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Abstract

Dynamic interaction graphs have been widely adopted to model the evolution of
user-item interactions over time. There are two crucial factors when modelling
user preferences for link prediction in dynamic interaction graphs: 1) collaborative
relationship among users and 2) user personalized interaction patterns. Existing
methods often implicitly consider these two factors together, which may lead to
noisy user modelling when the two factors diverge. In addition, they usually require
time-consuming parameter learning with back-propagation, which is prohibitive
for real-time user preference modelling. To this end, this paper proposes FreeGEM,
a parameter-free dynamic graph embedding method for link prediction. Firstly,
to take advantage of the collaborative relationships, we propose an incremental
graph embedding engine to obtain user/item embeddings, which is an Online-
Monitor-Offline architecture consisting of an Online module to approximately
embed users/items over time, a Monitor module to estimate the approximation
error in real time and an Offline module to calibrate the user/item embeddings
when the online approximation errors exceed a threshold. Meanwhile, we integrate
attribute information into the model, which enables FreeGEM to better model users
belonging to some under represented groups. Secondly, we design a personalized
dynamic interaction pattern modeller, which combines dynamic time decay with
attention mechanism to model user short-term interests. Experimental results on
two link prediction tasks show that FreeGEM can outperform the state-of-the-art
methods in accuracy while achieving over 36X improvement in efficiency. All code
and datasets can be found in https://github.com/FudanCISL/FreeGEM.

1 Introduction

Dynamic interaction graphs have been adopted in a wide range of link prediction tasks to model the
evolution of user-item interactions over time [12, 14, 37]. The evolution of a dynamic interaction
graph can be reflected by its historical interaction (edge) sequence, in which two crucial factors
should be explicitly considered for link prediction tasks: 1) collaborative relationship among users,
i.e., users with similar historical interactions will interact with similar items in the future, which is
also the basic assumption of collaborative filtering [7, 15, 20]; and 2) user personalized dynamic
interaction patterns, i.e., users could have unique short-term interaction patterns, which are not shared
among like-minded users but can only be reflected by their own interaction sequences.

Many existing methods learn user preferences from dynamic interaction graphs using temporal point
process (TPP) [28, 30, 41], recurrent neural network (RNN) [1, 14, 32] and graph neural network
(GNN) [4, 23, 37], etc., in which the following key challenges arise. Firstly, these methods do not
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Figure 1: The high-level design of the proposed FreeGEM method.

consider the above two key factors separately, so that collaborative relationship may bring noises to
personalized patterns when they diverge, and vice versa. Secondly, the above methods often require
time-consuming parameter learning with back-propagation. In dynamic interaction graphs, the model
training should follow chronological order of the interactions to capture the temporal dynamics,
which raises efficiency issue even for applications with moderate number of interactions.

In this paper, we propose a Parameter-Free Dynamic Graph EMbedding (FreeGEM) method for
link prediction. Here, parameter-free means that we do not incorporate any parameters which
need to be learned via back-propagation. As shown in Figure 1, FreeGEM consists of two key
components: incremental graph embedding engine and personalized dynamic interaction pattern
modeller. The incremental graph embedding engine takes both historical data and online stream
data as input and generates user/item embeddings as the output, which exploits the collaborative
relationship among users. Its core innovation is the proposed Online-Monitor-Offline architecture,
which can achieve online embedding updates by solving closed-form solutions in real time and
keep the approximation errors caused by online singular value decomposition (SVD) [2] within
any predefined threshold. In the Offline step, we propose a frequency-aware preference matrix
reconstruction method to alleviate the oversmoothing problem and an attribute-integrated SVD to
alleviate the cold-start issue. Surprisingly, the integration of attribute information enables FreeGEM
to better model users belonging to under represented groups. In the Online step, we convert the offline
truncated SVD into an online SVD to generate embeddings in real time. In the Monitor module,
we estimate the online approximation error in real time by analyzing the relationship between
approximation error and the update of online algorithm. The personalized dynamic interaction
pattern modeller is also a parameter-free component, which combines the dynamic time decay with
attention mechanism to model user short-term interests. It takes the user and item embeddings as
input and outputs the prediction results. Specifically, it selectively forgets the early interactions
through dynamic time decay and hence focuses on more recent interactions for prediction. Then, it
leverages the attention mechanism to capture user personalized dynamic interaction patterns over the
“decayed” item embedding sequences. Experimental results on two link prediction tasks (future item
recommendation and next interaction prediction) show that FreeGEM can substantially outperform
the state-of-the-art link prediction methods in accuracy while achieving over 36X improvement in
computational efficiency. Besides, our empirical studies also confirm that FreeGEM can alleviate the
cold-start issue and achieve high robustness on very sparse data.

2 Related Work

Link prediction methods on dynamic interaction graphs are mostly based on TPP, RNN and GNN,
etc., which need time-consuming training process. To the best of our knowledge, the proposed
FreeGEM is the only parameter-free method in this task, with high accuracy and efficiency.

TPP-based methods Know-Evolve [28] and HTNE [41] model interactions as multivariate point
processes and Hawkes processes, respectively. Wang et al. [30] propose a co-evolutionary process
to model the co-evolving nature of users and items. Shchur et al. [22] propose to directly model
the conditional distribution of inter-event times. DSPP [3] incorporates topology and long-term
dependencies into the intensity function.

RNN-based methods RRN [32] models user and item interaction sequences with separate RNNs.
Time-LSTM [40] proposes time gates to represent the time intervals. LatentCross [1] incorporates
contextual data into embeddings. DeepCoevolve [6] and JODIE [14] generate node embeddings using
two intertwined RNNs. JODIE [14] can also estimate user embeddings trajectories. DeePRed [13]
employs non-recursive mutual RNNs to model interactions.

GNN-based methods TDIG-MPNN [4] captures the global and local information on the graph.
DGCF [16] uses three update mechanisms to update users and items. SDGNN [27] takes the
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Figure 2: Illustration of the proposed incremental graph embedding engine.

state changes of neighbor nodes into account. MRATE [5] combines different relations to realize
multi-relation awareness. OGN [11] updates nodes in an online fashion with a constant memory
cost. TCL [29] proposes a graph-topology-aware transformer to learn the representations of nodes.
CoPE [37] uses an ordinary differential equation-based GNN to model the evolution of network.
TGL [39] proposes a unified framework for large-scale temporal GNN training. MetaDyGNN [34]
proposes a model based on a meta-learning framework for few-shot link prediction in dynamic
networks. TREND [31] uses Hawkes process-based GNN for temporal graph representation learning.

