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ABSTRACT
Recommender systems are incremental in nature. Recent progresses
in incremental recommendation rely on capturing the temporal
dynamics of users/items from temporal interaction graphs, so that
their user/item embeddings can evolve together with the graph
structures. However, these methods are faced with two key chal-
lenges: 1) model training and/or updating are time-consuming and
2) new users/items cannot be effectively handled. To this end, we
propose the fast incremental recommendation (FIRE) method from a
graph signal processing perspective. FIRE is non-parametric which
does not suffer from the time-consuming back-propagations as in
previous learning-based methods, significantly improving the effi-
ciency of model updating. In addition, we encode user/item tempo-
ral information and side information by designing new graph filters
in FIRE, which can capture the temporal dynamics of users/items
and address the cold-start issue for new users/items, respectively.
Experimental studies on four popular datasets demonstrate that
FIRE can improve the accuracy by a large margin and improve
the model updating efficiency by at least 3X compared with the
state-of-the-art incremental recommendation algorithms. The Code
is available at https://github.com/Yaveng/FIRE.
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1 INTRODUCTION
Recommender system recommends interesting items to users ac-
cording to their historical interactions, which is playing an increas-
ingly important role in the era of information overload. Generally,
new users, items and user-item interactions are observed continu-
ously over time, which makes the real-world recommender systems
incremental in nature. This means that when new data arrives, the
recommender systems do not have time to retrain the model, but
can only rely on the most updated models to complete the rec-
ommendation. For instance, IncCTR [32] jointly learns knowledge
from historical data and new incoming data to achieve incremental
recommendation. SML [36] employs a neural network-based trans-
fer component to transform the old model to a new model during
training to realize fast recommendation without retraining model.

At present, graph neural networks have achieved huge success
in the field of recommender systems. Graph neural networks can
incorporate additional information by mining from graph structure
data, which greatly promotes the research of recommendation al-
gorithms based on the user-item interaction graph [1, 31]. Recent
progresses in incremental recommendation also rely on capturing
the temporal dynamics of users/items from temporal interaction
graphs, so that their user/item embeddings can evolve together
with the graph structures. DeepCoevolve [5] and JODIE [17] adopt
RNNs to update the node features to tackle the incremental update
issue of GNN-based CF methods. TGN [21] proposes a framework
for learning continuous-time dynamic graphs, which can accurately
capture the changes of nodes’ feature over time through memory
module and embedding module.

However, existing graph-based incremental recommendation
methods are faced with two key challenges. The first challenge
is that the model training and/or updating are time-consuming.
Due to the large amount of learnable parameters, the deep learning
methods can accurately model the user and item features changing
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over time, but too many model parameters also limit the efficiency
of model training and/or updating. When new interactions arrive,
the model needs to update existing parameters or create new param-
eters to incorporate the new information, the training of which will
be very time-consuming. The second challenge is that new users
and items cannot be effectively handled. Since most of the exist-
ing algorithms rely on learning from user-item interactions, when
new users or items appear, the algorithms cannot achieve effective
recommendation due to the lack of corresponding interactions.

To this end, this paper proposes the fast incremental recommen-
dation (FIRE) method from a graph signal processing perspective.
Specifically, FIRE is a graph signal processing based non-parametric
model which does not need complex and time-consuming model
training process, but only needs efficient matrix multiplication
operations to calculate the recommendation scores, significantly
improving the efficiency of model updating. Through a carefully
designed filter combined with temporal information, FIRE can mine
the time-varying features of users and items in the user-item inter-
action sequences, and capture the temporal dynamics of users and
items, to improve the recommendation accuracy. We also design a
filter to combine side information for FIRE, which can alleviate the
user/item cold-start issue. This filter is complementary to the filters
designed based on user interactions, which can realize the recom-
mendations by only learning from the graph signals of user/item
side information, when corresponding user or item interactions are
unavailable. Experimental studies on four popular datasets demon-
strate that FIRE can improve the accuracy by a large margin and
improve the model updating efficiency by at least 3X compared
with the state-of-the-art incremental recommendation algorithms.

Our key contributions are summarized as follows. 1) We propose
a fast incremental recommendation method based on graph signal
processing, which does not need time-consuming model training
phase, achieving high model updating efficiency. 2) We design two
filters to introduce temporal information and side information into
FIRE to capture the temporal dynamics of users/items and address
the cold-start issue for new users/items, respectively. 3) We conduct
extensive experiments on four real-world datasets, and the results
show that FIRE can outperform state-of-the-art incremental rec-
ommendation methods in accuracy by a large margin and achieve
higher efficiency in the model updating phase.

