2204.08758v1 [cs.IR] 19 Apr 2022

arxXiv

Enhancing CTR Prediction with Context-Aware Feature
Representation Learning

Fangye Wang"
School of Computer Science
Fudan University, Shanghai, China
fywangl8@fudan.edu.cn

Hansu Gu'
Seattle, United States
hansug@acm.org

Yingxu Wang"
School of Computer Science
Fudan University, Shanghai, China
yingxuwang20@fudan.edu.cn

Tun Lu**
School of Computer Science
Fudan University, Shanghai, China
lutun@fudan.edu.cn

Dongsheng Li
Microsoft Research Asia
Shanghai, China
dongsli@microsoft.com

Peng Zhang®
School of Computer Science
Fudan University, Shanghai, China
zhangpeng_@fudan.edu.cn

Ning Gu”
School of Computer Science
Fudan University, Shanghai, China
ninggu@fudan.edu.cn

ABSTRACT

CTR prediction has been widely used in the real world. Many meth-
ods model feature interaction to improve their performance. How-
ever, most methods only learn a fixed representation for each feature
without considering the varying importance of each feature un-
der different contexts, resulting in inferior performance. Recently,
several methods tried to learn vector-level weights for feature rep-
resentations to address the fixed representation issue. However,
they only produce linear transformations to refine the fixed feature
representations, which are still not flexible enough to capture the
varying importance of each feature under different contexts. In this
paper, we propose a novel module named Feature Refinement Net-
work (FRNet), which learns context-aware feature representations
at bit-level for each feature in different contexts. FRNet consists of
two key components: 1) Information Extraction Unit (IEU), which
captures contextual information and cross-feature relationships to
guide context-aware feature refinement; and 2) Complementary
Selection Gate (CSGate), which adaptively integrates the original
and complementary feature representations learned in IEU with
bit-level weights. Notably, FRNet is orthogonal to existing CTR
methods and thus can be applied in many existing methods to boost
their performance. Comprehensive experiments are conducted to
verify the effectiveness, efficiency, and compatibility of FRNet.

CCS CONCEPTS

« Information systems — Recommender systems.

*Also Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China.
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR °22, July 11-15, 2022, Madrid, Spain.

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8732-3/22/07...$15.00
https://doi.org/10.1145/3477495.3531970

KEYWORDS
Representation Learning, Feature Interaction, CTR Prediction

ACM Reference Format:

Fangye Wang, Yingxu Wang, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang,
and Ning Gu. 2022. Enhancing CTR Prediction with Context-Aware Feature
Representation Learning. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
'22), July 11-15, 2022, Madrid, Spain. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3477495.3531970

1 INTRODUCTION

Click-through rate (CTR) prediction aims to estimate the probabil-
ity of user clicking items, which has been widely used in Internet
companies [32] and E-commerce platforms [44]. Accurate CTR
prediction can deliver enormous business value and meanwhile
improve users’ satisfaction [4, 44], and thus has drawn increasing
attention from the research community. Recently, many methods
achieved huge success by modelling feature interactions to en-
rich feature representations [3, 20, 35, 42, 43]. Following recent
works [1, 33], we categorize CTR prediction methods into two
types: (1) traditional methods, such as factorization machines (FM)
based methods [15, 21, 39], aim to model low-order cross-feature in-
teractions; (2) deep learning-based methods, such as xDeepFM [19],
Autolnt [28], and DCN-V2 [32], further enhance the accuracy of
CTR prediction by capturing high-order feature interactions.
Although existing feature interaction techniques have helped
achieve better performance, they still suffer from an intrinsic issue:
most of these methods only learn a fixed representation for each
feature without considering the varying importance of each fea-
ture under different contexts. For example, consider the following
two instances: {female, white, computer, workday} and {female, red,
lipstick, workday], the feature “female” should have different rep-
resentations based on its different influence in different instances
when we make predictions for users. Such different feature repre-
sentations of the same feature among different instances are called
context-aware feature representations in this paper. Few CTR pre-
diction methods [14, 21, 39] have attempted to learn vector-level

https://orcid.org/0000-0001-7216-1688
https://doi.org/10.1145/3477495.3531970
https://doi.org/10.1145/3477495.3531970

weights for feature representations to address the fixed feature
representation issue. However, it is unreasonable that these mod-
els only produce linear transformations to refine the fixed feature
representations, which are still not flexible enough to capture the
varying importance of each feature under different contexts.

Self-attention mechanism has been used in CTR prediction meth-
ods [17, 21, 28], which mainly learns the cross-feature relationships
among all relevant feature pairs. However, self-attention uses nor-
malized weights to capture the relative importance of features
within the same instance, thus ignoring feature importance dif-
ferences across multiple instances. Consider the following two
instances: {female, red, lipstick, workday} and {female, red, lipstick,
weekend]}, where self-attention can only learn very similar represen-
tations for the feature “female” because the features “weekend” and
“workday” may have very small attention scores with “female” com-
pared with “red” and “lipstick”. However, the behaviors/interests
of “female” users may still significantly change from “workday” to
“weekend” across the two instances. Therefore, as shown later in
our case study, an ideal feature refinement module should iden-
tify the important cross-instance contextual information and learn
significantly different representations under different contexts.

To address the above issues, we propose a novel module named
Feature Refinement Network (FRNet) to learn context-aware
feature representations. As shown in Figure 1, FRNet consists of
two key components: (1) Information Extraction Unit (IEU), which
can capture contextual information and cross-feature relationships
to guide context-aware feature refinement; (2) Complementary Se-
lection Gate (CSGate), which can adaptively integrate the original
and complementary feature representations with bit-level weights
to achieve context-aware feature representation learning. In IEU,
we design a task-orient contextual information extractor (CIE) to
encode contextual information within each instance and employ a
self-attention unit to capture the cross-feature relationships. More-
over, we design two independent IEUs in FRNet: the first IEU learns
bit-level weights to select important information from the original
feature representations and the second IEU generates complemen-
tary feature representations to compensate for unselected original
features. In CSGate, we design a novel gating mechanism to produce
the final context-aware feature representations by integrating the
original and the complementary feature representations with bit-
level weights. As shown in Figure 1, FRNet is orthogonal to existing
CTR prediction methods and thus can be applied in many existing
methods in a plug-and-play fashion to boost their performance.

The major contributions of this paper are summarized as follows:

e We propose a novel module named FRNet, which is the
first work to learn context-aware feature representations by
integrating the original and complementary feature repre-
sentations with bit-level weights.

e FRNet can be regarded as a fundamental building block to be
applied in many CTR prediction methods to improve their
performance.

e Experimental results on four real-world datasets show that
simply integrating FRNet into FM [26] can outperform the
state-of-the-art CTR prediction methods. Furthermore, our
experiments also confirm FRNet’s compatibility with many
existing CTR prediction methods.