3 Incremental Graph Embedding Engine

As shown in Figure 2, the incremental graph embedding engine 1) takes the historical user-item
interaction, user/item attribute and online stream data as the input, 2) embeds users and items via the
novel Online-Monitor-Offline architecture, and 3) outputs the user and item embeddings in real time.

Online-Monitor-Offline Architecture The Offline module first decomposes the historical data
matrices by offline SVD to obtain user and item embeddings. To capture real-time information
from the interaction stream, the model needs to efficiently update the corresponding embeddings
when new interaction occurs. Thus, we propose the Online module, which uses online SVD to
approximately update user and item embeddings, to meet the real-time requirements. However,
since the approximation error of online SVD accumulates over time, we propose a Monitor module
to estimate the accumulated approximation error of the Online module in real time. When the
accumulated error exceeds a threshold, we restart the Offline module to calibrate the user and item
embeddings. Otherwise, we continue to execute the Online module for real-time user/item embedding.

3.1 Offline Module

The input data of FreeGEM includes six matrices as defined in Table 1, in which R ∈ Rm×n is
user-item interaction matrix, G ∈ Rm×p is user attribute matrix and H ∈ Rn×q is item attribute
matrix, where m/n is the number of users/items, q/p is the dimension of user/item attribute vector and
(R)ij indicates the number of interactions between user i and item j. Each stream data sample can be
represented as a 5-tuple (u,g, i,h, t), where u, i, t are user id, item id and timestamp respectively,
and g ∈ Rp and h ∈ Rq are user and item attribute vectors, respectively.

3.1.1 Frequency-aware Preference Matrix Reconstruction

There are three steps to realize collaborative filtering [19]: 1) decompose the interaction matrix R
using truncated SVD to obtain U = (u1, ...,uk) ∈ Rm×k, S = diag(s1, ..., sk) ∈ Rk×k, s1 > ... >
sk > 0 and V = (v1, ...,vk) ∈ Rn×k; 2) the embeddings of users and items are EU = US1/2

and EI = V S1/2, respectively; and 3) use R̂ = EUE
⊤
I as the low rank approximation of R. Our

method makes non-trivial improvements based on this, including frequency-aware preference matrix
reconstruction in this section and attribute-integrated SVD in the Section 3.1.2.

The raw interaction matrix R cannot perfectly reflect user preferences due to potential biases [24, 25],
so we propose to normalize R as follows: R′ = D−α

U RD−α
I , where α > 0 is a hyperparameter, DU

and DI are diagonal matrices, and (DU )ii = Σn
j=1Rij and (DI)jj = Σm

i=1Rij . Compared with R,
R′ can more accurately represent user preferences. Intuitively, the more users an item interacts with,
the less it can reflect each user’s preference, and vice versa. The normalization can alleviate the
popular bias and help to achieve more accurate user representation.

By applying offline truncated SVD on R′, we have the approximation of R′ as: R̂′ = Σk
i=1siuiv

⊤
i ,

which only retains the low-frequency signals of R′, so it can be regarded as R′ passing through an
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Table 1: Correspondence between the decomposed matrix and the constructed embedded matrix.

Description of the decomposed matrix Decomposed matrix Constructed embedding (left) Constructed embedding (right)
user-item R ∈ Rm×n E1

U ∈ Rm×k1 E1
I ∈ Rn×k1

user attribute G ∈ Rm×p E2
U ∈ Rm×k2 E2

G ∈ Rp×k2

item attribute H ∈ Rn×q E3
I ∈ Rn×k3 E3

H ∈ Rq×k3

user_attribute-item G⊤R ∈ Rp×n E4
G ∈ Rp×k4 E4

I ∈ Rn×k4

user-item_attribute RH ∈ Rm×q E5
U ∈ Rm×k5 E5

H ∈ Rq×k5

user_attribute-item_attribute G⊤RH ∈ Rp×q E6
G ∈ Rp×k6 E6

H ∈ Rq×k6

Table 2: Correspondence between path and embedding matrix.

No. Path User embedding Item embedding
1 user-item EU1

= E1
U ∈ Rm×k1 EI1

= E1
I ∈ Rn×k1

2 user-user_attribute-item EU2
= E2

U (E2
G)⊤ ∈ Rm×p EI2

= E4
I (E

4
G)⊤ ∈ Rn×p

3 user-item_attribute-item EU3
= E5

U (E5
H)⊤ ∈ Rm×q EI3

= E3
I (E

3
H)⊤ ∈ Rn×q

4 user-user_attribute-item_attribute-item EU4
= E2

U (E2
G)⊤E6

G ∈ Rm×k6 EI4
= E3

I (E
3
H)⊤E6

H ∈ Rn×k6

5 user-item_attribute-user_attribute-item EU5
= E5

U (E5
H)⊤E6

H ∈ Rm×k6 EI5
= E4

I (E
4
G)⊤E6

G ∈ Rn×k6

ideal low-pass graph filter. Thus, it will suffer from the oversmoothing problem when k is small. To
alleviate this problem, we introduce a hyperparameter γ to control the ratio of high-frequency signals
to low-frequency signals as follows: EU = USγ , EI = V Sγ (γ < 0.5). The original intensity of
each frequency is si, which becomes s2γi after applying the frequency control. The attenuation ratio
is s2γi /si, which is a hyperbola about si. The low-frequency signal corresponds to a larger si, which
means that the attenuation of the low-frequency signal is stronger than that of the high-frequency
signal, improving the proportion of the high-frequency signal in the reconstructed matrix R̂′. In
summary, this is equivalent to reducing the proportion of low-frequency signals after ideal low-pass
filtering through truncated SVD (more discussion can be found in the Appendix A.1). Finally, the
predicted interaction matrix is obtained by inverse normalization as follows: R̂ = Dα

U R̂
′Dα

I .

