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Abstract

Recommender systems have achieved great success in recent
years, and matrix approximation (MA) is one of the most pop-
ular techniques for collaborative filtering (CF) based recom-
mendation. However, a major issue is that MA methods per-
form poorly at detecting strong localized associations among
closely related users and items. Recently, some MA-based
CF methods adopt clustering methods to discover meaning-
ful user-item subgroups and perform ensemble on different
clusterings to improve the recommendation accuracy. How-
ever, ensemble learning suffers from lower efficiency due to
the increased overall computation overhead.
In this paper, we propose GLOMA, a new clustering-based
matrix approximation method, which can embed global in-
formation in local matrix approximation models to improve
recommendation accuracy. In GLOMA, a MA model is first
trained on the entire data to capture global information. The
global MA model is then utilized to guide the training of
cluster-based local MA models, such that the local models
can detect strong localized associations shared within clus-
ters and at the same time preserve global associations shared
among all users/items. Evaluation results using MovieLens
and Netflix datasets demonstrate that, by integrating global
information in local models, GLOMA can outperform five
state-of-the-art MA-based CF methods in recommendation
accuracy while achieving descent efficiency.

Introduction
In today’s recommender systems, matrix approximation
(MA) is one of the most commonly-used collaborative fil-
tering (CF) methods. The goal is to predict users’ missing
ratings on targeted items. More formally, given partially ob-
served user-item rating matrix M with low-rank, user i and
item j are characterized by vectors of latent factors Ui∗ and
V∗j , respectively, then the unknown rating Mi,j can be pre-
dicted by the dot product of Ui∗ and V∗j (Su and Khoshgof-
taar 2009). Although MA-based CF methods have achieved
good success, Koren et al. (2008) pointed out that MA mod-
els can effectively estimate overall structures that relate si-
multaneously to most or all items, but they perform poorly
at detecting strong associations among a small set of item-
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s. Therefore, it is desirable to consider local associations to
enhance model accuracy.

To this end, many clustering-based ensemble methods
have been proposed (Zhang et al. 2013; Lee et al. 2013;
Chen et al. 2015), in which clustering methods are first
applied to discover strong local associations and then MA
methods can be applied in parallel on the submatrices cor-
responding to the clustering-based partitions. Utilizing the
parallelism of modern many-core and distributed architec-
tures, the running time can be largely reduced. However, the
prediction quality of local models based on submatrices is
generally low, because 1) local models may easily overfit
due to insufficient training data in clusters and 2) the overall
associations shared among all users/items are not captured.
To address the above issues, clustering methods have to be
run many times in order to produce different approximat-
ed matrices containing different types of information, and
then ensemble methods are used to improve recommenda-
tion quality. However, ensemble learning leads to another
problem: the overall computation overhead is usually very
high, e.g., WEMAREC (Chen et al. 2015) required 8×more
overall computation than RSVD (Paterek 2007).

In this paper, we propose GLOMA, a scalable and ac-
curate MA-based method which can capture both localized
relationships in submatrices and global structure among all
users and items. Similar to existing clustering-based ensem-
ble methods, GLOMA adopts clustering method to explore
the localized relationships. However, instead of relying on
ensemble techniques, GLOMA attempts to embed a glob-
al MA model, which contains the global information, into
the learning process of local MA models. With the help of
this embedded model, every local model can be trained on
data which includes all the ratings corresponding to users
and items in the same cluster, such that the overall structures
can be obtained and the insufficient data issue can be allevi-
ated. By leveraging multi-task feature learning techniques,
GLOMA can capture more abundant and diverse features
than standard MA methods, and has the potential to achieve
better recommendation accuracy. To further improve the ac-
curacy and efficiency of GLOMA, a new clustering method
following the idea from (Chen et al. 2015) is proposed, in
which every user or item is characterized by its rating distri-
bution. Then, the dimension of the data space can be largely
reduced, resulting in the reduction of running time. The pro-
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Figure 1: Comparison of matrix approximation models for collaborative filtering: (a) standard low-rank model, (b) clustering-
based model, and (c) the proposed GLOMA model, where the rows and columns of the rating matrix M represent the users
and items respectively and shaded area represent the training data used for each individual model.

posed GLOMA method is evaluated using two real-world
benchmark datasets (MovieLens and Netflix), and the exper-
imental results demonstrate that the GLOMA method out-
performs five state-of-art MA-based CF methods in recom-
mendation accuracy while achieving descent efficiency.