Most CTR
P
Prediction Models
Prediction Lincar, DNN, .etc.
Layer
Feature DNN, CIN, Attention, efc.
Interaction Layer ’ ’ |

T

Context-Aware Feature

IEU CSGate

Feature Refinement Network

Embedding [1
Layer o V9 J

i i
Sparse Binary 1’.@.. ...@1

Input x Field 1 Field

Figure 1: General paradigm of applying the proposed Fea-
ture Refinement Network in CTR prediction methods.

2 RELATED WORK

Many CTR prediction methods have achieved huge success by
modeling feature interactions to enrich feature representations. Fol-
lowing recent works [3, 22], we categorize CTR prediction methods
into two types: traditional methods [15, 21, 23, 26, 39] and deep
learning-based methods [2, 3, 7, 19, 28, 32, 41, 43]. FM [26] is one of
the widely used traditional CTR prediction methods. Due to its effec-
tiveness, many works have been proposed based on it [15, 21, 23, 39].
However, these methods cannot capture high-order feature inter-
actions. To address this issue, many deep learning-based meth-
ods were proposed to capture more complex feature interactions.
Wide&Deep (WDL) [2] jointly trains the wide linear unit and Multi-
layer Perception (MLP) to combine the benefits of memorization
and generalization. DeepFM [7] replaces the wide part of WDL
with FM to alleviate manual efforts in feature engineering. Based
on DeepFM, xDeepFM [19] design a novel Compressed Interaction
Network (CIN) to model high-order feature interactions explic-
itly. AutolInt [28] uses stacked multi-head self-attention layers to
model the feature interactions. Besides modeling feature interac-
tions, XcrossNet [38] and AutoDis [6] design various structures to
learn feature embedding for numerical features. Intuitively, each
feature should have different representations based on its varying
roles in different instances when we make predictions. However,
the above methods only learn a fixed representation for each fea-
ture without considering the varying importance of each feature
under different contexts, resulting in inferior performance.

Several recent CTR prediction methods [14, 21, 39] attempted to
learn vector-level weights for feature representations to address the
fixed feature representation issue. IFM [39] and DIFM [21] propose
Factor Estimating Network (FEN) and Dual-FEN to improve FM
by learning vector-level weights for different feature representa-
tions. Similarly, FiBINET [14] uses Squeeze-and-Excitation network
(SENET) [12] to extract informative features by reweighing the
original features. However, only assigning vector-level weights to
the same feature in different instances causes the learned repre-
sentations of the same feature to have strictly linear relationships.
However, it is unreasonable to only produce linear transformations
to refine the fixed feature representations, because they are not
flexible enough to capture the varying importance of each feature
under different contexts. Recently, EGate [13] applied an indepen-
dent MLP for each feature to learn bit-level weights. Nevertheless,
the representations of the same features are still fixed, as it only
transforms the representation space.

Table 1: The connection and difference between FRNet and
similar module. ¢/ |X means totally|not met, respectively.

Module (Model) Granularity ~Context-Aware Nonlinear
FEN (IFM[39]) Vector 4 X
Dual-FEN (DIFM [21]) Vector v X
SENET (FiBiNET [14]) Vector v X
EGate (GateNet [13]) Bit X X
FRNet-Vec (Ours) Vector 4 4
FRNet (Ours) Bit 4 v

As summarized in Table 1, our method is related to but funda-
mentally different from existing methods because we learn both
bit-level weights applied in original feature embedding and comple-
mentary features to ensure that FRNet can generate more flexible
nonlinear context-aware feature representations.

3 PRELIMINARIES

CTR prediction is a binary classification task on sparse multi-field
categorical data [14, 24, 38]. Suppose there are f different fields and
n features, each field may contain multiple features but each feature
only belongs to one field. Each instance for CTR prediction can
be represented by {x;, y;}, where x; is a sparse high-dimensional
vector represented by one-hot encoding and y; € {0, 1} (click or
not) is the true label, e.g.,

xi= (0,.,1,0) (1,...0,0) .. (1,0). (1)

—_— —_—
Item=Computer Color=White Gender=Female

CTR prediction models aim to approximate the probability P(y;|x;)
for each instance. According to [33, 34], most recent CTR prediction
methods follow the design paradigm below (as shown in Figure 1):

Embedding layer. It transforms the sparse high-dimensional
features x; into a dense low-dimensional embedding matrix E =
[vi;ve; ...;vf] € R4 where d is the dimension size of each field.
Each feature has a fixed-length representation v;.

Feature interaction layer.In CTR prediction methods, the most
critical design is the feature interaction layer, which uses various
types of interaction operations to capture arbitrary-order feature
interactions, such as MLP [2, 7], Cross Network [31, 32] and trans-
former layer [17, 28], etc. The output of feature interaction layer is
a compact representation q; based on embedding matrix E.

Prediction layer. Finally, a prediction layer (usually a linear
regression or MLP module) produces the final prediction probability
o(i) € (0,1) based on the representations q;, where o(x) = 1/(1+
exp(—x)) is the sigmoid function. And, a common loss function for
CTR prediction tasks is the cross entropy loss as follows:

loss = =& 3N yilog (o (§:) + (1 - yi) log (1 - o (1)), (2)

where N is total number of training instances.

4 FEATURE REFINEMENT NETWORK

In this section, we introduce the details of FRNet. As depicted in
Figure 2 (a), FRNet contains two key components:
o Information Extraction Unit (IEU), which can capture con-
textual information and cross-feature relationships to guide
context-aware feature refinement.

o Complementary Selection Gate (CSGate), which can adap-
tively integrate the original and complementary feature rep-
resentations with bit-level weights to achieve context-aware
feature representation learning.

4.1 Information Extraction Unit (IEU)

IEU consists of three essential components: 1) the Self-Attention
unit, which is deployed to capture explicit cross-feature relation-
ships among co-occurring features; 2) Contextual Information Ex-
tractor (CIE), which aims to encode the contextual information
under different contexts; and 3) Integration unit, which integrates
the information from the Self-Attention unit and CIE. In addition,
we use two IEUs for two purposes: IEUyy learns bit-level weights,
and IEUg produces complementary feature representations.

4.1.1 Self-Attention unit. We adopt self-attention [30] to identify
the most relevant features to each specific feature in instances. For
instance, in {female, red, lipstick, workday}, the most relevant fea-
tures to “female” are “red” and “lipstick”. The self-attention module
first calculates importance among all feature pairs and generates
new representations by computing the weighted sum of relevant
features. To achieve higher efficiency, we simplify the structure of
self-attention as depicted in Figure 2 (b). More detailed, we first
map the input matrix E into three different matrices:

0,K,V=EW2 EWK EW", (3)

where W2, WK WV ¢ R9%dk are transformation matrices, and dj.
is the attention size. Then, we obtain the attention matrix on Value
(V) by applying the dot product of Query (Q) and Key (K) with a
Softmax function as follows:

Attention(Q,K, V) = SoftMax(QK")V € RF ¥ 4)

Finally, we transform the dimension of output matrix to be the
same as the input by a projection matrix WY € RY%>d The output
(Ovec) of the self-attention module can be summarized as follows:

Ovyec = Attention(Q, KV)WP e RM4. 5)

The self-attention mechanism can achieve partially context-aware
feature representation learning by capturing the cross-feature rela-
tionships among all feature pairs to refine the feature representa-
tion under different contexts. However, self-attention only utilizes
partial contextual information represented by pair-wise feature in-
teractions and thus fails to utilize complete contextual information
to guide feature refinement. In other words, self-attention yields
similar feature representations for the same features in different
instances, as shown in our studies (Section 5.7).