3.1.2 Attribute-integrated SVD

In addition to frequency-aware preference matrix reconstruction, compared with the plain SVD,
we also integrate attribute information to better model users and items. Integrating user and item
attributes can help to improve the prediction accuracy and alleviate the cold-start issue in the
recommender system [33, 36]. R, G and H are three basic matrices, which respectively describe
the co-occurrence relationship of user-item, user-user_attribute and item-item_attribute. To connect
them, we further obtain three derived matrices G⊤RH ∈ Rp×q, G⊤R ∈ Rp×n and RH ∈ Rm×q,
which describe the co-occurrence relationship of user_attribute-item_attribute, user_attribute-item
and user-item_attribute respectively. After decomposing and reconstructing the six matrices using
the method described in Section 3.1.1, we can get 6 × 2 = 12 embedding matrices, as shown in
Table 1, whose superscript indicate embedding space, corresponding to different dimensions. As
shown in Figure 3, we have four objects: user, user attribute, item and item attribute. There are
C2

4 = 6 relationships between them, which are represented by the six matrices respectively. The
six edges represent six embedding spaces, and each object has a representation in three of them.
There are five paths between user and item without revisiting, each of which corresponds to a user
embedding matrix and an item embedding matrix, as shown in Table 2. Except for the user-item path
where user and item are directly connected, all other paths go through user/item attribute and thus
integrate the user/item attributes in the embeddings. Finally, we only concatenate the embeddings
from the first three paths as the output of the Offline module, for the last two paths consider user/item
attributes repeatedly, and obtain user embedding and item embedding as follows:

EU = (α1EU1
)||(α2EU2

)||(α3EU3
) ∈ Rm×(k1+p+q). (1)

EI = (α1EI1)||(α2EI2)||(α3EI3) ∈ Rn×(k1+p+q). (2)

αi is the hyperparameter that controls the weight of the i-th path, and || represents concatenation.

3.2 Online Module

The only difference between Online module and Offline module is the way to obtain truncated SVD,
where the Offline module uses ordinary truncated SVD but the Online module uses online SVD [2].
Online SVD [2] provides an approximated method to calculate the truncated SVD of an updated
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Figure 4: Motivating example of the Monitor.

matrix in linear time. Let Rt ∈ Rm×n be the interaction matrix at time t. Assuming that we have
finished the truncated SVD of Rt, and then at time t+ 1, user u interacts with item i. Thus, we have
Rt+1 = Rt + ui⊤, where u ∈ Rm and i ∈ Rn are one-hot vectors indicating user id and item id,
respectively. Therefore, we realize the incremental calculation of truncated SVD of Rt+1 given the
truncated SVD of Rt = USV ⊤, where U ∈ Rm×k, S ∈ Rk×k, V ∈ Rn×k and k = k1 + p+ q as
shown in Equation 1 and Equation 2. The details are described as follows.

Firstly, we calculate:

m = U⊤u, n = V ⊤i, p = u− Um, q = i− V n, P = ||p||−1p, Q = ||q||−1q. (3)

Secondly, we calculate:

K =

[
S 0
0 0

]
+

[
m
||p||

] [
n

||q||

]⊤
. (4)

Thirdly, we calculate the full SVD of K and get UKSKV ⊤
K with UK ∈ R(k+1)×(k+1), VK ∈

R(k+1)×(k+1) and SK ∈ R(k+1)×(k+1). Then, we have the following result:

Rt+1 = Rt + ui⊤ ≈ ([U P ]UK)SK([V Q]VK))⊤. (5)

Finally, we can use the first k columns of [U P ]UK , SK and [V Q]VK as the estimate of the truncated
SVD of Rt+1.

3.3 Monitor Module

In the Online module, the approximation error will accumulate over time. To analyze the accumulated
error, TIMERS [38] was proposed to calculate the lower bound of the approximation error of online
SVD through matrix perturbation [26]. However, TIMERS depends on a time-consuming eigen-
decomposition, so it can not monitor the error in real time but based on the granularity of time slice
for eigen-decomposition. Nevertheless, TIMERS provides two insights for the design of the Monitor:
1) the accumulated approximation error does not change uniformly with time and 2) there are no
shared correlation patterns between the running time of online SVD, the number of new observations
in the interaction matrices and the accumulated error among different datasets.

The timing of restart Offline module is very important because untimely restart will lead to excessive
error and reduce the embedding quality and too frequent restart will lead to low efficiency. There
could be two restart heuristics: 1) restart after a certain time and 2) restart after a certain number
of new interactions. However, both heuristics are not optimal due to unawareness of the online
approximation error, leading to potentially unnecessary or inaccurate updates.

The motivation of the Monitor is illustrated in Figure 4. At time step 0, we initialize the offline
truncated SVD of the user-item interaction matrix R̂0. At time step i, we can have matrices: 1)
R̂i if we use offline SVD and 2) R̂i′ if we use online SVD to approximate the matrix when new
interaction occurs. For ease of illustration, we use straight lines to represent the F-norm distance
of the reconstructed matrices, and arrows to represent the evolution directions of the results. The
angle between the evolution directions of offline SVD and online SVD should be less than π/3 (more
discussion can be found in the Appendix A.2), otherwise the results of online SVD is even worse
than not updating at all. Since there is no online approximation error in offline SVD, we take R̂i,
where i = 1, 2, 3, as the ground truth and R̂i′ , where i = 1, 2, 3, correspond to the results obtained by
online SVD after each update. The lengths of R̂0R̂1 (R̂0R̂1′), R̂1R̂2 (R̂1′R̂2′) and R̂2R̂3 (R̂2′R̂3′)
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Figure 5: Personalized dynamic interaction pattern modeling module.

are not equal, for different interactions have different impacts on the evolution of SVD [38]. The
dotted line represents the F-norm distance between the matrices reconstructed by offline SVD and
online SVD, e = ||R̂i − R̂i′ ||F , i.e., the online approximation error. The dotted line become longer
over time, indicating that the error will accumulate with the occurrence of new interactions.

We use distance to specifically refer to the F-norm distance between the reconstructed matrix by online
SVD at the current time step and the initial reconstructed matrix: d = ||R̂i′ − R̂0||F . Calculating R̂1,
R̂2, R̂3 is time-consuming, so we hope to monitor the length of the dotted line without calculating it.
While calculating R̂1′ , R̂2′ , R̂3′ is efficient due to the linearity of online SVD and it can be seen from
the Figure 4 that there is a positive correlation between distance and approximation error (empirically
verified in the Appendix A.3), so we can estimate the online approximation error though the distance.
Every time the Online module is executed, the Monitor will calculate the distance in real time. When
the distance exceeds the predefined threshold, we believe the corresponding approximation error also
reaches another threshold for restarting the Offline module.

