linear classifier, it has only one layer, otherwise it has three MLP layers with two
RELU activation layers. For the increased number of parameters in the non-linear
classifier, we correspondingly reduce the number of conv-layers in the backbone
network to achieve a balance. We test the hyper-paramters and different model im-
plementations on RotatedMNIST, the network is trained for 5000 iterations with
batch size set to 128. We report the results in Table 4. We observe that the overall
network parameters under non-linear classifier setting are not increased too much.
The best results are usually obtained with lambda=100 and beta=1e-4.

Observation for results on DomainBed

From Table 3, we can see that IIB ends up working better than existing algorithms
in average performance on 7 datasets. Since DomainBed is a publicly tested bench-
mark that was originally proposed to demonstrate that, none of the currently avail-
able Domain Generalization algorithms can significantly outperform each other.
The results in Table 3 also indirectly illustrate this matter, as it does not show big
advantage in small datasets (Colored-MNSIT, Rotated-MNIST), but performs bet-
ter than others in larger datasets (PACS, Office-Home, DomainNet). We opine that
the Information Bottleneck structure is able to better eliminate the noise brought by
spurious features in large datasets, while when the data set is too small, this noise
may still be useful as the short-cut in test domain for prediction, thus achieving
better results.

Conclusion

In this paper, we developed a novel information-theoretical approach for domain
generalization, namely, IIB. IIB aims at tackling the optimization difficulty and
the failure modes of IRM. The superior performance is demonstrated on both syn-
thetic and real datasets through extensive experiments. As for future directions, it
is interesting to investigate the theoretical foundations of adopting IB in nonlinear
invariant causal prediction and the effectiveness of IIB on regression tasks.
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Table 4: We test the different hyper-parameters’ impact to the proposed IIB method
on RotatedMNIST with leave-one-domain-out strategy. The results of multiply-add
cumulation (MAC) operations and network parameters (Params) are reported.

Classifier Type MACs Params β λ Acc. (%) ↑

linear 5.83G 370.95K

1e-3 100 61.1

1e-4
1 94.7
10 95.3

100 95.1

non-linear 5.83G 375.33K

1e-3 100 63.2

1e-4
1 96.8
10 97.2

100 97.3
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[6] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. In-
variant risk minimization. arXiv preprint arXiv:1907.02893, 2019.

[7] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg:
Towards domain generalization using meta-regularization. In Proceedings

15



of the 32nd International Conference on Neural Information Processing Sys-
tems, pages 1006–1016, 2018.

[8] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incog-
nita. In The 15th European Conference on Computer Vision (ECCV), volume
11220 of Lecture Notes in Computer Science, pages 472–489. Springer, 2018.

[9] Gilles Blanchard, Aniket Anand Deshmukh, Ürün Dogan, Gyemin Lee, and
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Supplementary Materials

Construction Details of Synthetic Dataset

In this section, we will give more details on constructing the Cross Line and Ver-
tical Line experiments.

Cross Lines Experiment

Based on CIFAR10 dataset, we create ten-valued spurious feature and add a vertical
line passing through the middle of each channel, and a horizontal line passing
through the first channel. For each line added to the channel, we implement by
adding the value taken of 0.5± 0.5B where B ∈ [−1, 1]. Four lines, each with two
choices of +B or −B. Then we have in total 24 = 16 choices. We select 10 of the
16 configurations to map each configuration into one specific class. In detail, we
select the images with specific class (e.g. bird), and add the the line with specific
configuration (e.g. 0.5 + 0.5 B, B = 0.8). Similar with [34], we add the line of i-th
configuration to corresponding class images with a probability of pii = 0.5; for
other j-th class, we set pij = (1 − pii)/10 = 0.05. We call the i-th class images
added with i-th configuration line with pii the majority group. We call the i-th class
images added with other j-th configuration line with pij the minority group. The
specific configurations are in the Table 5.

Vertical Line Experiment

Based on CIFAR10 dataset, we add a vertical line to the last channel of all images.
In detail, we add the line with value from B ∈ [−4, 4]. To avoid negative values,
all pixels in last channel are added by 4, and then added by B, and then divided
by 9 to ensure the pixels lie in the range of [0, 1]. Such operations will add non-
orthogonal componenets to images, where each data-point is represented on the
plane of (xinv, xenv + xinv) because of the added line with constant value in last
channel. In [34], they show the non-orthogonal versus orthogonal experiment, the
results suggest that the non-orthogonal images (xinv, xenv + xinv) are more hard-to-
disentangle than orthogonal ones (xinv, xenv), and would cause geometric skews of
a max-margin classifier. In our experiment, during training, we set the B = 4 and 0,
and test on domains with different B ∈ {−4,−2, 0, 2, 4}.

More Results on DomainBed

We report the rest experiment results in this section. In training-domain validation
set, the validation set is subset of training set, we choose the model that performs
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Table 5: 10 configurations in Cross Lines experiments.

Configuration # Channel Line’s Position Sign

0

0 Vertical +
1 Vertical +
2 Vertical +
0 Horizontal +

1

0 Vertical -
1 Vertical +
2 Vertical +
0 Horizontal +

2

0 Vertical +
1 Vertical -
2 Vertical +
0 Horizontal +

3

0 Vertical +
1 Vertical +
2 Vertical +
0 Horizontal +

4

0 Vertical +
1 Vertical +
2 Vertical -
0 Horizontal +

5

0 Vertical +
1 Vertical +
2 Vertical +
0 Horizontal -

6

0 Vertical -
1 Vertical -
2 Vertical +
0 Horizontal +

7

0 Vertical +
1 Vertical -
2 Vertical -
0 Horizontal +

8

0 Vertical +
1 Vertical +
2 Vertical -
0 Horizontal -

9

0 Vertical -
1 Vertical +
2 Vertical +
0 Horizontal -

10

0 Vertical -
1 Vertical +
2 Vertical -
0 Horizontal +
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best on the overall validation set for each domain. This strategy characterizes the
in-distribution generalization capability of the model.

The results are recorded in Table 6. From the Table, we can see that IIB achieves
67.5% across 7 datasets on average, which is comparable to the best algorithm
CORAL on DomainBed. Also IIB shows better performance on larger datasets
(e.g. OfficeHome, DomainNet). The results demonstrate IIB’s in-domains general-
ization ability.

Table 6: Performance comparison (Acc. %) between the proposed IIB method and
the state-of-the-art domain generalization methods with training-domain valida-
tion set model selection strategy. The best accuracy in each dataset is presented in
boldface. The average accuracy over all the datasets is also reported.

Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg

ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6

IRM 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4

GroupDRO 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8

Mixup 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7

MLDG 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7

CORAL 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5

MMD 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3

DANN 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1

CDANN 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6

MTL 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2

SagNet 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2

ARM 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1

VREx 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6

RSC 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1

IIB(Ours) 52.0 ± 0.3 98.1 ± 0.2 77.6 ± 0.2 85.7 ± 0.6 69.0 ± 0.1 48.5 ± 0.4 41.6 ± 0.8 67.5
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