4.1.2 Contextual Information Extractor. The contextual informa-
tion in each instance is implicitly contained in all features. Hence,
we need to ensure that all features contribute to the contextual
information in each instance. Since the contextual information is
usually not very complicated, MLP is a simple yet effective choice
to extract contextual information as shown in the experiments
(Section 5.4). In detail, we first concatenate the original feature
representations into E¢op as the input.
Then, each layer of the MLP is obtained as follows:

hy,; = PReLU(Wjh; + b)), (6)

Self-Attention /% E g /s 7\CSGat e ! Linear |

N N ! :

. _ \ !

Foo====7 H '

TEUs 1—o(w,) LB somum

O Q000 vO|E function '
000 A Self-Attention f) w,) 0000 E/ﬁ @ Element-wise |
. . y .. '\ ~ product/sum |

O TR 000 |7y Matrix E
IEUW U(Wb) Txd E @ multiplication |

EecR/*? E.eR ' . Sigmoid |
E o o) H function !

—/ i 7 Activation |

(a) The architecture of FRNet. IEU and CSGate are the abbreviations of '

Information Extraction Unit and Complementary Selection Gate.

function /

9 Output of CIE
s - Output o_f — R
2 l S Self-Attention O ‘ Oy €
_ [\ -
O — X2 —1 |F| [©
= £) S. I
000 1 (X; 3 @) Hidden
PRy < =4 “ee > P Q
o L §~ o [a4 Layers
) 1
i
Ber |5 O,.. €R"™ [® 9 ‘
i E c Rlx frd

(b) The structure of Self-Attention

con

(¢) The structure of CIE

Figure 2: Architectures of Feature Refinement Network (FRNet), Self-Attention and Contextual Information Extractor (CIE).

where h; € R™ hy,; € R™# are the [-th and (! + 1)-th hidden
layer, and hg = Econ € RIX(fxd) W, € R"+1%M b, are the learn-
able parameters for the I-th deep layer. PReLU(-) is the PReLU [8]
function. In the last hidden layer, we project the dimension of con-
textual information vector to d (the dimension of embedding size),
and compute the contextual information vector Oy as follows:

Opit = PReLU(Wphy +by) € R4)

where Wy € R"-1 b are the parameters of the last layer. Since
Op;; compresses all information from E¢op, it can represent the
contextual information within the specific instance. Intuitively,

O [@)
o0\@@neel-[**** [0990| @ |3 -
O Oper™ |@ ® O
d
0,..c R/ R/*¢ 0,.,cR/* 07, eR™ R/

(a) Element-wise product

(b) Matrix multiplication

Figure 3: The operations to integrate the outputs of self-

attention and CIE units.

4.2 Complementary Selection Gate (CSGate)

contextual information Oy is unique for each instance, as different

instances contain different features.

4.1.3

Integration unit. After obtaining the contextual information

Oyit, we directly use Oy to weigh the feature representation Oyec.
As illustrated in Figure 3 (a), it is calculated as follows:

In CSGate, we design a novel gate mechanism to control informa-
tion flow and select important information from the original and
complementary features with bit-level weights. As shown in Figure
2 (a), CSGate has three different inputs from three channels: 1)
complementary feature representations Eg; 2) weight matrix Wi l;
and 3) original feature representations E. The output of CSGate is
the context-aware feature representation:

O1gu = Oyec © Opy; € R X9, (8)

© is the element-wise product. Oyec is the feature representation
from self-attention module which captures cross-feature relation-
ships, and Op;; enables each feature representation to be aware of
the contextual information. Equation 8 ensures each feature can
have significantly different representations in different instances.
As shown in Figure 2 (a), we deploy two independent IEUs: (1)
IEUyy learns bit-level weights; (2) I[EUg produces complementary
features. Specifically, their outputs are represented as follows:

©

We will present more details of Equation 9 in the next subsection.

Eg = IEUG(E) € R4, W}, = IEUy (E) € R/*?,

E;= E0o(Wp)
———
Selected features

+ Ego(1-0(Wy) ,
—————
Complementary features

(10)

where o(-) is the sigmoid function. E; € R/*4 has the same dimen-
sions as E. Specifically, Equation (10) contains two parts of features:
selected features and complementary features. Those two parts are
connected by the selection gate o(Wyp).

Selected Features are the selected important information from
original feature representations at bit-level. Specifically, each el-
ement in 0(Wp) measures the importance of the corresponding

! Although (W) is the real weight matrix, we also call Wy, as weight matrix for the
sake of convenience. Similarly, we also call Eg as complementary features.

element in the original feature representation E, where the proba-
bility of selecting the specific element is between 0 and 1. Thus, we
can learn nonlinear context-aware feature representations. Com-
pared with previous works [14, 21, 39], the learned weight matrix
0(Wp,) have two advantages: 1) it contains cross-feature relation-
ships and contextual information simultaneously, which enables to
learn context-aware representations for the same feature in differ-
ent instances; and 2) introducing the bit-level weights to the original
feature representations can achieve more flexible and fine-grained
feature refinement than previous linear transformations.

Complementary Features are the complementary information
that aims to further enhance the expressive capacity of context-
aware feature representations. Existing methods [14, 21, 39] only
assign weights to original features without considering the unse-
lected information. However, we believe the unselected features
may still help CTR prediction in a different way. Hence, we propose
to leverage Eg with its weight 1 — 0(Wy,) as the other part of the
final context-ware feature representations. In particular, the gate
0(Wyp,) achieves adaptive balance between the selected features and
complementary features in bit level.

In summary, FRNet generates context-aware feature representa-
tion by three steps: 1) generating complementary feature represen-
tations using IEUg; 2) calculating bit-level weight matrix by IEUyy;
and 3) leveraging the CSGate to generate context-aware feature
interactions by integrating original features representations and
complementary feature representations by bit-level weights.

5 EXPERIMENTS
5.1 Experimental Setup

5.1.1 Datasets. We conduct experiments on four popular datasets:

Criteo? is the most well-known industrial benchmark dataset
for CTR prediction, which includes 26 anonymous categorical fields
and 13 numerical fields. We discretize numerical features and trans-
form them into categorical features by log transformation®. And
following [37], we use the last 5 million records for testing. Mean-
while, we remove the features appeared less than 10 times and treat
them as a dummy feature “(unknown)”.