Compared with the two simple heuristics, our Monitor estimates errors in a data-driven way with the
following benefits: 1) the Monitor estimates the error according to the interaction events, avoiding
the negative impacts caused by uneven interaction distributions in different time intervals; and 2) the
Monitor estimates the error according to the positive correlation between the distance and the error,
avoiding the varying impacts of different interactions on the error estimation. It should be noted that,
compared with the two heuristics, Monitor only adds the process of calculating the distance, which is
very efficient and thus can achieve real-time monitoring.

4 Personalized Dynamic Interaction Pattern Modeller

Both Offline module and Online module cannot model the evolution trends of the dynamic interaction
graph due to lacking the ability of memorization. The incremental graph embedding engine captures
collaborative relationships shared among similar users, but the interaction pattern of each user in
his/her interaction sequence is irrelevant to his/her preference, i.e., interaction patterns are unique
instead of collaborative with like-minded users. Therefore, we propose an additional downstream
module to capture user personalized dynamic interaction patterns as illustrated in Figure 5.

4.1 Dynamic Time Decay

We define the process from the execution of an Offline module to the execution of the next Offline
module a stage. At the beginning of the i-th stage, when constructing the historical interaction matrix,
we decay the historical interaction score as exp{β(t/Ti − 1)}, where Ti is the beginning time of the
i-th stage and β > 0 is the decay coefficient. This implies that, for each stage, the score of historical
interaction (t < Ti) is less than 1, while the score of interactions in current stage (t ≥ Ti) is greater
than or equal to 1. The decay should be memoryless, i.e., the decay factor is unchanged for the
same time difference (more discussion can be found in the Appendix A.4). This requires that β/T
is a constant. Thus, for stage i and stage j, their decay coefficients have the following relationship:
βi/βj = Ti/Tj .

Time decay makes the model more relevant to recent interactions through selective forgetting. It can
help the model capture the interaction pattern that users often interact with the recently interacted
items in many link prediction tasks. However, it cannot automatically capture the personalized
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dynamic interaction pattern of each user. Thus, we propose to combine attention mechanism with
dynamic time decay to achieve personalized interaction pattern modelling.

4.2 Attention Module

For a user, we use the weighted average of a recent user embeddings as his/her long-term embedding:

elong =
∑a

r=1
1
re

(r)
u , (6)

where e
(r)
u ∈ Rk is the corresponding user embedding, that is, a row of the EU , at the r-th time step.

Then, we concatenate the decayed embeddings of the user’s recent b items as Su ∈ Rk×b and apply
self-attention and attention to obtain the short term preference embedding eshort as follows:

Su = e
(1)
i || · · · ||e(b)i , S′

u =
S⊤
u Su√
k

S⊤
u , eshort = (S′

u)
⊤S′

uelong√
k

. (7)

Finally, we obtain the final user embedding by a weighted average:

e = λeshort + (1− λ)elong. (8)

We use the dot product between current item embeddings and user final embedding: EI · e as the
scores for predicting the link between the user and all items. It should be noted that both self-attention
and attention operations in our design require no weight matrices, i.e., they are parameter-free. The
whole process is shown in the Figure 5.

Discussion A user has his/her own historical interactions, corresponding to personalization, and
the recent historical interactions change over time, corresponding to temporal dynamic. A user’s
long-term preference vector should be changing smoothly, which is in line with the characteristics of
long-term interests. A user’s short-term preference vector is a linear combination of the embeddings
of recently interacted items, which changes rapidly over time and is in line with the characteristics of
short-term interests. Time decay of item sequences plays a key role in position embedding, which
indicates that we will pay more attention to the recently interacting items. Self-attention can integrate
the information of the whole sequence, and attention makes items with high similarity to users more
likely to be interacted again. Compared with time decay, the attention module is data-driven and
can automatically adapt to the personalized and dynamic interaction patterns by making full use of
the recent interactions. However, compared with time decay, attention may be disturbed by many
unnecessary patterns. Our empirical studies confirm that time decay and attention are complementary
to each other and should be combined in the model.

5 Experiments

Datasets For the future item recommendation task, we use the Amazon Video, Amazon Game [9],
MovieLens-1M (ML-1M) and MovieLens-100K (ML-100K) [8]. For the next interaction prediction
task, we use Wikipedia and LastFM [14]. For all datasets, we use the first 80% interactions as training
set, the following 10% interactions as validation set, and the last 10% interactions as test set.

Metrics For the future item recommendation task, we use Recall@10 to evaluate models. For the
next interaction prediction task, we use MRR and Hit@10 to evaluate models. For all experiments,
we report the results on the test set when the models achieve the optimal results on verification sets.

Baselines For the future item recommendation task, we compare with LightGCN [10], Time-
LSTM [40], RRN [32], DeepCoevolve [6], JODIE [14] and CoPE [37]. For the next interaction
prediction task, we compare with Time-LSTM [40], RRN [32], LatentCross [1], CTDNE [17],
DeepCoevolve [6], JODIE [14] and CoPE [37]. Among all baselines, LightGCN [10] is the only
static graph representation learning method for recommendation tasks. These baselines include
TPP-based, RNN-based and GNN-based methods. For clarity, we discuss and compare these methods
with FreeGEM in the Appendix A.5.
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Table 3: Accuracy comparison with state-of-the-art methods on two link prediction tasks.

(a) Future item recommendation
Video Game ML-100K ML-1M
Recall Recall Recall Recall

LightGCN 0.036 0.026 0.025 0.029
Time-LSTM 0.044 0.020 0.058 0.033

RRN 0.068 0.029 0.065 0.043
DeepCoevolve 0.050 0.027 0.069 0.030

JODIE* 0.078 0.035 0.074 0.035
CoPE* 0.088 0.047 0.081 0.049

FreeGEM *(no attr) 0.113 0.059 0.114 0.053
FreeGEM *(with attr) - - 0.149 0.065

(b) Next interaction prediction
Wikipedia LastFM

MRR Hit MRR Hit
Time-LSTM 0.247 0.342 0.068 0.137

RRN 0.522 0.617 0.089 0.182
LatentCross 0.424 0.481 0.148 0.227

CTDNE 0.035 0.056 0.010 0.010
DeepCoevolve 0.515 0.563 0.019 0.039

JODIE 0.746 0.822 0.195 0.307
CoPE 0.750 0.890 0.200 0.446

FreeGEM 0.786 0.852 0.195 0.453

Table 4: The ablation studies on the future item recommendation task.
Pattern Modeller Matrix Reconstruction Video Game ML-100K ML-1M

A ✗ ✗ 0.073 0.023 0.051 0.045
B ✗ ✓ 0.107 0.041 0.074 0.051
C ✓ ✗ 0.080 0.025 0.113 0.052

FreeGEM *(no attr) ✓ ✓ 0.113 0.059 0.114 0.053

5.1 Future item recommendation

We use this task to verify whether the model can accurately predict user future interactions according
to their historical interactions, which is a typical application of dynamic interaction graphs in
recommender system. In this task, a user interacts with an item only once at most.