2 RELATEDWORK
A variety of collaborative filtering algorithms have been proposed,
from the simplest UserCF [13] that uses similar users’ interaction
information, to the factorization methods [2, 16, 18, 19] that extract
the latent features of users/items from user interaction records, and
then to the recent methods based on deep learning [3, 12, 23, 34,
37]. With the increased complexity of the models, especially deep
models, the accuracy of the CF algorithm has also been improved.

Side information is a kind of information besides user-item in-
teractions, which has been widely used in recommender systems.
Common side information includes the user’s age, gender, occu-
pation etc., and the item’s category, description, picture, etc. In
movie recommendation and music recommendation, this kind of
side information is more popular . For example, Meta-Prod2vec [27]
leverages historical user interactions with item attributes, which

are injected into the model as side information, to compute low-
dimensional embeddings of items and achieves good performance.
ICLF [25] takes user-category, item-category and category-category
interactions into account to complete the recommendation of single
category items and multi category items.

Recently, GNN based CF algorithms achieved huge success by in-
corporating user-item bipartite graph structure information in rep-
resentation learning [11, 17, 29]. The GCMC method [1] introduced
an AutoEncoder into the user-item interaction graph to predict
possible ratings. Based on factorization methods, such as matrix
factorization [16] and FISM [15], NGCF [31] further extracted high-
level features by building high-order connectivities through GNN,
thus improved the performance. In addition to the user interaction
information, GraphRec [7] takes the users’ social relationship into
account and models the user, item and social relationship respec-
tively, to improve the recommendation accuracy. DSCF [8] also
takes user’s social information into account, and it expands the
user neighborhood in traditional GNN-based CF from low-order to
high-order, and treats the information from different neighbors dif-
ferently. LightGCN [11] improved over NGCF by removing unnec-
essary feature transformation and nonlinear activation to improve
both efficiency and accuracy. Note that GNN updates node feature
by aggregating the information of all its neighboring nodes. With
the increase of GNN layers, each node can obtain the information
of neighboring nodes with larger distances, which could improve
the accuracy if the oversmoothing issue is properly handled [11].

All above GNN-based CF methods suffer from one common is-
sue: a well-trained GNN model may become out-of-date due to the
graph structure changes caused by new interactions. To address
this issue, DeepCoevolve [5] and JODIE [17] adopt RNNs to up-
date the node features to tackle the incremental GNN update issue.
GCMCRNN [6] combine GCMC with RNN to learn both spatial
structure information and temporal information of user-item sub-
graphs in all periods. However, these RNN-based methods may
suffer from the common data sparsity issue and cold start issue
in recommendation. Incremental learning is another line of works
to solve the above problem. SPMF [30] is probabilistic matrix fac-
torization (PMF [22]) based method, which employs a reservoir to
maintain historical data and uses the data in the reservoir plus the
new observations to update the model. IncCTR [32] uses a data
module and a feature module to construct training data and handle
features respectively, and uses a model module to fine-tune the
model parameters with knowledge distillation. SML [36] employs a
neural network-based transfer learning component to transform
the old model to a new model during training, and optimizes the
accuracy evaluated in the next time period to learn the transfer
learning component. TGN [21] proposes a framework for learning
continuous-time dynamic graphs, which can accurately capture the
changes of nodes’ feature over time through memory module and
embedding module. However, these methods require a lot of time
and computational resources for model training and inference.

3 PRELIMINARIES
3.1 Notations
This section introduces the notations used throughout this paper.
Let the user set and item set be U and V respectively, |U| = 𝑛
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and |V| =𝑚, and the interactions between users and items can be
defined as 𝑅. For implicit feedback dataset, 𝑅 ∈ {0, 1}𝑚×𝑛 , and for
explicit feedback dataset, 𝑅 ∈ R𝑚×𝑛 . The normalized interaction

matrix is denoted as �̃� = 𝐷
− 1

2
𝑈
𝑅𝐷

− 1
2

𝐼
, where 𝐷𝑈 = 𝐷𝑖𝑎𝑔(𝑅 · 1) and

𝐷𝐼 = 𝐷𝑖𝑎𝑔(𝑅𝑇 · 1) are degree matrics.