Malware? is published in the Microsoft Malware prediction,
which contains 81 different fields. This task can be transformed as
a binary classification problem like a CTR prediction task [33].

Frappe® contains app usage logs from users under different
contexts (e.g., daytime, location). The target value indicates whether
the user has used the app under the context [36].

MovieLens® contains user tagging records on movies. Each
instance contains three fields: user ID, movie ID, tag. The targeted
value denotes whether a user has assigned a tag to a movie [36].

The statistics of these four datasets are summarized in Table 2.

5.1.2 Evaluation Metrics. To evaluate the performance of CTR
prediction methods, we adopt AUC (Area under the ROC curve) and
Logloss (binary cross-entropy loss) as the evaluation metrics [1, 33].
Note that slightly higher AUC or lower Logloss, e.g., at 0.001 level,

Zhttps://www.kaggle.com/c/criteo-display-ad-challenge
Shttps://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.kaggle.com/c/microsoft-malware-prediction
Shttps://www.baltrunas.info/context-aware/frappe
Shttps://grouplens.org/datasets/movielens/

Table 2: Statistics of four datasets used in this paper.

Datasets | Positive #Training #Validation #Testing #Fields #Features
Criteo 26% 35,840,617 5,000,000 5,000,000 39 1,086,810
Malware 50% 7,137,187 892,148 892,148 81 976,208
Frappe 33% 202,027 57,722 28,860 10 5,382
MovieLens | 33% 1,404,801 401,372 200,686 3 90,445

can be regarded as significant improvement in CTR prediction
tasks [1, 2, 14, 18, 19, 22, 32].

5.1.3 Compared Models. We apply FRNet into FM [26], which is
called FMpRrNer. We compare FMprNe; With three types of meth-
ods: 1) FM-based methods, which capture second- or higher-order
feature interactions, including FM [26], IFM [39], DIFM [21]; 2)
deep learning-based methods, which model high-order feature in-
teractions, including NFM [10], IPNN [25], OPNN [25], CIN [19],
FINT [43]; and 3) ensemble methods, which adopt multi-tower
feature interaction structures to integrate different types of meth-
ods, including WDL [2], DCN [31], DeepFM (7], xDeepFM [19],
FiBiNET [14], AutoInt+ [28], AFN+ [3], NON [22], TENET [35],
FED [42], and DCN-V2 [32]. We do not present the results of classi-
cal methods, including LR [27], GBDT [11], CCPM [5], FFM [15],
AFM [36], FWFM [23], CrossNet [31], FNN [40], because more
recent methods (e.g., AFN+ [3], FiBiNET [14], DCN-V2 [32]) have
outperformed these methods in their experiments.

To demonstrate the effectiveness of the bit-level weights in FR-
Net, we design a variant of FRNet named FRNet-Vec, where FRNet-
Vec only learns the vector-level weights in IEU and keep the other
parts the same as FRNet. As shown in Figure 3 (b), the weight matrix
W, in FRNet-Vec is calculated by:

W, = Oyec ® Of, € RF. (1)

Each element in 0(W,) measures the importance of each feature
representations in original embedding E € Rf*¥¢,

5.1.4 Implementation Details. We implement our method with
Pytorch’. All models are learned by optimizing the Cross-Entropy
loss with Adam [16] optimizer. We implement the Reduce-LR-On-
Plateau scheduler during the training process to reduce the learning
rate by a factor of 10, when the given metric stops improving in
four consecutive epochs. The default learning rate is 0.001. We use
early stop to avoid overfitting when the AUC on the validation set
stops improving. The mini-batch size is set to 4096. The embedding
size is 10 for Criteo and Malware and 20 for Frappe and MovieLens,
respectively. Following previous works [3, 7, 14, 28], we employ
the same neural structure (i.e., 3 layers, 400-400-400) for the models
that involve MLP for a fair comparison. All activation functions are
ReLU unless otherwise specified, and the dropout rate is set to 0.5.
In FRNet, the dimension of MLP in the CIE is set to 128. For other
methods, we take the optimal settings from the original papers.

To ensure fair comparison, we run all experiments five times by
changing random seeds and report the averaged results. We observe
that all the standard deviations of our method are in the order of
1e-4, indicating that our results are very stable. We further perform
two-tailed t-test to verify the statistical significance in comparisons
between our method and the best baseline methods.

"The code is available here: https://github.com/frnetnetwork/frnet

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.kaggle.com/c/microsoft-malware-prediction
https://www.baltrunas.info/context-aware/frappe
https://grouplens.org/datasets/movielens/
https://github.com/frnetnetwork/frnet

Table 3: Overall accuracy comparison in the four datasets. Ayyc and Ap,g0ss are calculated to indicate averaged performance

boost compared with the best baseline (DCN-V2) over the four datasets. Two tailed t-test: x : p < 1072, %% : p < 1074,

Model Datasets Criteo Malware Frappe MovieLens Aauc DLogloss
Class Model AUC Logloss AUC Logloss AUC Logloss AUC Logloss T
M 0.8028 0.4514 0.7309 0.6052 0.9708 0.1934 0.9391 0.2856 -1.13% +0.0167
Second-Order IFM 0.8066 0.4470 0.7389 0.5969 0.9765 0.1896 0.9471 0.2853 -0.39% +0.0125
DIFM 0.8085 0.4457 0.7397 0.5954 0.9788 0.1860 0.9490 0.2459 -0.19% +0.0011
NFM 0.8057 0.4483 0.7352 0.5988 0.9746 0.1915 0.9437 0.2945 -0.68% +0.0161
IPNN 0.8088 0.4454 0.7404 0.5945 0.9791 0.1759 0.9490 0.2785 -0.15% +0.0064
High-Order OPNN 0.8096 0.4446 0.7408 0.5840 0.9795 0.1805 0.9497 0.2704 -0.08% +0.0027
CIN 0.8082 0.4459 0.7395 0.5967 0.9776 0.2010 0.9483 0.2808 -0.26% +0.0139
FINT 0.8090 0.4452 0.7402 0.5953 0.9791 0.1921 0.9498 0.2674 -0.13% +0.0078
WDL 0.8068 0.4474 0.7392 0.5982 0.9776 0.1895 0.9403 0.3045 -0.52% +0.0177
DCN 0.8091 0.4452 0.7403 0.5944 0.9789 0.1814 0.9458 0.2685 -0.23% +0.0052
FiBiNET 0.8093 0.4450 0.7405 0.5942 0.9787 0.1867 0.9471 0.2630 -0.19% +0.0050
DeepFM 0.8084 0.4458 0.7402 0.5944 0.9789 0.1770 0.9465 0.3079 -0.24% +0.0141
xDeepFM 0.8086 0.4456 0.7405 0.5940 0.9792 0.1889 0.9480 0.2889 -0.18% +0.0122
Ensemble Autolnt+ 0.8088 0.4456 0.7406 0.5939 0.9786 0.1890 0.9501 0.2813 -0.13% +0.0103
AFN+ 0.8095 0.4447 0.7404 0.5945 0.9791 0.1824 0.9509 0.2583 -0.08% +0.0028
NON 0.8096 0.4446 0.7390 0.5956 0.9792 0.1813 0.9505 0.2625 -0.13% +0.0038
TFNet 0.8092 0.4449 0.7397 0.5948 0.9787 0.1942 0.9493 0.2714 -0.16% +0.0091
FED 0.8087 0.4458 0.7406 0.5942 0.9797 0.1802 0.9510 0.2576 -0.08% +0.0022
DCN-V2 0.8098 0.4443 0.7411 0.5935 0.9802 0.1783 0.9516 0.2527 - -
Our FMpRNet—vee | 0.8115%% 0.4428** | 0.7438** 0.5914** | 0.9816** 0.1653* | 0.9635** 0.2365** | 0.49% -0.0082
Models FMpRNet 0.8120** 0.4424** | 0.7445** 0.5909** | 0.9830** 0.1607** | 0.9679** 0.2278* | 0.68% -0.0118
8000 T 1200
g sono | [mmm#Params (K) —o—Times(s) | .
@ t 800 2 <
E 4000 | 2-5
Zow | "EE