The results are shown in Table 3(a), in which the results of baselines are reported by CoPE [37]. To be
fair, we do not allow JODIE, CoPE and FreeGEM to update models during test phase (marked with *).
In addition, since all baselines do not integrate attribute, we provide both the results of FreeGEM with
(with-attr) and without (no-attr) attributes. It can be observed that FreeGEM *(no-attr) achieves better
accuracy than all baselines on all datasets. Compared with truncated SVD, FreeGEM *(no-attr) only
adds the proposed frequency-aware reconstruction module and the personalized interaction pattern
modeller. Further, FreeGEM *(with-attr) outperforms FreeGEM *(no-attr) due to the proposed
attribute-integrated SVD, which verifies the effectiveness of this module. Among all baselines,
LightGCN performs the worst, because it is the only static GNN model which cannot capture the
dynamic characteristics of the interaction graph.

5.2 Next interaction prediction

We use this task to verify whether the model can accurately predict a user’s next interaction according
to the user’s historical interactions up to the current timestamp, which is a kind of user behavior
prediction problem. In this task, a user may interact with an item for many times.

The results are shown in Table 3(b), in which the results of baselines are also reported by CoPE [37].
There are no user/item attributes in Wikipedia and LastFm, so we use all proposed modules except
the attribute-integrated SVD in FreeGEM. Since JODIE, CoPE and FreeGEM can update models in
test time, they significantly outperform the other methods without test time training. FreeGEM can
outperform JODIE and achieve comparable accuracy with CoPE. Although the accuracy of FreeGEM
has no obvious advantage over CoPE in this task, we will show later that FreeGEM can significantly
outperform CoPE in computation efficiency due to no learnable parameters.

5.3 Ablation Studies

Future item recommendation We use A, B, C to refer to ablative variants of FreeGEM, and check
or cross marks indicate whether the corresponding module exists. As shown in Table 4, when the
personalized interaction pattern modeller or frequency-aware reconstruction module is not adopted,
the results are suboptimal, which confirms the effectiveness of these two modules.

Next interaction prediction We use D-I to refer to ablative variants of FreeGEM, and check or cross
marks indicate whether the corresponding module exists. In addition, we use an intuitively effective
baseline, called Last-k, which takes the recent k items that users interacted with as predictions. The
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Table 5: The ablation studies on the next interaction prediction task.

Wikipedia LastFM
Offline Online Decay Attention MRR Hit@10 MRR Hit@10

Last-1 - - - - 0.775* 0.775* 0.098* 0.098*
Last-10 - - - - 0.792 0.842 0.139 0.263

D ✗ ✗ ✗ ✗ 0.441 0.620 0.074 0.186
E ✓ ✗ ✗ ✗ 0.510 0.703 0.089 0.222
F ✗ ✓ ✗ ✗ 0.497 0.715 0.104 0.251
G ✓ ✓ ✗ ✗ 0.530 0.739 0.11 0.256
H ✓ ✓ ✓ ✗ 0.779 0.851 0.163 0.348
I ✓ ✓ ✗ ✓ 0.541 0.747 0.190 0.446

FreeGEM ✓ ✓ ✓ ✓ 0.786 0.852 0.195 0.453
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Figure 6: Performance comparison of three restart methods.
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Figure 7: Robustness.

results are shown in Table 5. Note that the result of Last-1 is Hit@1, so we marked its result with *.
D dose not update in test phase; E only uses offline SVD to update guided by Monitor in test phase;
F updates in real time, but without offline restart. G is better than D, E and F, which confirms the
effectiveness of the Online-Monitor-Offline architecture. FreeGEM is better than H and I, indicating
the effectiveness of both dynamic time decay module and attention module. Dynamic time decay
is very effective on Wikipedia, while attention has stronger effects on LastFm. This is due to the
phenomenon that many users continuously interact with the same item in Wikipedia, which can be
proved by the excellent results of Last-k on Wikipedia. It should be emphasized that, we think the
upstream incremental graph embedding engine and the downstream personalized dynamic interaction
pattern modeller are independent, and different implementations of the downstream modules can
make our model deal with different downstream tasks. Therefore, during the ablation study, we do
not perform cross-component ablation studies between the upstream engine and the downstream
modeller, but only performe ablation studies within each component (i.e., within the upstream engine
and within the downstream modeller).

Monitor We compare the average approximation errors of Monitor, Interaction (restart with fixed
number of interactions) and Time (restart with fixed time), when the number of restarts are the same.
First, we execute online SVD to obtain the total approximation error, take 6% - 10% of the total error
as the threshold of Monitor, and finally run Time and Interaction according to the number of restarts
of Monitor. The results are shown in Figure 6. Compared with the average approximation errors of
Monitor, the errors of Interaction and Time are 10.93% and 5.28% higher on Wikipedia and 16.80%
and 9.67% higher on LastFm, respectively, indicating that Monitor is more effective.

5.4 Other Studies

Table 6: Total running time comparison. The times of speedup is shown in the parentheses.

Wikipedia Lastfm
FreeGEM JODIE CoPE FreeGEM JODIE CoPE

9.7min 350.0min (36.1X) 3,589.1min (370.0X) 54.8min 15,790.0min (288.1X) 51,212.5min (934.5X)

Running time We use the next interaction prediction task to study the efficiency of JODIE,
CoPE and FreeGEM. Other baselines, such as Time-LSTM [40], RRN [32], LatentCross [1] and
CTDNE [17] show comparable efficiency with JODIE [14] and thus are omitted. JODIE and CoPE
both run 50 epochs and choose the best performing model on validation set as the optimal model, but
FreeGEM only requires multiple runs of offline/online SVD. As shown in Table 6, FreeGEM is at
least 36X faster than JODIE and at least 370X faster than CoPE, demonstrating its high efficiency.
Besides, the running time of JODIE and CoPE increase significantly when the number of interactions
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increases, but the running time of FreeGEM only increases moderately which is more desirable for
real-world applications.