3.2 Graph Signal Process
3.2.1 Graph Signal and Graph Laplacian Matrix. Given a graph
G = (V, E), where V and E represent the set of nodes and edges,
respectively, and |V| = 𝑛. The graph can also be represented
as an adjacency matrix 𝐴 ∈ R𝑛×𝑛 . The graph signal is a vector
mapping from node 𝑓 : V → R, and it can be expressed as
x = [𝑥1, 𝑥2, · · · , 𝑥𝑛], where 𝑥𝑖 represents the signal strength on
node 𝑣𝑖 .

Graph laplacian matrix is a core concept to study the structural
properties of graphs and it can be defined as 𝐿 = 𝐷 −𝐴, where 𝐷
is a diagonal matrix, 𝐷 = 𝐷𝑖𝑎𝑔(𝐴 · 1). In addition, the definition of
normalized graph laplacian matrix is �̃� = 𝐷− 1

2 𝐿𝐷− 1
2 .

3.2.2 Graph Fourier Transform and Graph Filter. As the graph lapla-
cian matrix is a real and symmetric matrix, it can be decomposed
into 𝐿 = 𝑈Λ𝑈𝑇 , where Λ = 𝐷𝑖𝑎𝑔(𝜆1, · · · , 𝜆𝑛) is the diagonal ma-
trix composed of the eigenvalues, 0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 , and
𝑈 = [u1, · · · , un] is the matrix composed of eigenvectors ui ∈ R𝑛
corresponding to the eigenvalue 𝜆𝑖 .

The matrix 𝑈 can be seen as the Graph Fourier Transform basis
that transforms the graph signal from the spatial domain to the
frequency domain. Therefore the Graph Fourier Transform (GFT)
and its inverse process can be defined as:

x̂ = 𝑈𝑇 x ∈ R𝑛, x = 𝑈 x̂ ∈ R𝑛 .

In the frequency domain, we can use graph filters to filter some
undesired frequencies in the graph signal. The graph filter can be
defined as:

H(𝐿) = 𝑈𝐷𝑖𝑎𝑔(ℎ(𝜆1), · · · , ℎ(𝜆𝑛))𝑈𝑇 ,

where ℎ(·) is a filter.
Low-pass filter is an important class of filters that filter out the

high frequency components that cause the signal to be non-smooth
(or noisy) to improve the smoothness of the signal.

We introduce two important low-pass filters here. The first one
is a linear filter, which can be defined as ℎ(𝜆𝑖 ) =

∑𝐾
𝑘=0 𝛼𝑘𝜆

𝑘
𝑖
, where

𝛼𝑘 is the filter’s coefficient. The second one is an ideal low-pass

filter, which is given by ℎ(𝜆𝑖 ) =
{

1, if 𝜆𝑖 ≤ 𝜆

0, otherwise , where 𝜆 is a

cut-off frequency.

3.2.3 Graph Convolution. The graph convolution of a given graph
signal x can be defined as:

y = H(𝐿)x = 𝑈𝐷𝑖𝑎𝑔(ℎ(𝜆1), · · · , ℎ(𝜆𝑛))𝑈𝑇 x.

The graph convolution process can be explained from the perspec-
tive of graph signal processing as follows: the graph signal x is
first transformed from spatial domain to frequency domain through
Graph Fourier Transform, then the undesired frequencies are fil-
tered in the signal through filters in frequency domain. Finally, the

signal is transformed back to spatial domain through inverse Graph
Fourier Transform to complete the signal enhancement.

4 FAST INCREMENTAL RECOMMENDATION
4.1 Overview
Deep learning methods have significantly improved the accuracy of
recommendation by encoding additional information, e.g., user/item
temporal information. Due to the introduction of the learnable
parameters, the recommendation algorithms can accurately and
effectively capture the features of users and items changing over
time [33]. However, too many learnable parameters also hinder the
flexibility of the algorithms. Deep learning based recommendation
algorithms usually take a lot of time to learn parameters. When
new user interactions arrive, the model needs to update the exist-
ing parameters or create new parameters to incorporate the new
interactions, the training of which will be very time-consuming.