FM IFM DIFM IPNN OPNN CIN FINT WDL DCN

FiBiNET DepFM xDeepFM Autolnt+

AFN+ NON TFNet FED DCN-V2 FRNet-Vec FRNet

Figure 4: Efficiency comparisons of different algorithms in terms of Model Size and Run Time on the Criteo dataset. We only
consider the parameters above the embedding layer (including LR part). We conduct experiments with one TITAN V GPU.

5.2 Overall Comparison

5.2.1 Effectiveness Comparison. Table 3 summarizes the effective-
ness of FRNet and all compared methods on the four datasets. Al-
though FM has the worst performance, FMprner and FMprNet—Vec
statistically significantly outperform all compared methods. Specifi-
cally, FMprNer outperforms FM by 1.15%, 1.86%, 1.26% and 3.07% in
terms of AUC (1.99%, 2.36%, 16.91% and 20.23% in terms of Logloss)
on four datasets, respectively, which demonstrates that learning
context-aware feature representations is effective in CTR prediction.
Meanwhile, the averaged performance boost (Asuc and Apggioss)
indicate the most strong generalization ability of FMpgrne; and
FMFERNet—vec On four datasets. In addition, FMprne; achieves bet-
ter performance than FMpRNer—Vec, Which confirms that refining
feature representations at bit-level is more effective. Most impor-
tantly, Table 3 indicates that learning context-aware feature repre-
sentations by FRNet is more effective than other feature interaction
techniques, e.g., the ones in xDeepFM, NON, and DCN-V2.

5.2.2 Efficiency Comparison. We compare the model size and run
time of different methods in Figure 4. Generally, FM-based meth-
ods have fewer parameters than high-order or ensemble methods.
Specifically, FMprNer only increases 104K learning parameters
over FM. As a comparison, DIFM and xDeepFM increase 266K and

483K learning parameters over FM, respectively. Meanwhile, they
are relatively time-consuming, as they consist of complicated struc-
tures, e.g., Dual-FEN and CIN. We also observe from Figure 4 that
FMFRNer is comparable to IFM and DCN, and has fewer model
parameters and is more efficient than all other baseline methods.
Notably, compared with the best-performing baseline DCN-V2,
FMFpRNer has fewer model parameters, faster training speed and
better performance.

5.3 Compatibility Analysis

To confirm the compatibility of FRNet, we apply FRNet in seven CTR
prediction methods. Meanwhile, we compare FRNet with additional
four modules proposed by recent works which assign different
weights to the original feature representations, such as SENET [14],
EGate [13], FEN [39], and Dual-FEN [21]. Same as FRNet, we place
the above modules after the embedding layer as mentioned in sec-
tion 3. In FiBINET [14], we replace its SENET with other modules
to refine the features. Table 4 shows their performance, and we
can make the following conclusions: (1) Learning context-aware
feature representations is vital for improving the performance of CTR
prediction. Compared with base models, the average improvements
(Avg. Imp) of FRNet are 0.68% and 0.80% in terms of AUC (1.15% and

Table 4: Compatibility comparison between FRNet and other four modules over SOTA CTR prediction methods.

Datasets Modules BASE SENET (FiBiNET) | EGate (GateNet) FEN (IFM) Dual-FEN (DIFM) FRNet (Ours)
Models AUC Logloss | AUC Logloss | AUC Logloss | AUC Logloss | AUC Logloss | AUC Logloss
M 0.8028 0.4514 | 0.8073 0.4467 0.8058 0.4482 | 0.8066 0.4470 | 0.8085 0.4457 0.8120 0.4424
AFM 0.7999 0.4535 | 0.8048 0.4486 0.7925 0.4601 | 0.7951 0.4576 | 0.7924 0.4600 0.8116 0.4427
NFM 0.8057 0.4483 | 0.8063 0.4476 0.8060 0.4479 | 0.8063 0.4474 | 0.8080 0.4461 0.8120 0.4425
Criteo DeepFM | 0.8084 0.4458 | 0.8089 0.4453 0.8085 0.4457 | 0.8085 0.4459 | 0.8094 0.4448 0.8118 0.4426
xDeepFM | 0.8086 0.4456 | 0.8093 0.4451 0.8100 0.4442 | 0.8087 0.4455 | 0.8101 0.4443 0.8110 0.4434
IPNN 0.8088 0.4454 | 0.8100 0.4442 0.8104 0.4438 | 0.8102 0.4441 | 0.8094 0.4450 0.8115 0.4428
FiBiNET | 0.8093 0.4450 | 0.8093 0.4450 0.8102 0.4440 | 0.8102 0.4439 | 0.8104 0.4436 0.8119 0.4425
Avg. Imp - - 0.22% 0.40% 0.00% 0.04% 0.04% 0.12% 0.08% 0.18% 0.68% 1.15%
M 0.9708 0.1934 | 0.9764 0.1863 0.9515 0.3134 | 0.9765 0.1896 | 0.9788 0.1860 0.9830 0.1607
AFM 0.9606 0.2483 | 0.9620 0.2453 0.9477 0.2733 | 0.9487 0.2704 | 0.9698 0.2417 0.9803 0.1831
NFM 0.9746 0.1915 | 0.9787 0.1794 09754 0.1860 | 0.9774 0.1778 | 0.9785 0.1758 0.9822 0.1620
Frappe DeepFM | 0.9789 0.1770 | 0.9813 0.1642 0.9808 0.1682 | 0.9817 0.1625 | 0.9796 0.1727 0.9836 0.1594
xDeepFM | 0.9792 0.1889 | 0.9817 0.1629 0.9805 0.1694 | 0.9814 0.1679 | 0.9807 0.1715 0.9824 0.1653
IPNN 0.9791 0.1759 | 0.9812 0.1639 0.9805 0.1667 | 0.9815 0.1634 | 0.9809 0.1650 0.9828 0.1597
FiBiNET | 0.9787 0.1867 | 0.9787 0.1867 0.9803 0.1674 | 0.9798 0.1736 | 0.9805 0.1648 0.9821 0.1635
Avg. Imp - - 0.27% 8.64% -0.37% -231% | 0.07% 7.84% 0.40% 9.32% 0.80% 17.43%
0812 R 0C o Logloss | V42 o812 daa2 change one hyper-parameter and keep the other one fixed in each
0.8120 o 0.4430 0.8120 0.4430 .