Related Work
Collaborative filtering (CF) is widely used in the business
world for simplicity of implementation and high quality
of recommendation. Breese et al. (1998) categorized CF
approaches into two classes: memory-based and model-
based algorithms. Memory-based algorithms, such as user-
based (Herlocker et al. 1999) and item-based (Sarwar et al.
2001) methods, build neighborhood relationship for every
user, and usually use the weighted sum of the ratings to
predict missing values. However, the user/item similarities
cannot be calculated accurately without sufficient ratings, so
these approaches suffer from the data sparsity problem.

In contrast, model-based algorithms first learn a mod-
el from the training data then use it to make prediction-
s. Matrix approximation (MA) methods, which as illus-
trated in Figure 1(a) learn user features Ũ and item fea-
tures Ṽ from the entire rating matrix, have been empir-
ically and theoretically demonstrated to have the capac-
ity of recovering the rating matrix accurately from a s-
mall number of observations (Srebro and Jaakkola 2003;
Candès and Tao 2010). Specifically, Billsus et al. (1998)
first introduced SVD to the domain of CF, and proved that
MA-based methods can effectively alleviate the data spar-
sity issue. Salakhutdinov et al. (2007) explained the MA-
based CF algorithms in a Bayesian perspective, develope-
d a probabilistic matrix factorization (PMF) method, and
moreover constructed BPMF, a Bayesian extension of PMF
method (Salakhutdinov and Mnih 2008). However, as sum-
marized by Koren et al. (2008), these MA-based models are
generally effective at estimating overall structure that relates
simultaneously to most or all items, but perform poorly at
detecting strong associations among a small set of closely
related items.

To address this issue, clustering-based CF methods have
been proposed, where clustering techniques (Chen et al.
2015) and community detection methods (Zhang et al. 2013)

are adopted to find user-item subgroups with strong correla-
tions. For example, as shown in Figure 1(b), the entire rat-
ing matrix is divided into four submatrices. The expensive
MA task is equivalently divided into smaller subproblems
which can be solved in parallel. However, due to insufficien-
t training data in each detected user-item cluster, there can
be severe overfitting and the recommendation quality can
be much worse. Therefore, ensemble techniques are always
adopted to achieve better accuracy, such as DFC (Mackey,
Jordan, and Talwalkar 2011), LLORMA (Lee et al. 2013),
and WEMAREC (Chen et al. 2015), all of which attempted
to use multiple local models to describe every user-item rat-
ing, and then use the weighted sum of the predictions from
multiple local models to estimate the missing ratings. In oth-
er words, these clustering and ensemble based methods try
to discover various strong associations contained in user-
item subgroups, and aim to improve prediction accuracy by
identifying and leveraging more diverse clusters.

Some recent works also attempted to train a singleton
model integrated with multiple types of relations. For ex-
ample, Singh et al. (2008) shared parameters among factors
when decomposing multiple matrices represented for multi-
ple relations to learn different type of user behaviors. Yuan et
al. (2014) used group sparsity regularization to automatical-
ly transfer information among multiple types of behaviors.
In additional, Chen et al. (2016) assumes every user-item
rating is depicted by a Gaussian mixture model with three
component, each of which containing relational information
of different level.

Different from existing works, we develope a new way
to solve the problem of MA-based methods by directly em-
bedding a previously-trained model containing global infor-
mation into the procedure of training local models. As il-
lustrated in Figure 1(c), Ũ and Ṽ are the embedded fea-
tures, and U and V are desired features. The intuition be-
hind the idea is, if U could be trained on the submatrix
M (1∗) by introducing Ṽ that can describe all the item-
s, U would be able to learn the global relations of it-
s corresponding users, because M (1∗) has the entire his-
torical records of the user set. Similarly, item features V
follows the same theory. Based on this, we share the la-
tent factors U and V across multiple tasks such that the



proposed GLOMA method can learn different tasks simul-
taneously to achieve better performance by using multi-
task feature learning techniques (Evgeniou and Pontil 2007;
Ando and Zhang 2005).