Recently, a unified graph convolution-based framework for CF
(GF-CF) [24] was proposed from the perspective of graph signal
processing. Many existing CF methods are special cases of this
framework, corresponding to various kinds of graph filters. The
low-rank matrix factorization corresponds to the ideal low-pass
filterℎ(𝜆𝑖 ) = 111𝑖≤𝑑 , the neighborhood-based approaches correspond
to a first-order linear filter ℎ(𝜆𝑖 ) = 1−𝜆𝑖 , and the LGCN-IDE, which
means LightGCN with Infinitely Dimensional Embedding, corre-
sponds to ℎ(𝜆𝑖 ) = Σ𝐾−1

𝑘=0 𝛽𝑘 (1 − 𝜆𝑖 )
𝑘 . Based on the new framework,

GF-CF proposed a stronger graph filter by combining the linear
filter and ideal low-pass filter as follows [24]:

p𝑢 = r𝑢 (�̃�𝑇 �̃� + 𝛼𝐷− 1
2

𝐼
𝑈 𝑈𝑇𝐷

1
2
𝐼
), (1)

where r𝑢 ∈ R𝑛 is user 𝑢’s interactions, and p𝑢 ∈ R𝑛 is the predicted
interactions for 𝑢.𝑈 is the top-K singular vectors of �̃�.

One main advantage of GF-CF is that it is a non-parametric
method. It does not need a complex and time-consuming model
training process, but only needs efficient matrix multiplication
operations to calculate the recommendation scores from a closed
form solution, which can significantly improve the efficiency of
incremental model update. However, GF-CF faces with two key
challenges: 1) incapable of capturing temporal information.
GF-CF cannot capture the features of users and items changing
over time, so that very early interactions are as important as recent
interactions; and 2) incapable of handling new users/items. GF-
CF cannot provide recommendations for new users/items without
historical interactions, which greatly limit the application scope of
the algorithm.

To address the above issues, we propose the fast incremental
recommendation (FIRE) method by designing the following two
filters under the framework of GF-FC:
• Temporal information filter, which can capture the dynamics
of user preference drifts over time by designing an incremental and
time-aware attenuation filter on the interaction matrix;
• Side information filter, which can address the cold-start rec-
ommendation issue for new users/items by designing a feature-
aware filter on user/item side information.

Both the above filters are non-parametric, so that the recommen-
dation scores can also be obtained from closed form solutions after
applying them without requiring time-consuming training.
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4.2 Temporal Information Filter
GF-CF treats user interactions in different time periods equally,
without considering that user interests may change over time and
recent interactions are usually more important than very early in-
teractions [5, 17]. For instance, when predicting which movie Alice
will see tomorrow, we should pay more attention to movies she has
watched recently, and pay less attention to movies she watched last
year. If all user interactions are treated equally, the dynamics of
user preference drifts will be lost and the recommendation accuracy
will be hurt [5, 17].

To incorporate temporal information, FIRE needs to assign un-
equal weights to different interactions according to the difference
between the time of historical interaction and the time of recom-
mendation, reflecting that the interactions in different time periods
could have varying impact on the recommendations in the future.
In our design, FIRE works in the same way during each time period,
so we only describe how FIRE works in a specific time period 𝑡
without loss of generality.

Assuming that the current time period is 𝑡 and we want to pre-
dict the items that user will interact with at time period 𝑡 + 1, we
can divide the user historical interactions into two parts - the user
interactions before 𝑡 and the user interactions during 𝑡 . The former
interactions needs to be re-weighted by importance coefficients,
indicating the importance of the user historical interaction to the
prediction of future interaction, which can be used to capture the
dynamics of user preference changing over time. The range of the
importance coefficient is (0,1). The importance coefficient of inter-
actions during time period 𝑡 is 1 by default, i.e., current interactions
have the greatest impact on the prediction of user interactions in the
next time period. This is because user preferences are continuously
changing over time [5, 17], so that interactions in the previous time
period imply a lot of information about user interactions in the
next time period, useful for predicting user future interactions.