o 08118 g-::;: g o osus z::z: g experiment.)) _

2 03116 e E 2 osie e Number of Hidden Layers. Figure 5 (a) and Figure 6 (a) show the
08114 . 08114 oaizz " impact of the number of hidden layers at bit-level unit. For Criteo
os11z L —CL SIS 0420 btz L " and Frappe, the most appropriate number of hidden layers is 1. This

(a) Number of Hidden Layers (b) Attention Size confirms that the contextual information is not very complicated and
a shallow MLP is strong enough to encode contextual information

Figure 5: Impact of hyper-parameters on Criteo. from each instance.
Attention Size. As shown in Figure 5 (b) and Figure 6 (b), the best
g:z:g =AUC < Logioss | 1% gzzz ESAUC + Logos. 0.1670 attention size for Criteo and Frappe are 10 and 20, respectively. For
09820 01640 09825 oles0 Criteo, the performance decreases when we increase the attention
S oomis e £ S oo o160 £ size. Coincidentally, the dimension of the embedding for Criteo

< 09810 S < o981 K

0.1620 0.1610

0.9805
0.9800

0.9810

0.1610 0.9805
4 10 20 30 40

1 2 3
(a) Number of Hidden Layers (b) Attention Size

0.1590

Figure 6: Impact of hyper-parameters on Frappe.

17.43% in terms of Logloss) on Criteo and Frappe, which demon-
strates the high effectiveness and compatibility of FRNet. (2) FRNet
significantly outperforms the other four modules when applied to base
models. FRNet is the only module that can enhance the performance
of all seven base models. In contrast, the other four modules may
reduce the performance of CTR prediction in some of the datasets or
base models. For instance, Applying EGate in FM and AFM achieves
poor performance on the Frappe dataset. These phenomena indi-
cate that these model-specific feature refinement modules are with
limited compatibility. On the contrary, FRNet has strong compati-
bility and can be applied in a wide range of CTR prediction models
to enhance their performance.

5.4 Hyper-parameter Study

We analyze the impact of hyper-parameters in FRNet, including
the number of hidden layers in MLP, the attention size dj. of the
Self-Attention. For the sake of convenience, we change the hyper-
parameters in IEUg and IEUy, simultaneously. Note that we only

and Frappe are exactly 10 and 20. It may be a good trick to set the
attention size to be the same as the embedding dimension.

5.5 Ablation Study

Here, we conduct experiments on Criteo and Frappe to prove that
each component or design in FRNet plays an essential role in im-
proving the performance of CTR prediction. As shown in Table 5,
we use the equations to describe how to compute E, base on E by
removing or replacing one of the components in FRNet. Especially,
variant #4 denotes that we only use a self-attention unit in IEUg
and IEUyy . From Table 5, we can make the following conclusions:

(1) Learning context-aware feature representations is reasonable.
It can be proved that all variants of the FRNet successfully improve
the performance of FM on these two datasets;

(2) Cross-feature relationships and contextual information are es-
sential. With cross-feature relationships, variant #2 outperforms
#1. Meanwhile, #13 outperforms #4, and #3 outperforms #2, respec-
tively, which shows the effectiveness of contextual information
within different instances;

(3) Assigning weights to original features is valid. In #5, we remove
IEUyy and then directly add E and Eg. We can find that #10 and
#11 outperform #5, where the learned weights matrix Wy, or Wy
successfully selects important information from E. In addition, #6
and #7 outperform #1, from which we can draw the same conclusion;

(a) EGate (b) DIFM

(c) Variant #6

0.8400

OFM O EGate (GateNet) E Dual-FEN (DIFM)

mFRNet (Ours)

0.8300
0.8200

0.8100
0.8000
0.7900
0.7800

AUC

4 5
Feature Index

5 6 7 9

(f) Test AUC on Corresponding Subsets of each feature. Each subset contains 1,000 instances.

Figure 7: Visualization of context-aware feature representations for 10 features in same field. We randomly choose 1000 in-
stances for each feature. Hence, each feature has an original representation and 1,000 context-aware feature representations.

(4) Learning bit-level weights is more effective than learning vector-
level weights. The variants learning bit-level weights (#7, #9, #11,
#13) consistently outperform those corresponding variants learning
vector-level weights (#6, #8, #10, #12) respectively, which verifies
that learning more fine-grained weights for selecting information
is more effective. Intuitively, each element of one feature represen-
tation has a specific semantic meaning, so we should give them
different weights instead of treating them equally;

(5) Complementary Features are crucial. Variants #6 and #7 only
learn feature representations from the original feature represen-
tations. After adding Eg4, #10 and #11 outperforms #6 and #7 re-
spectively. Furthermore, we observe that #12 and #13 outperform
#10 and #11, as we assign weights 1 — 6(Wy,) to Eg4, which verifies
that assigning weights to complementary features is reasonable. In
summary, it is reasonable that the CSGate integrates E and Eg with
Wy, As a comparison, we adopt the idea of Residual Network [9]
in variants #8 and #9 (i.e, adding original representations E), which
is also used in DIFM [21]. However, the performance of #8 and
#9 are worse than #6 and #7. The reason is that residual network
aims to add the original feature representations to the final feature
representations, which might not be enough for CTR prediction.

5.6 Visualization of Feature Representations

5.6.1 Visualization Analysis. To better understand the effective-
ness of context-aware feature representations, we first randomly
select 10 features from the same field and choose 1,000 instances
for each feature from Criteo. Then, we learn the 1,000 feature repre-
sentations by: (a) EGate, (b) DIFM, (c) Variant#6, (d) FRNet-Vec and
(e) FRNet. Finally, we visualizes their feature representations with
t-SNE [29] in Figure 7. Each color in Figure 7 represents the origi-
nal representation of one feature (denoted by the largest symbols,
e.g., dots, squares, etc.) and 1,000 different context-aware feature

Table 5: Ablation study of FRNet. E, E; and E, denote the orig-
inal, complementary and context-aware feature representa-
tions respectively. W, and W, denote bit-level and vector-
level weights. Oy is the output of self-attention unit.