GLOMA Algorithm Design
In this section, we first formulate the GLOMA problem, then
introduce a gradient-based learning algorithm to solve the
problem, and finally discuss its application in the model up-
date scenario.

Problem Formulation
We first introduce the notations used in this paper. Upper
case letters represent matrices, such as a matrix R ∈ Rm×n

with m users and n items. Ri∗ is the i-th row vector, R∗j
is the j-th column vector, and Ri,j is the entry in the i-
th row and j-th column. In addition, the Frobenius nor-
m is adopted in this paper, which is defined as ||R|| :=√∑m

i=1

∑n
j=1R

2
ij .

As we mentioned before, the dilemma for the existing
clustering-based CF methods without using ensemble strat-
egy is the degraded recommendation quality due to the lack
of sufficient data in each local model, while the advantage of
high-efficiency and localized associations contained in cer-
tain small-scale user-item subgroups diminishes when more
data are used to train local models.

To address this issue, a straightforward idea is to keep the
local model training in its own submatrix, and additionally
user/item features are trained separately in expanded data in
order to learn the global information among all the ratings
of related users and items. For example, given a f × g clus-
tering, for arbitrary submatrix M (rc) (c ∈ [f ], r ∈ [g]), the
submatrix M (r∗) has all historical records for users of the
subgroup, so if user features U were trained on M (r∗), then
user features U would be able to obtain the overall struc-
tures of those users by solving the squared error optimiza-
tion function

min
U,V̇
L(M (c∗), UV̇ ) =

∑
i

∑
j

(M
(c∗)
i,j − Ui,∗V̇∗,j)

2. (1)

However, the problem is that the quality of user features
U depends on the quality of item features V̇ which cannot be
learned properly due to insufficient item-related data. There-
fore, it is reasonable to replace the untrained or randomly-
initialized features V̇ with a well-trained item features Ṽ ,
and the optimization problem in (1) becomes the following

min
U
L(M (r∗), UṼ ) =

∑
i

∑
j

(M
(r∗)
i,j − Ui,∗Ṽ∗,j)

2. (2)

And similarily for item features V

min
V
L(M (∗c), ŨV ) =

∑
i

∑
j

(M
(∗c)
i,j − Ũi,∗V∗,j)

2. (3)

In other words, we attempt to use the previously-trained
model to help local models capture the global information by
planting Ũ and Ṽ into the learning process of local models.

Then, learning the GLOMA model can be viewed as mini-
mizing the loss function (e.g., squared error) subject to the
constraints related to embedded model

minU,V L(M (cr), UV ) s.t.

L(M (c∗), UṼ ) ≤ ε1, L(M (∗r), ŨV ) ≤ ε2
(4)

Using Lagrange multipliers, the objective function with l2
regularizer of GLOMA method can be further presented as

minU,V L(M (cr), UV ) + λU ‖ U ‖2 +λV ‖ V ‖2 (5)

+π1L(M (c∗), UṼ ) + λ1 ‖ Ṽ ‖2 (6)

+π2L(M (∗r), ŨV ) + λ2 ‖ Ũ ‖2 (7)

where λU , λV , λ1 and λ2 are the regularization parameters,
and hyper-parameters π1 and π2 control the impacts of the
introduced user/item features Ũ and Ṽ .

The key characteristics of GLOMA are summarized as
follows:
• The terms in Equation (5) are the same as the optimization

objective of clustering-based CF method, which ensure
that the learned U and V can accurately capture the strong
associations in certain user-item subgroups. Actually, the
clustering-based method can be viewed as a special case
of GLOMA by setting π1 = π2 = 0 and λ1 = λ2 = 0.