Cold-start We use the future item recommendation task to study the effects of attribute-integrated
SVD in cold-start setting. We define the users who have not appeared in training set and verification
set as cold-start users. For ML-1M, there are 29 cold-start users. When attributes are not integrated,
FreeGEM randomly recommends items to these users. For 17 of the cold-start users whose Recall@10
is not 0, FreeGEM increases their average Recall@10 from 0.011 to 0.029, achieving a relative
increase of 166%. For 7 cold-start users whose Recall@10 is 0, FreeGEM increases their average
Recall@10 to 0.100, which is very high compared with the average Recall@10 of all users in ML-1M.

Robustness For the next interaction prediction task, we change the proportion of the training set to
verify the robustness of FreeGEM in different levels of data sparsity. We change the percentage of
the training set from 10% to 80%, next 10% interactions after the training set as the validation set,
and next 10% interactions after the validation set as the test set. The results are shown in Figure 7,
in which we can observe that the accuracy of FreeGEM is almost unaffected. This experiment
demonstrate that that FreeGEM has strong robustness to the scale of training data. The results of
many baselines can also be found in JODIE [14].

Under represented groups There could be recommendation bias concerns on under represented
groups in specific applications and the existence of under represented groups usually comes from the
biases during the data collection process. Some bias mitigation techniques are specially designed to
solve this problem [21]. We carry out further experiments on ML-100K. First, we group the users by
gender and find that there are 670 male users (71.0%) and 273 female users (29.0%) in this dataset.
Male users had 753,313 interaction records (74.4%), and female users had 246,298 interaction records
(25.6%). This shows that there is bias of gender distribution in this dataset. Then, we remove the
attribute-integrated SVD module from our method and calculate the performance of our model on
male and female users. We find that without using attributes, the Recall of male users is 0.124 and
Recall of female users is 0.085. Male users are with 45.9% higher Recall than female users. Finally,
we take the attribute-integrated SVD module back to see how the performance differs. We find that
after using attributes, the Recall of male users increases to 0.156, Recall of female users increases to
0.127. Male users are with 22.8% higher Recall than female users. To sum up, due to the bias of
gender distribution in the ML-100K dataset, there is a clear bias in recommendation accuracy, i.e.,
male users are with 45.9% higher Recall than female users even without using user attributes in the
model. However, to our surprise, the bias in the recommendation results becomes less significant after
using user attributes in our model, i.e., male users are with only 22.8% higher Recall than female
users when user attributes are incorporated. We think the reason is that user attributes can help these
under represented groups (female users) to improve their embedding quality.

6 Conclusion

We propose FreeGEM, a parameter-free dynamic graph embedding method for link prediction.
By modelling collaborative relationships and personalized dynamic interaction patterns separately,
FreeGEM can alleviate the noises when the two key factors diverge, leading to higher accuracy.
Specifically, we propose an incremental graph embedding engine for real-time dynamic graph
embedding via a novel Online-Monitor-Offline architecture and a personalized dynamic interaction
pattern modeller with dynamic time decay and attention. Since there are no learnable parameters,
FreeGEM can avoid the time-consuming back-propagation, leading to significantly higher efficiency.
One limitation of this work is that we only explore the link prediction task, leaving other downstream
machine learning tasks, such as node classification, as future work. Another line of future work is to
extend the high level design of our method to other kinds of parameterized models. Although we
empirically find that our method can mitigate rating bias by utilizing user/item attributes, practitioners
should pay more attention to the biases during data collection before using our method.
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A Discussion

A.1 Connection between SVD and Frequency Analysis

First, we introduce the concept of “low frequency signals” following the common practice in graph
signal processing.

We use R to represent the observed interaction matrix, R̃ to represent the user’s real preference
matrix, where larger R̃ij indicates higher chance for user i to interact with item j, and R̂ to represent
the predicted interaction matrix. We can use S = R⊤R to represent the similarity between items,
and D to represent the degree matrix of S. The Laplace matrix of S is defined as L = D − S. We
can take xxx ∈ Rn as a graph signal where each node is assigned with a scalar. The smoothness of the
graph signal can be measured by the total variation defined as follows:

TV (xxx) = xxxTLxxx =
∑

Sij(xi − xj)
2. (9)

When the input graph signal is the real preference vector of user u, which means xxx = R̃u ∈ Rn: 1) if
two items i and j (i ̸= j) are similar, i.e., Sij is large, the user’s preferences for these two items will
be similar, which means that (R̃ui − R̃uj)

2 should be small and will not lead to excessive TV (xxx); 2)
if two items i and j (i ̸= j) are dissimilar, i.e., Sij is small, the user often has different preferences
for the two items, which means that (R̃ui − R̃uj)

2 should be large, which also does not cause TV (xxx)
to be too large because their similarity Sij is small. In conclusion, if the real preference signal is
used as input, the total variation should have a small value. However, due to the exposure noise and
quantization noise in the observed interaction matrix [35], the total variation becomes larger when
the input signal is the observed user interaction signal, which means xxx = Ru. Therefore, the key to
predict the real preference matrix through the observed interaction matrix is to design a low-pass
filter to remove the high-frequency part of the observed interaction matrix.

Then, we explain why the reconstruction matrix obtained by truncated SVD is low-frequency, which
is also related to graph signal processing.

The energy of the graph signal is defined as E(xxx) = ||xxx||2. The normalized total variation of xxx can
be calculated with the Rayleigh quotient as

Ray(xxx) =
TV (xxx)

E(xxx)
=

xxxTLxxx

xxxTxxx
=

∑
Sij(xi − xj)

2∑
x2
i

. (10)

As L is real and symmetric, its eigendecomposition is given by L = UΛUT where Λ =
diag(λ1, λ2, ..., λn), λ1 ≤ λ2 ≤ ... ≤ λn, and U = (uuu1,uuu2, ...,uuun) with uuui ∈ Rn being the
eigenvector for eigenvalue λi. We call x̃xx = UTxxx as the graph Fourier transform of the graph signal xxx
and its inverse transform is given by xxx = Ux̃xx. Rayleigh quotient can be transformed into spectral
domain as

Ray(xxx) =
xxxTLxxx

xxxTxxx
=

xxxTUΛUTxxx

xxxTUUTxxx
=

x̃xxTΛx̃xx

x̃xxT x̃xx
=

∑
λix̃

2
i∑

x̃2
i

. (11)

Take xxx = uuui, we can get Ray(uuui) = λi, indicating that the eigenvector corresponding to the small
eigenvalue is smoother.