Assume that, before time period 𝑡 , the interactions between all𝑚
usersU (<𝑡 ) and all 𝑛 itemsV (<𝑡 ) can be expressed as a quadruple
E (<𝑡 ) = {(𝑢𝑖 , 𝑣 𝑗 , 𝑟𝑖 𝑗 , 𝑡𝑖 𝑗 ) |𝑢𝑖 ∈ U (<𝑡 ) , 𝑣 𝑗 ∈ V (<𝑡 ) , 𝑡𝑖 𝑗 < 𝑡}, where
𝑡𝑖 𝑗 is the timestamp of interaction 𝑟𝑖 𝑗 . Thus, we can construct the
interaction matrix 𝑅 (<𝑡 ) ∈ R𝑚×𝑛 and the temporal information
matrix 𝑇 (<𝑡 ) ∈ R𝑚×𝑛 as follows:

𝑅
(<𝑡 )
𝑖 𝑗

=

{
𝑟𝑖 𝑗 , (𝑢𝑖 , 𝑣 𝑗 ) ∈ E (<𝑡 ) ,

0, (𝑢𝑖 , 𝑣 𝑗 ) ∉ E (<𝑡 ) .
𝑇
(<𝑡 )
𝑖 𝑗

=

{
𝑡𝑖 𝑗 , (𝑢𝑖 , 𝑣 𝑗 ) ∈ E (<𝑡 ) ,

0, (𝑢𝑖 , 𝑣 𝑗 ) ∉ E (<𝑡 ) .

From the temporal information matrix 𝑇 (<𝑡 ) , we can calculate the
importance of interactions at different time period before 𝑡 and
form the historical interaction importance matrix 𝐷 (<𝑡 ) ∈ R𝑚×𝑛

by an attenuation method as follows:

𝐷
(<𝑡 )
𝑖 𝑗

= e𝑘 (𝑇
(<𝑡 )
𝑖,𝑗

−𝑡 )
, (Exponential attenuation)

where 𝐷 (<𝑡 )
𝑖 𝑗

indicates the importance of historical user interaction
𝑟𝑖 𝑗 , 𝑘 represents the attenuation factor. Note that we also tried
other attenuation methods, e.g., linear attenuation, and we choose
exponential attenuation due to better empirical performance. After
considering the temporal information of interactions, we can get
the modified user historical interaction matrix as follows:

𝑅 (≤𝑡 ) = 𝑅 (<𝑡 ) ⊙ 𝐷 (<𝑡 ) + 𝑅 (𝑡 ) ,

where 𝑅 (𝑡 ) represents the interaction matrix of the current time
𝑡 , and ⊙ represents the Hadamard product. Therefore, the user
interactions of the next time period 𝑡 + 1 can be predicted by the
following closed form solution:

p(𝑡+1)
𝑢 = r(≤𝑡 )𝑢 (�̃� (≤𝑡 )𝑇 �̃� (≤𝑡 ) + 𝛼𝐷 (≤𝑡 )− 1

2
𝐼

𝑈 (≤𝑡 )𝑈 (≤𝑡 )𝑇𝐷
(≤𝑡 ) 1

2
𝐼

) .

p(𝑡+1)
𝑢 is the recommendation scores for user 𝑢 at time period 𝑡 + 1,
r(≤𝑡 )𝑢 = 𝑅

(≤𝑡 )
𝑢,: represents all interactions of user 𝑢 up to 𝑡 .

To realize incremental recommendation, we can store interac-
tion matrix 𝑅 (<𝑡 ) and time information matrix 𝑇 (<𝑡 ) . After the
prediction of the current period 𝑡 is completed, the interactions and
time information of the current period are used to update the above
two matrices for the prediction of subsequent periods as follows:

𝑅 (<𝑡+1) = 𝑅 (<𝑡 ) ⊕ 𝑅 (𝑡 ) , 𝑇 (<𝑡+1) = 𝑇 (<𝑡 ) ⊕ 𝑇 (𝑡 ) , (2)

where ⊕ represents element-wise addition operation.

4.3 Side Information Filter
New users or items are common in real-world recommender sys-
tems, but many algorithms cannot provide effective recommenda-
tions for them due to the lack of corresponding interactions, also
known as the “cold start” issue. Using side information is an effec-
tive method to solve the cold start problem [26]. Side information
usually refers to the characteristics of users, such as gender, age,
occupation, etc., as well as the characteristics of items, such as
category, attribute, etc. User interaction data implicitly depicts the
characteristics of users and items from the perspective of preference,
while side information explicitly depicts the static characteristics
of users and items from the essence of them. Therefore, the side
information provides the recommendation algorithms with a new
perspective to learn about users and items. The benefits of using
side information are two-fold. Firstly, it is complementary to user
interaction information, so that the recommendation algorithm
can further capture the characteristics of users and items through
side information and thus improve the recommendation accuracy.
Secondly, when new users or items appear, although the recom-
mendation algorithm can not recommend items for users through
interactions, it can complete the recommendation with the help
of the neighborhood subgraph constructed through the side infor-
mation of users or items, so as to solve the cold start problem and
realize inductive recommendation. Therefore, we equip FIRE with
a side information filter to achieve more accurate recommendation
and address the cold start issue.