• The terms in Equation (6) and Equation (7) can help local
models estimate the overall structure and avoid overfit-
ting based on the embedded latent factors Ũ and Ṽ , and
parameters π1 and π2 can be employed to control the con-
tribution of individual user/item-specific data extension.
Meanwhile, empirical results show that each of these two
terms can help improve model performance, and the mod-
el satisfying these two terms will not only produce bet-
ter recommendations than basic clustering-based method-
s, but also perform better than five state-of-the-art CF al-
gorithms.

Learning Algorithm
In collaborative filtering, the root mean square error (RMSE)
is usually adopted as the evaluation metric, which can be
computed as

D(M, M̂) =

√
1

|T |
∑

(u,i)∈T

(Mu,i − M̂u,i)2 (8)

where T denotes the set of ratings in the data and |T | is
the number of ratings. Therefore, we directly use RMSE as
the loss function in Equations (5) to (7). As shown by Li et
al. (2016), minimizing this objective function is a difficult
non-convex optimization problem. To tackle this problem,
we develop an iterative-based learning algorithm based on
stochastic gradient descent (SGD).

Specifically, the standard subroutine in SGD just needs to
compute the partial derivatives in terms of latent factors of
U and V , and then iteratively updates the parameters un-
til convergence, since the embedded features Ũ and Ṽ are
well-trained. However, we empirically found that continu-
ously updating Ũ and Ṽ during the training process of U
and V can always produce better prediction accuracy than



fixing the embedded features. The reason is that, as ex-
plained in (Chen et al. 2016), multi-task feature learning
would help Ũ and Ṽ unify localized relationships in user-
item subgroups and common associations among all user-
s and items, and moreover the embedded features Ũ and
Ṽ and desired features U and V will boost the goodness
of each other. Please note that this brings another benefit
– the well-trained condition of embedded model is largely
relieved, which indicates that an embedded model of low
accuracy can also help GLOMA produce good recommen-
dations.

After computing the partial derivatives of parameters,
there are three different ways to update the latent factors de-
pending on which training submatrix the given training case
Mi,j belongs to. First, if the given training case Mi,j is in
M (rc) we modify the parameters by moving in the opposite
direction of the gradient, yielding:

Ui,r ← Ui,r + γ · (σ−1
0 ∆0Vr,j + σ−1

1 π1∆1Ṽr,j − λUUi,r)

Vr,j ← Vr,j + γ · (σ−1
0 ∆0Ui,r + σ−1

2 π2∆2Ũi,r − λV Vr,j)

Ũi,r ← Ũi,r + γ · (σ−1
2 π2∆2Vr,j − λ2Ũi,r)

Ṽr,j ← Ṽr,j + γ · (σ−1
1 π1∆1Ui,r − λ1Ṽr,j)

(9)

where γ is the learning rate. We set σ0, σ1 and σ2 as the
RMSE in M (rc), M (r∗), M (∗c) respectively, and ∆0, ∆1,
∆2 as the prediction errors Mi,j − Ui∗V∗j , Mi,j − Ui∗Ṽ∗j ,
Mi,j − Ũi∗V∗j .

Second, for a given training case Mi,j ∈ M (r∗) −M (rc)

the parameters can be updated as follows

Ui,r ← Ui,r + γ · (σ−1
1 π1∆1Ṽr,j − λUUi,r)

Ṽr,j ← Ṽr,j + γ · (σ−1
1 π1∆1Ui,r − λ1Ṽr,j)

(10)

Finally, given training case Mi,j ∈ M (∗c) − M (rc) we
have

Ũi,r ← Ũi,r + γ · (σ−1
2 π2∆2Vr,j − λ2Ũi,r)

Vr,j ← Vr,j + γ · (σ−1
2 π2∆2Ũi,r − λV Vr,j)

(11)

Application in Model Update Scenario
Naturally, the training of the embedded model would im-
pose extra computational overhead, but at the same time,
GLOMA sheds some light on how to use out-of-date mod-
els which were trained on obsolete data to boost the per-
formance of up-to-date models which will be trained over
the latest data. Recall that a low-accuracy embedded model
can still improve the model accuracy. A model can not only
be used to produce recommendations, but also help to train
the new model instead of being discarded when new data
arrives. As such, the embedded model is not merely extra
computational burden but also “wisdom from the past”.