Comment/Equation Datasets Criteo Frappe
Variant ~ AUC Logloss AUC Logloss
FM (E; = E) #1 0.8028 0.4514 0.9708 0.1934
Er = Oyec #2 0.8056 0.4483 09717 0.1912
Er =Eg #3 0.8071 0.4470 0.9744 0.1897
Removing CIE #4 0.8073 0.4468 0.9754 0.1878
Er=E+Eg #5 0.8090 0.4452 0.9778 0.1821
E; =E0 o(Wy) #6 0.8110 0.4443 0.9793 0.1713
E; =E0© o(Wp) #7 0.8113 0.4437 0.9797 0.1697
E;=E0o(Wy)+E #8 0.8093 0.4452 0.9791 0.1739
E;=E0®o(Wy)+E #9 0.8098 0.4449 0.9794 0.1726
Er=E0ad(Wy) +Eg #10 0.8110 0.4433 0.9798 0.1696
Er =E0 g(Wy) +Eg #11 0.8114 0.4430 0.9804 0.1689
FRNet-Vec #12 0.8115 0.4428 0.9816 0.1653
FRNet #13 0.8120 0.4424 0.9830 0.1607

representations in different instances (denoted by smaller sym-
bols). Variant #6 is defined in Section 5.5, which learns vector-level
weights for E by IEUyy, . Note that we compress the size of feature
representations to 2 in this part for the sake of visualization. As
shown in Figure 7, each feature can learn 1,000 different context-
aware feature representations in different instances except EGate, as
EGate only produces the fixed feature representations in a specific
transformed feature space, where the original feature are mapped
to its learned feature (as the two arrows show). From Figure 7, we
have the following observations:

(1) In DIFM, the learned context-aware feature representations
among different features are mixed. In contrast, feature represen-
tations learned by Variant#6, FRNet-Vec, and FRNet can be clearly
distinguished.

(2) DIFM and Variant #6 only learn vector-level weights to the
fixed original feature representations, so that their refined feature
representations should have strictly linear relationships to their
original feature representations in high-dimensional feature space.
As shown in Figure 7 (b) and (c), the linear relationships are ex-
pressed as the continuous curves in the visualization space. How-
ever, compared with DIFM, variant #6 can learn better context-
aware feature representations because feature representations are
not blended together. Since variant #6 use IEU to integrate cross-
feature relationships and contextual information, this phenomenon
confirms that IEU can better distinguish different features.

(3) FRNet-Vec and FRNet learn nonlinear context-aware features
representation for the same feature. FRNet-Vec learns vector-level
weights, but after combining with complementary feature repre-
sentations, the feature representations exhibit strong nonlinear
relationship to the original feature representations and the context-
aware feature representations for the same feature form a cluster
rather than a curve. Different from FRNet-Vec, FRNet simultane-
ously learns the bit-level weights and complementary features,
which further enhances the nonlinearity and the refined feature
representations for the same feature form a more diverse cluster.
Intuitively, FRNet can learn more different and expressive repre-
sentations for the same feature under different contexts.

5.6.2 Quantitative Analysis. To quantify how the feature represen-
tations influence the performance, we calculate the AUCs of CTR
prediction based on the feature representations in Figure 7 (a) - (e)
and present the results in Figure 7 (f). DIFM outperforms FM and
EGate in most subsets; Variant #6, FRNet-Vec, and FRNet outper-
form FM and EGate in all subsets, as FM and EGate only produce
fixed feature representation for each feature in different instances.
In addition, FRNet learns the most diverse nonlinear context-aware
feature representations and achieves the best results than other
methods, which further confirms the effectiveness of our method.

5.7 Visualization of IEU

We design IEU to enable self-attention to incorporate contextual
information within different instances. To better understand the
effectiveness of IEU, we choose two instances from Criteo with
38 identical features and only one different feature (Feature 0). In
the test phase, we input them to FMfpgne;, and record the output
features of IEU and its two components: Self-attention and CIE.

Figure 8 shows the heatmaps of the features from the three units.
As shown in Figure 8 (a), self-attention learns almost identical rep-
resentations for the same features when the two instances are only
with one different feature. Since self-attention only focuses on pair-
wise feature interactions in a given instance, it neglects the various
contextual information among different instances. In Figure 8 (b),
we can see that the two contextual information vectors learned
by CIE are with significant differences, which demonstrates that
even one different feature can have a significant impact on the two
contextual information. Furthermore, IEU integrates the outputs
of self-attention and CIE. As shown in Figure 8 (c), for the same
feature in the two instances, their representations are significantly
different. Furthermore, FRNet utilizes two IEUs, which ensures that
it can generate flexible context-aware feature representations for
the same feature in different instances.

Instance 1 Instance 2
0 o

Instance_1 Instance_2
1 0 o
N]
' s{ omm 10 sl sfm my 15
x 10 10 os x 10 10 10
[} v | |
° °
c s 15 00 c i 1 0
2 Instance 1 .2 I 0
© 25 10 © 5 25
[}]
w T wol | 0s
0 0 1s Instance 2 | ol
| | 10
s > 20 s]| 3 |
LR T3 o 3 o 3
(a) Self-Attention (b) CIE (c) IEU

Figure 8: Heatmap of features learned by IEU and its com-
plements: Self-attention and CIE.

mean_1=
0.578 ,—,

—— KDE o(Ws)
—— KDE 1-0(Ws)

0.3 0.4 05 0.6 0.7

Figure 9: Distribution of bit-level weights in 100K instances.

5.8 Distribution of Bit-level Weights

Here, we randomly sample 100k instances from the Criteo dataset.
We first compute the bit-level weights o(W;,) € R32%10 and comple-
mentary feature weights 1 — (W;,). Then we show the distribution
of learned weights (totally 39,000,000 values) in Figure 9.

We observe that the two distributions follow the normal distribu-
tion by observing the histogram and the Kernel Density Estimation
(KDE) curve. The values of (W) mean the importance of the
original feature representations. On average, the original feature
representations are selected by 57.8%, and the complementary fea-
ture representations are selected by 42.2%. Complementary feature
representations boost the performance of FRNet is proved in the
ablation study (section 5.5). This experiment confirms that comple-
mentary features are helpful to CTR prediction to a large extent.

6 CONCLUSION

In this paper, we propose a novel module named FRNet, which
can learn context-aware feature representations and be used in
most CTR prediction models to enhance their performance. In FR-
Net, we design IEU to integrate contextual information and cross-
feature relationships, enabling self-attention to incorporate contex-
tual information within each instance. We also design the CSGate
to integrate the original and complementary features representa-
tions with learned bit-level weights. Detailed ablation study shows
that each design of FRNet contributes to the overall performance.
Furthermore, comprehensive experiments verify the effectiveness,
efficiency, and compatibility of our proposed method.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Founda-
tion of China (NSFC) under Grants 61932007 and 62172106.