FIRE first needs to encode the side information of users and items
into embedding. Different kinds of side information can be encoded
by different methods. For example, the attributes of users or items
can be encoded in the form of multiple one-hot encoding, and the
image or text information can be processed by pretrained models.
Suppose that the embeddings of new user and item after encoding
are 𝑋𝑈 ∈ R𝑚×𝑑 and 𝑋 𝐼 ∈ R𝑛×𝑑 respectively, where 𝑚 and 𝑛
represent the number of user and item respectively, and𝑑 represents
the dimension of embedding. Here, for ease of description, the
embedding size of user and item are the same. Then, FIRE calculates
the similarity for users or items according to their side information
and constructs the user or item similarity matrix as:

𝑆𝑈𝑖,𝑗 = 𝑓 (𝑋
𝑈
𝑖 , 𝑋

𝑈
𝑗 ), 𝑆𝐼𝑖, 𝑗 = 𝑓 (𝑋

𝐼
𝑖 , 𝑋

𝐼
𝑗 ),
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where 𝑆𝑈
𝑖,𝑗

means the similarity between user 𝑢𝑖 and user 𝑢 𝑗 , 𝑋𝑈𝑖
(𝑋𝑈
𝑗
) represents 𝑢𝑖 ’s (𝑢 𝑗 ’s) side information. 𝑆𝐼

𝑖, 𝑗
, 𝑋 𝐼
𝑖
and 𝑋 𝐼

𝑗
have

the same meaning for item, 𝑓 (·, ·) is a similarity function, and we
choose cosine similarity in this paper.

To ensure the numerical stability in the graph convolution pro-
cess [28], we need to first normalize the two similarity matrices:

𝑆𝑈 = 𝐷
− 1

2
𝑆𝑈
𝑆𝑈𝐷

− 1
2

𝑆𝑈
, 𝑆𝐼 = 𝐷

− 1
2

𝑆𝐼
𝑆𝐼𝐷

− 1
2

𝑆𝐼
,

where 𝑆𝑈 and 𝑆𝐼 represent the normalized user similaritymatrix and
item similarity matrix, and𝐷𝑆𝑈 = Diag(𝑆𝑈 ·1) and𝐷𝑆𝐼 = Diag(𝑆𝐼 ·
1) represent the degree matrix of user similarity matrix and item
similaritymatrix, respectively. The user and item similaritymatrices
essentially represent the first-order neighborhood information of
users and items. Similar to LightGCN [11], we take high-order
neighborhood information into account to achieve more accurate
recommendation:

ˆ̃
𝑆𝑈 =

∑𝐾1
𝑘1=0 𝛽𝑘1 (𝑆𝑈 )𝑘1 ,

ˆ̃
𝑆𝐼 =

∑𝐾2
𝑘2=0 𝛾𝑘2 (𝑆𝐼 )𝑘2 ,

where 𝐾1 and 𝐾2 indicate the neighborhood order of user and item
respectively, 𝛽𝑘∗ and 𝛾𝑘∗ are the coefficients to balance low-order
information and high-order information. Therefore, the prediction
of user interaction at the next time period 𝑡 + 1 based on user and
item side information can be given by

P(𝑡+1)
1 = R(≤𝑡 )𝑇 ˆ̃

𝑆𝑈 , P(𝑡+1)
2 = R(≤𝑡 ) ˆ̃

𝑆𝐼 ,

where P(𝑡+1)
1 and P(𝑡+1)

2 represent the prediction of user interac-
tion based on user and item side information, respectively. The
prediction based on temporal-aware interaction information is:

P(𝑡+1)
3 = R(≤𝑡 ) (�̃� (≤𝑡 )𝑇 �̃� (≤𝑡 ) + 𝛼𝐷 (≤𝑡 )− 1

2
𝐼

𝑈 (≤𝑡 )𝑈 (≤𝑡 )𝑇𝐷
(≤𝑡 ) 1

2
𝐼

) .