Domain-specific Data-projected Clustering
Obviously, the clustering method would impact the mod-

el performance in both accuracy and efficiency, but unfortu-
nately we found the popular K-Means approach is too heavy
(i.e., it takes nearly 48 hours in Netflix data even longer than

Algorithm 1 Domain-specific Data-projected Clustering
Input: data samples S, number of samples |S|, number of

clusters κ, and KL divergence DKL(· ‖ ·).
Output: cluster assignment function C : [|S|]→ [κ].

1: Randomly divide all samples into κ clusters.
2: while not converged do
3: // for each cluster k, set ck as the center of the as-

signed samples
4: for k in [κ] do
5: ck =

∑
C (i)=k xi/Nk, where Nk is the number of

data samples belonging to the k-th cluster.
6: end for
7: //for each sample i with value xi, assign i to the clos-

est cluster
8: for i in [|S|] do
9: C (i) = arg min1≤k≤κDKL(xi ‖ ck);

10: end for
11: end while
12: return C .

training GLOMA model takes), because it is trying to find
the subgroups where users give similar ratings on the same
item such that every user (item) is characterized by its all
historical ratings. It means the dimension of the data space
is very high, O(n) for every user and O(m) for every item,
resulting in the high computational complexity and cluster-
ing quality suffering from the curse of high dimensionality
and data sparsity.

In order to lower the cost and enhance the recommen-
dation qualify of GLOMA, we propose a domain-specific
data-projected based clustering algorithm (DSDP), which
attempts to discover the subgroups where users have similar
rating tendencies on a set of items. It means the rating dis-
tribution for every user on certain item set is similar to each
other. In other words, we project the data of historical rat-
ings with length of O(n) (O(m)) for every user (item) into
the data of each rating value’s frequency with length ofO(1)
(e.g., rating value in Neflix is discrete number from 1 to 5)
for every user/item. To do so, the dimension of data space
is largely reduced, and thus the running time of clustering
will decrease significantly as well. Meanwhile, we adopt the
Kullback-Leibler (KL) divergence to measure the difference
between two probability distributions, which can be defined
as

DKL(x ‖ c) =
∑
z

xz ln
xz
cz
, (12)

where x and c are the data sample and cluster center, respec-
tively. xz (cz) is the z-th dimensional value of x (c).

Finally, we can have the user-item subgroups after per-
forming the Algorithm 1 on both users and items, respec-
tively. In detailed, lines 4-6 first compute the center of the
cluster which has the smallest mean distance to all sam-
ples in the cluster, then lines 8-10 assign every sample to
its closest center, and finally repeat these two steps until
converged. The experimental section highlights the empir-
ically effectiveness and efficiency of the proposed clustering
method. Additionally, the demonstration about that the pro-
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Table 1: Computational efficiency comparisons of the pro-
posed domain-specific data-projected clustering method
(DSDP) and K-means++ method (KMPP) in seconds on
MovieLens 1M and MovieLens 10M with the numbers of
row and column clusters being 2× 2.

Method MovieLens (1M) MovieLens (10M)
DSDP 0.471± 0.002 4.242 ± 0.675
KMPP 156.942±2.093 7554.522 ± 464.806

posed clustering method will converge to a local optimum is
in the supplementary material due to limited spaces.

Experimental Results
In this section, we evaluate the proposed matrix approxi-
mation CF method and domain-specific data-projected clus-
tering method using three real-world datasets, which have
been widely used for evaluating recommendation algorithm-
s – MovieLens 1M (106 ratings), MovieLens 10M (107 rat-
ings), and Netflix (108 ratings). For each dataset, we split it
into train and test sets randomly by setting the ratio between
train set and test set as 9 : 1. The results are presented by av-
eraging the results over five different random train-test split-
s. Recall that the root mean square error (RMSE) is adopted
as the evaluation metric for recommendation accuracy which
is defined in Equation (8).