There are similar conclusions when we take S = RR⊤. SVD extends the signal on the node from
scalar to vector. The three matrices obtained by truncated SVD correspond to the first k eigenvectors
of RR⊤, the first k eigenvalues of RR⊤ and the first k eigenvectors of R⊤R respectively. Therefore,
it only retains the eigenvectors with low frequency to reconstruct the interaction matrix, so its essence
is an ideal low-pass filter. And their frequency is related to the magnitude of eigenvalues.

Recently, Nt et al. [18] show that the method of graph neural network is essentially a low-pass graph
filter. Shen et al. [23] show that matrix factorization methods, linear auto-encoder methods, and
neighborhood-based methods can be equivalently described by designing different forms of graph
filters in graph signal processing. In addition, the method based on matrix factorization is proved to
be equivalent to an infinite layer graph neural network.
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A.2 Why π/3 is the Boundary?

In summary, π/3 is the threshold to determine the effectiveness of model updates. Online updating
towards angles greater than π/3 indicates the online updating is even worse than no updating at all.
More detailed discussion is presented below.

When we use offline SVD during the processes of R̂0->R̂1, R̂1->R̂2 and R̂2->R̂3, there will be no
approximation error. However, the online SVD used in the processes of R̂0->R̂1′ , R̂1′->R̂2′ and
R̂2′->R̂3′ has approximation errors. Thus, their evolution directions are not consistent. We use the
F-norm of the difference between R̂i and R̂i′ (i = 1, 2, 3) to measure the online approximation error.
We cannot directly calculate this value in most cases, because the model will only execute the Online
module in most cases. From Figure 4, we find that the F-norm of the difference between R̂0 and R̂i′

(defined as distance in this paper) is positively correlated with the F-norm of the difference between
R̂i and R̂i′ (i = 1, 2, 3), and we have verified this empirically in Appendix A.3. Thus, we use
distance to estimate the error. As the approximation of the Offline module, the approximated value
calculated by the Online module should not be worse than the result without updating, otherwise it
means that the Online module is invalid. In this case, the approximation error of the reconstructed
matrix (R̂1′ , R̂2′ , R̂3′) obtained by the Online module is even greater than the F-norm between the
original matrix (R̂0) and the reconstructed matrix (R̂1, R̂2, R̂3) obtained by the Offline module.
Figure 8 shows the case when the evolution direction of Offline module and Online module is greater
than π/3. It can be seen that the F-norm of the difference between R̂0 and R̂i is smaller than the
F-norm of the difference between R̂i and R̂i′ (i = 1, 2, 3). In this case, instead of using R̂i′ as the
approximation of R̂i, it is better to directly use R̂0 as its approximation, i.e., online updating is even
worse than no updating at all.

Offline SVD

Online SVD

�𝑅𝑅1′

�𝑅𝑅2′
�𝑅𝑅3′

�𝑅𝑅1 �𝑅𝑅2 �𝑅𝑅3�𝑅𝑅0

Figure 8: The evolution direction of Offline module and Online module is greater than π/3

A.3 The Positive Correlation Between Approximation Error and Distance
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Figure 9: There is a strong positive correlation between distance (the F-norm distance between the
reconstructed matrix by online SVD at the current time step and the initial reconstructed matrix) and
online approximation error.
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We first divide each dataset into T = 100 time intervals according to the number of interactions, and
run offline SVD as ground truth at the end of each time interval. We start to execute the online SVD
at the end of t-th time interval, and calculate the error of the online SVD and the distance at the
end of t+∆-th time interval. The value of ∆ is from 1 to 10, and the corresponding value of t is
from 1 to T −∆. Each ∆ corresponds to a group of errors and a group of distance. By grouping
according to ∆, we can calculate the mean value of each group of errors and the mean value of
distance, respectively, and draw the curve to understand their relationship. For ∆ = 1, ..., 10, we
define d∆ and e∆ as the corresponding mean of distance and mean of online approximation errors.
Then, we normalize d∆ and e∆ as the x-axis and y-axis, respectively, as follows:

x∆ = ||d∆|| =
dm∆

max(dm1 , ..., dm∆)
, (12)

y∆ = ||e∆|| =
e∆

max(e1, ..., e∆)
. (13)

As shown in Figure 9, there is a positive correlation between the normalized error and the normalized
distance, indicating that it is reasonable to estimate the online approximation error using the distance
measure. Although the power m varies between the two datasets, we can always find an appropriate
m so that we can fit the relationship between d∆ and e∆ almost by a straight line.

A.4 Memoryless Property of Time Decay Function

The Online-Monitor-Offline architecture indicates that our model has the concept of stage. We
believe that the decay function should have no memories, that is, the decay ratio of the same time
interval should be treated consistently in different stages. The reasons are explained in the following
discussion.

Suppose there are four timestamps t1, t2, t3, t4, and t2 − t1 = t4 − t3. The decay function we used
fi(t) = exp{βi(t/Ti − 1)} is memoryless. When these four timestamps are all in the same stage
(e.g., i-th stage), we have fi(t2)/fi(t1) = fi(t4)/fi(t3) using the decay function. When these four
timestamps are in different stages, (e.g., t1 and t2 are at i-th stage, and t3 and t4 are at j-th stage
(i ̸= j)), we have fi(t2)/fi(t1) = fj(t4)/fj(t3), when βi/βj = Ti/Tj .

We point out here that the linear decay function gi(t) = βit/Ti is not memoryless. This is because
we cannot ensure gi(t2)/gi(t1) = gj(t4)/gj(t3) both in the above two cases.

A.5 Comparison between Different Models

In order to more clearly explain the difference between FreeGEM and TPP-based, RNN-based and
GNN-based methods, we summarized this and presented the results in the Table 7.