REFERENCES

(1]

&

(6

=

[7

[

[10]

[11

[12

[13]

[14

[15]

[16]

[17

[18]

=
o

[20]

[21

[22

[23

Bo Chen, Yichao Wang, Zhirong Liu, Ruiming Tang, Wei Guo, Hongkun Zheng,
Weiwei Yao, Muyu Zhang, and Xiuqiang He. 2021. Enhancing Explicit and Implicit
Feature Interactions via Information Sharing for Parallel Deep CTR Models. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 3757-3766.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7-10.

Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2020. Adaptive factorization
network: Learning adaptive-order feature interactions. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 3609-3616.

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191-198.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In International Conference
on Machine Learning. PMLR, 1243-1252.

Huifeng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, and Xiugiang
He. 2021. An embedding learning framework for numerical features in ctr
prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2910-2918.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence.
1725-1731.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision. 1026—1034.
Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the 40th International ACM SIGIR conference
on Research and Development in Information Retrieval. 355-364.

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. 1-9.

Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132-7141.
Tongwen Huang, Qingyun She, Zhigiang Wang, and Junlin Zhang. 2020. GateNet:
Gating-Enhanced Deep Network for Click-Through Rate Prediction. arXiv
preprint arXiv:2007.03519 (2020).

Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: combining fea-
ture importance and bilinear feature interaction for click-through rate prediction.
In Proceedings of the 13th ACM Conference on Recommender Systems. 169-177.
Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-
aware factorization machines for CTR prediction. In Proceedings of the 10th ACM
Conference on Recommender Systems. 43-50.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR (Poster).

Zeyu Li, Wei Cheng, Yang Chen, Haifeng Chen, and Wei Wang. 2020. Interpretable
click-through rate prediction through hierarchical attention. In Proceedings of
the 13th International Conference on Web Search and Data Mining. 313-321.

Z Li,] Zhang, Y Gong, Y Yao, and Q Wu. 2020. Field-wise Learning for Multi-field
Categorical Data. In Conference on Neural Information Processing Systems.
Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1754-1763.
Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang.
2019. Feature generation by convolutional neural network for click-through rate
prediction. In The World Wide Web Conference. 1119-1129.

Wantong Lu, Yantao Yu, Yongzhe Chang, Zhen Wang, Chenhui Li, and Bo Yuan.
2020. A Dual Input-aware Factorization Machine for CTR Prediction. In IJCAL
3139-3145.

Yuanfei Luo, Hao Zhou, Wei-Wei Tu, Yugiang Chen, Wenyuan Dai, and Qiang
Yang. 2020. Network On Network for Tabular Data Classification in Real-world
Applications. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2317-2326.

Junwei Pan, Jian Xu, Alfonso Lobos Ruiz, Wenliang Zhao, Shengjun Pan, Yu Sun,
and Quan Lu. 2018. Field-weighted factorization machines for click-through
rate prediction in display advertising. In Proceedings of the 2018 World Wide Web
Conference. 1349-1357.

[24

[25

[26

[27

™
&,

[29

[30

[31

[32

[33

[34

(35]

[37

[38

[39

[40

[41

[42

[43

(44

Yujie Pan, Jiangchao Yao, Bo Han, Kunyang Jia, Ya Zhang, and Hongxia Yang.
2021. Click-through Rate Prediction with Auto-Quantized Contrastive Learning.
arXiv preprint arXiv:2109.13921 (2021).

Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo,
Yong Yu, and Xiugiang He. 2018. Product-based neural networks for user response
prediction over multi-field categorical data. ACM Transactions on Information
Systems (TOIS) 37, 1 (2018), 1-35.

Steffen Rendle. 2012. Factorization machines with libfm. ACM Transactions on
Intelligent Systems and Technology (TIST) 3, 3 (2012), 1-22.

Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web. 521-530.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161-1170.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1-7.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. DCN V2: Improved Deep & Cross Network and Practical
Lessons for Web-scale Learning to Rank Systems. In Proceedings of the Web
Conference 2021. 1785-1797.

Zhigiang Wang, Qingyun She, and Junlin Zhang. 2021. MaskNet: Introducing
Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask.
arXiv preprint arXiv:2102.07619 (2021).

Zhikun Wei, Xin Wang, and Wenwu Zhu. 2021. AutoIAS: Automatic Integrated
Architecture Searcher for Click-Trough Rate Prediction. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management.
2101-2110.

Shu Wu, Feng Yu, Xueli Yu, Qiang Liu, Liang Wang, Tieniu Tan, Jie Shao, and
Fan Huang. 2020. TFNet: Multi-Semantic Feature Interaction for CTR Prediction.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1885-1888.

Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional factorization machines: learning the weight of feature in-
teractions via attention networks. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence. 3119-3125.

Yi Yang, Baile Xu, Shaofeng Shen, Furao Shen, and Jian Zhao. 2020. Operation-
aware Neural Networks for user response prediction. Neural Networks 121 (2020),
161-168.

Runlong Yu, Yuyang Ye, Qi Liu, Zihan Wang, Chunfeng Yang, Yucheng Hu,
and Enhong Chen. 2021. XCrossNet: Feature Structure-Oriented Learning for
Click-Through Rate Prediction. In PAKDD (2). Springer, 436-447.

Yantao Yu, Zhen Wang, and Bo Yuan. 2019. An Input-aware Factorization Machine
for Sparse Prediction. In IJCAL 1466-1472.

Weinan Zhang, Tianming Du, and Jun Wang. 2016. Deep learning over multi-field
categorical data. In European conference on information retrieval. Springer, 45-57.
Keke Zhao, Xing Zhao, Qi Cao, and Linjian Mo. 2021. A Non-sequential Approach
to Deep User Interest Model for Click-Through Rate Prediction. arXiv preprint
arXiv:2104.06312 (2021).

Zihao Zhao, Zhiwei Fang, Yong Li, Changping Peng, Yongjun Bao, and Weipeng
Yan. 2020. Dimension Relation Modeling for Click-Through Rate Prediction. In
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management. 2333-2336.

Zhishan Zhao, Sen Yang, Guohui Liu, Dawei Feng, and Kele Xu. 2021. FINT:
Field-aware INTeraction Neural Network For CTR Prediction. arXiv preprint
arXiv:2107.01999 (2021).

Guorui Zhou, Xiaogiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1059-1068.

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Feature Refinement Network
	4.1 Information Extraction Unit (IEU)
	4.2 Complementary Selection Gate (CSGate)

	5 Experiments
	5.1 Experimental Setup
	5.2 Overall Comparison
	5.3 Compatibility Analysis
	5.4 Hyper-parameter Study
	5.5 Ablation Study
	5.6 Visualization of Feature Representations
	5.7 Visualization of IEU
	5.8 Distribution of Bit-level Weights

	6 Conclusion
	Acknowledgments
	References