For parameter setting, we use learning rate v = 0.0008 for
gradient decent method, λ = 0.06 for all L2-regularization
coefficients, ε = 0.0001 for gradient descent convergence
threshold, and T = 120 for maximum number of iterations.
The source codes of all experiments are publicly available 1.

Sensitivity Analysis
In this study, we varied the GLOMA hyper-parameters to
better understanding its dependencies, where in default the
embedded model is trained over the entire training dataset.

Impact of Clustering Methods Figure 2 analyzes the
impact of different partition methods, where we name
the GLOMA algorithm with random partition (GLOMA-
RNDM), k-means++ method (GLOMA-KMPP), and the

1https://github.com/ldscc/StableMA.git.

proposed data-projected clustering method (GLOMA-
DSDP). We can see in the Figure 2 (left) the recommen-
dation accuracy of all three methods with the number of row
and column clusters being 2 × 2 increases as the rank in-
creases, whereas in the Figure 2 (middle) the prediction ac-
curacy of all three methods with setting rank = 20 decreases
as the clustering size increases, this is because the data in
every local model is becoming less and less as the data is
divided into more clusters, resulting in data insufficiency for
accurate models.

Meanwhile, Figure 2 (right) also investigates the effec-
t of the embedded model with fixing the rank to 50, where
these embedded models are trained over different ratio of the
training dataset. Obviously, we can see that the prediction
accuracy of all three methods increases as more data is used
to train the embedded model. This is because the quality of
introduced model will be better with having involving more
training data such that it can better boost the performance
of local models as mentioned before. Moreover, we have to
note that the points at 0% means embedded model is ran-
domly established, and even in such scenario all GLOMA
algorithms can obtain the RMSE less than 0.7800, which ac-
tually is still better than the RSVD method. This is because
when training every local model, the embedded model will
be updated individually, such that a weak global model can
be learnt, although the quality is relatively low due to lack
of adequately training.

In all above three conditions, we have to note that
GLOMA-DSDP and GLOMA-KMPP always outperform
GLOMA-RNDM, which indicates the meaningful user-item
subgroups can definitely improve the recommendation qual-
ity. Furthermore, GLOMA-DSDP is the best one of all,
which demonstrates the proposed DSDP clustering method
can effectively improve the model performance. Additional-
ly, Table 1 compares the running time of the proposed DS-
DP and KMPP method, it can be clear to see that the DSDP
method is 300X - 1700X faster than KMPP method and this
advantage in running time will become larger in larger rating
matrix due to the reduction in dimensionality.

Impact of Latent Factors Figure 3 further studies the
contribution of user and item features in embedded model
by modifying the parameters π1 and π2 defined in Equa-
tion (6) and (7). Notably, the point at (0, 0) represents the
typical clustering-based CF method, as we can see it does



0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

π
2

π
1

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

Figure 3: Effects of π1 and π2 controlling the contribution
of embedded model on GLOMA with rank = 10, while both
π1 and π2 range in [0.0, 2.0] on MovieLens 1M.

0.760

0.780

0.800

0.820

0.840

 20  40  60  80  100

R
M

S
E

Rank

RSVD
BPMF(r=300)
GSMF(r=20)
WEMAREC(r=20)
MPMA(r=100)
GLOMA

Figure 4: Effects of latent factors on GLOMA with the
numbers of row and column clusters being 2 × 2, while
the rank varies in [20, 100] on MovieLens 10M.

not perform well. Moreover, the points with π1 = 0 means
that the constraint of Equation (6) is disabled and only us-
er features Ũ of embedded model can work effectively, and
similarly points with π2 = 0 means that only item features
Ṽ are actually able to function. Evidently, we can see the
RMSEs in both situations are significantly higher than oth-
ers, which proves that introducing both the user features and
item features from the model containing overall structures
among all users and items can definitely improve the mod-
el performance. In additional, the optimal performance is
achieved at nearly (0.5, 0.3), where both π1 and π2 are less
than 1. It really makes sense since latent factors U and V
are used to make prediction such that the terms in Equation
(5) should be more important. Therefore, we adopt π1 = 0.5
and π2 = 0.3 in the following experiments.