In all methods, only FreeGEM is parameter-free. Various dynamic graph learning methods use time
decay mechanism, but in different forms. For the methods based on temporal point process [28, 30,
41], the time decay is reflected in the intensity function. When RNN-based method [14] predicts
the user/item embeddings, it specifically considers the current user’s previous interactions using
RNN. GNN-based method [37] adopts a neural ordinary differential equation to model the temporal
dynamics of user/item embeddings. It should be noted that the dynamic time decay in other methods
can also be applied to our framework but may introduce learnable-parameters and thus hurt the
computational efficiency.

TPP-based models [28, 30, 41] make use of collaboration through interaction between users and items.
RNN-based model [14] uses a pair of coupled RNNs to model users and items respectively to make
use of collaborative relationships. Because GNN naturally contains graph information, the model
based on GNN [37] naturally uses the collaborative relationship through adjacency matrix. Similar
to the GNN-based model, the SVD method used by FreeGEM also contains graph information, so
collaborative information is naturally adopted.
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Table 7: Comparison between different kinds of methods.

TPP-based RNN-based GNN-based FreeGEM
parameter-free ✗ ✗ ✗ ✓

how to use
time information

intensity
function RNN neural ordinary

differential equation
dynamic

time decay
how to use

collaboration relationship
interaction

events coupled RNN GNN SVD

B Appendix

B.1 Statistics of the Datasets

We use four publicly available datasets to evaluate the performance of FreeGEM in the future item
recommendation task, the detailed statistics of which are presented in Table 8.

Table 8: Statistics of the datasets of the future item recommendation task.

Datasets # Users # Items # Interactions # Density # Unique Timestamps
Amazon Video 5,130 1,685 37,126 0.43% 1,946
Amazon Game 24,303 10,672 231,780 0.09% 5,302

MovieLens-100K 943 1,349 99,287 7.81% 49,119
MovieLens-1M 6,040 3,416 999,611 4.85% 458,254

We use two publicly available datasets to evaluate the performance of FreeGEM in the next interaction
prediction task, the detailed statistics of which are presented in Table 9.

Table 9: Statistics of the datasets of the next interaction prediction task.

Dataset # Users # Items # Interactions # Unique Timestamps
Wikipedia 8,227 1,000 157,474 152,757
LastFM 980 1,000 1,293,103 1,283,614

B.2 Hyperparameter Settings

Although there are no learnable parameter in FreeGEM, we have several hyperparameters for model
building and user preference fusion. In our experiments, we use a simple grid search method to
obtain the optimal hyperparameters. The hyperparameter search space of FreeGEM in the future item
recommendation task is presented in Table 10.

Table 10: Hyperparameter search space for future item recommendation task.

β1 α k1 k2, k3, k4, k5 α1 α2 α3

1, ..., 100 2.0 1, 2, 4, 8, 16, 32, 64, 128, 256 0, 1 0, 1, 2 0, 1, 2 0, 1, 2

After grid search, we find the optimal hyperparameters of FreeGEM for the four datasets on the future
item recommendation task in Table 11.

Table 11: Hyperparameter settings for future item recommendation task.

β1 α k1 k2 k3 k4 k5 α1 α2 α3

Video 21.0 2.0 128 0 0 0 0 1 0 0
Game 18.0 2.0 256 0 0 0 0 1 0 0

ML-1M (no-attr) 60.0 2.0 8 0 0 0 0 1 0 0
ML-100K (no-attr) 60.0 2.0 1 0 0 0 0 1 0 0
ML-1M (with-attr) 50.0 2.0 4 1 1 1 1 0 1 0

ML-100K (with-attr) 15.0 2.0 1 1 1 1 1 0 2 1

The hyperparameter search space of FreeGEM in the next interaction prediction task is presented in
Table 12.
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Table 12: Hyperparameter search space for next interaction prediction task.

d β1 a b k1 γ λ
Wikipedia 5, 10,..., 50 5, 10, ..., 50 1, 3, 5 1, 2, 3 128, 256, 512 1/2, 1/3, ..., 1/10 0.01, 0.02, ..., 1.00

Lastfm 300, 400, ..., 800 1, 2, ..., 10 1, 3, 5 1, 2, 3 128, 256, 512 1/2, 1/3, ..., 1/10 0.01, 0.02, ..., 1.00

After grid search, we find the optimal hyperparameters of FreeGEM for the two datasets on the next
interaction prediction task in Table 13.

Table 13: Hyperparameter settings for next interaction prediction task.

d β1 a b k1 γ λ
Wikipedia 35.0 35.0 3 1 512 1/2 0.80
LastFM 500.0 2.0 1 2 512 1/5 0.74

In addition, we have the following observations about the hyperparameters.

(1) Hyperparameters related to the attribute-integrated SVD module include k2, k3, k4, k5, and
α1, α2, α3. Due to the inclusion of attribute information, this module can improve the prediction
accuracy but also introduce several more hyperparameters. It can be observed in ablation experiments
that our method can still surpass other methods even without using attribute information. Thus,
in practice, attribute information can be used only for those users with scarce interactions or cold
start users, which can significantly improve the accuracy as shown in Section 5.4. In addition,
during hyperparameter search, we observe that using k1 = k2 = k3 = k4 can achieve outstanding
performance, even though they can be tuned separately.

(2) The hyperparameter that controls the restart of the Offline module has less significant effect on
the prediction accuracy. Its role is to control the restart times according to the data scale. As we can
see, in Wikipedia dataset with small data scale, we use the search interval of 5, 10, ..., 50, while in
LastFm dataset with large data scale, we use the search interval of 300, 400, ..., 800.

(3) In the experiments, we find that for different datasets, the hyperparameter β, which controls the
time decay is sensitive to the dataset. We can set higher priority for the searching of β. Luckily, β is
not very sensitive to the values of other hyperparameters, so that we can search other hyperparameters
after the optimal β is found.

(4) As shown in Table 6, the model training time of our method is much shorter compared to other
methods for one group of hyperparameters, especially on larger dataset. Thus, we find that the overall
running time (include hyperparameter searching) of our method is still much lower than the other
methods.

B.3 Experimental Environment

We run all the experiments on a server equipped with one NVIDIA TESLA T4 GPU and Intel(R)
Xeon(R) Gold 5218R CPU. All the code of this work is implemented with Python 3.9.7.

B.4 Copyrights of the Existing Assets

All the code that we use to reproduce the results of the compared works is publicly available and
permits usage for research purpose.

All the datasets that we use in the experiments are publicly available and permit usage for research
purpose.
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