Figure 4 studies the impact of rank with the numbers of
row and column clusters being g× f = 2× 2. It can be seen
clearly that the accuracy of RSVD gradually decreases as the
rank increase from 20 to 100, whereas the accuracy of the
GLOMA method increases. The reason is that the GLOMA
methods attempt to capture more information than RSVD
method does, such that more latent factors are required. In
additional, GLOMA outperform the other five state-of-the-
art CF methods with parameter setting in their original pa-
pers, RSVD (Paterek 2007), BPMF (Salakhutdinov and M-
nih 2008), GSMF (Yuan et al. 2014), WEMAREC (Chen et
al. 2015), MPMA (Chen et al. 2016).

Performance Comparison
In this section, we compare the performance of GLO-
MA (r = 200) with five fore-mentioned baselines on
MovieLens 10M and Netflix datasets, and moreover we
re-tune the parameters for some methods to achieve bet-
ter accuracy than using the default setting in their origi-
nal papers, where RSVD (r = 50) (Paterek 2007), BPMF
(r = 300) (Salakhutdinov and Mnih 2008), GSMF (r =
20) (Yuan et al. 2014), WEMAREC (r = 100) (Chen et al.

Table 2: Recommendation accuracy comparison of the pro-
posed GLOMA method and the other five state-of-the-art
methods. Bold faces mean that the method performs statis-
tically significantly better in the setting, at the level of 95%
confidence level.

MovieLens (10M) Netflix
RSVD 0.8271 ± 0.0009 0.8534 ± 0.0001
BPMF 0.8195 ± 0.0006 0.8420 ± 0.0003
GSMF 0.8012 ± 0.0011 0.8420 ± 0.0006

WEMAREC 0.7734 ± 0.0003 0.8098 ± 0.0009
MPMA 0.7702 ± 0.0004 0.8083 ± 0.0006

GLOMA 0.7672 ± 0.0001 0.8011 ± 0.0003

2015) and MPMA (r = 200) (Chen et al. 2016). Notably,
RSVD and BPMF are standard matrix approximation meth-
ods, and WEMAREC is clustering-based ensemble method
which has been shown to be more accurate than single meth-
ods due to better generalization performance. Particularly,
we emphasize the comparison among GSMF, MPMA and
GLOMA, because GSMF and MPMA are the latest work
related to the proposed GLOMA, all of which attempts to
capture various associations within user-item subgroups. As
shown in Table 2, the GLOMA method significantly out-
performs all five compared methods on both two datasets.
This confirms that GLOMA can indeed achieve better per-
formance than both state-of-the-art single methods and en-
semble methods.

Conclusion
Standard matrix approximation based collaborative filtering
methods have a major drawback that they perform poorly
at detecting strong associations among a small set of close-
ly related items. In order to address this issue, recent work
adopt ensemble methods or multi-task feature learning tech-
niques to learn the localized relations in order to produce
accurate recommendations. In this paper, we develop an ex-



tension of clustering-based MA method, where a previous-
trained standard MA model is introduced to help to train the
local models such that the GLOMA model can unify glob-
al latent factors and local latent factors of users and items
to improve recommendation accuracy. Experimental study
on two real-world datasets demonstrates that the proposed
GLOMA method can outperform five state-of-the-art MA-
based collaborative filtering methods in recommendation ac-
curacy, and also the proposed DSDP clustering method can
efficiently discover the meaningful user-item subgroups and
effectively improve the performance of GLOMA model.

Acknowledgement
This work was supported in part by the National Natu-
ral Science Foundation of China (61233016, 61602176,
61672231), China Postdoctoral Science Foundation Funded
Project (2016M590337), and the National Science Founda-
tion of USA (1251257, 1334351, 1442971).

References
Ando, R. K., and Zhang, T. 2005. A framework for learning
predictive structures from multiple tasks and unlabeled data.
The Journal of Machine Learning Research 6:1817–1853.
Billsus, D., and Pazzani, M. J. 1998. Learning collaborative
information filters. In Proceedings of The 15th International
Conference on Machine Learning (ICML ’98), 46–54.
Breese, J. S.; Heckerman, D.; and Kadie, C. 1998. Empiri-
cal analysis of predictive algorithms for collaborative filter-
ing. In Proceedings of the 14th Conference on Uncertainty
in Artificial nItelligence (UAI’98), 43–52. Morgan Kauf-
mann Publishers Inc.
Candès, E. J., and Tao, T. 2010. The power of convex relax-
ation: Near-optimal matrix completion. IEEE Transactions
on Information Theory 56(5):2053–2080.
Chen, C.; Li, D.; Zhao, Y.; Lv, Q.; and Shang, L. 2015. WE-
MAREC: Accurate and scalable recommendation through
weighted and ensemble matrix approximation. In Proceed-
ings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR
’15), 303–312.
Chen, C.; Li, D.; Lv, Q.; Yan, J.; Chu, S. M.; and Shang, L.
2016. Mpma: Mixture probabilistic matrix approximation
for collaborative filtering. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
’16), 1382–1388.
Evgeniou, A., and Pontil, M. 2007. Multi-task feature learn-
ing. In Advances in Neural Information Processing Systems,
41–48.
Herlocker, J. L.; Konstan, J. A.; Borchers, A.; and Riedl, J.
1999. An algorithmic framework for performing collabora-
tive filtering. In Proceedings of the 22nd International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR ’99), 230–237.
Koren, Y. 2008. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of
the 14th ACM International Conference on Knowledge Dis-
covery and Data Mining (SIGKDD ’08), 426–434. ACM.

Lee, J.; Kim, S.; Lebanon, G.; and Singer, Y. 2013. Local
low-rank matrix approximation. In Proceedings of The 30th
International Conference on Machine Learning (ICML ’13),
82–90.
Li, D.; Chen, C.; Lv, Q.; Yan, J.; Shang, L.; and Chu, S.
2016. Low-rank matrix approximation with stability. In Pro-
ceedings of The 33rd International Conference on Machine
Learning (ICML ’16), 295–303.
Mackey, L. W.; Jordan, M. I.; and Talwalkar, A. 2011.
Divide-and-conquer matrix factorization. In Advances in
Neural Information Processing Systems, 1134–1142.
Mnih, A., and Salakhutdinov, R. 2007. Probabilistic matrix
factorization. In Advances in Neural Information Processing
Systems, 1257–1264.
Paterek, A. 2007. Improving regularized singular value de-
composition for collaborative filtering. In KDD CUP’07,
5–8.
Salakhutdinov, R., and Mnih, A. 2008. Bayesian probabilis-
tic matrix factorization using markov chain monte carlo. In
Proceedings of The 25th International Conference on Ma-
chine Learning (ICML ’08), 880–887.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In Proceedings of the 10th International Conference
on World Wide Web (WWW’01), 285–295.
Singh, A. P., and Gordon, G. J. 2008. Relational learning
via collective matrix factorization. In Proceedings of the
14th ACM International Conference on Knowledge Discov-
ery and Data Mining (SIGKDD ’08), 650–658.
Srebro, N., and Jaakkola, T. 2003. Weighted low-rank
approximations. In Proceedings of The 20th International
Conference on Machine Learning (ICML ’03), 720–727.
Su, X., and Khoshgoftaar, T. M. 2009. A survey of col-
laborative filtering techniques. Advances in Artificial Intel-
ligence 2009:4:2–4:2.
Yuan, T.; Cheng, J.; Zhang, X.; Qiu, S.; and Lu, H. 2014.
Recommendation by mining multiple user behaviors with
group sparsity. In Proceedings of the 28th AAAI Conference
on Artificial Intelligence (AAAI ’14), 222–228.
Zhang, Y.; Zhang, M.; Liu, Y.; and Ma, S. 2013. Improve
collaborative filtering through bordered block diagonal for-
m matrices. In Proceedings of the 36th International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR ’13), 313–322.