Therefore, the prediction of user interaction P(𝑡+1) at time period
𝑡 + 1 can be expressed as follows:

P(𝑡+1) = 𝛿1P
(𝑡+1)
1

𝑇
+ 𝛿2P

(𝑡+1)
2 + 𝛿3P

(𝑡+1)
3 , (3)

where 𝛿1, 𝛿2 and 𝛿3 are the coefficients (hyper-parameters) to bal-
ance the predictions from three types of information.

4.4 Handling New Users/Items
When new users or items appear, FIRE can quickly adjust and
respond. Let us take the emergence of new users as an example to
see how FIRE can address the cold start issue. Suppose that there
are𝑚 users before time 𝑡 , the interaction matrix, time information
matrix and similarity matrix are 𝑅 (<𝑡 ) ∈ R𝑚×𝑛 , 𝑇 (𝑡 ) ∈ R𝑚×𝑛

and 𝑆𝑈 ∈ R𝑚×𝑛 , respectively. If 𝑏 users are added at time 𝑡 , the
model only needs to add 𝑏 lines on 𝑅 (<𝑡 ) and 𝑇 (<𝑡 ) and fill in
the corresponding interactions (if there are corresponding records)
or time information (if there are corresponding records). For the
similarity matrix 𝑆𝑈 , FIRE only needs to calculate the similarities
between 𝑏 users and other 𝑚 + 𝑏 − 1 users and fill them in the
corresponding position of 𝑆𝑈 . The calculation process of adding
new items is similar. These processes require no training at all, so
FIRE is very efficient to handle new users or items.

4.5 Model Efficiency Improvement
To further improve the efficiency of FIRE, we try to speedup the
running of FIRE without significantly affecting its accuracy. Firstly,
since the normalized similarity matrices ˆ̃

𝑆𝑈 and ˆ̃
𝑆𝐼 are dense ma-

trices, the calculations involving these two matrices need a lot of
matrix multiplication operations, which takes up most of the com-
putations of FIRE. Similar to GraphSAGE[9] and ClusterGCN[4],
the graph convolution operation is completed by using subgraphs
instead of full graph to improve the efficiency of the algorithm. We
propose two methods, the core idea of which is making the matrices
sparse, to improve the efficiency of FIRE.
• Thresholding. We set a certain threshold for the similarity scores,
so that similarity below the threshold is set to 0 and will not partic-
ipate in the recommendation scores calculation.

ˆ̃
𝑆𝑈𝑖 𝑗 =

{ ˆ̃
𝑆𝑈𝑖 𝑗 , if ˆ̃

𝑆𝑈𝑖 𝑗 ≥ 𝜖1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

ˆ̃
𝑆𝐼𝑖 𝑗 =

{ ˆ̃
𝑆𝐼𝑖 𝑗 , if ˆ̃

𝑆𝐼𝑖 𝑗 ≥ 𝜖2,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Here, 𝜖1 and 𝜖2 are the thresholds.
• Top-𝑘 Neighbors. We can only keep the 𝑘 most similar users in
ˆ̃
𝑆𝑈
𝑖 𝑗

for each user or the 𝑘 most similar items in ˆ̃
𝑆𝐼
𝑖 𝑗
for each item,

and then use only the 𝑘 most similar neighbors to predict future
user-item interactions.

In this paper, we choose the first method because it is more effi-
cient and similarly accurate. In addition, when we calculate P(𝑡+1)

1 ,
P(𝑡+1)

2 and P(𝑡+1)
3 , multi-process parallel computing is adopted,

which also significantly improves the computation efficiency.

4.6 Complexity Analysis
4.6.1 The complexity of FIRE. This section analyzes the compu-
tational complexity of FIRE. First, to obtain P(𝑡+1)

3 , we need to
calculate �̃� (≤𝑡 ) first, which needs the complexity of 𝑂 (𝑚𝑛), and
𝑂 (𝑎𝑛2) = 𝑂 (𝑛2) is required to obtain �̃� (≤𝑡 )𝑇 �̃� (≤𝑡 ) due to the sparse
matrix multiplication, where 𝑎 ≪ 𝑛 is the number of non-zero val-
ues per column in �̃� (≤𝑡 ) . In order to obtain𝑈 , we use the GPM [14]
to obtain the Top-K eigenvectors of �̃� (≤𝑡 )𝑇 �̃� (≤𝑡 ) and the com-
plexity is 𝑂 ((𝑑𝜂 + 𝑑3)𝑙𝑜𝑔(1/𝜖)). Therefore, the total complexity
is 𝑂 (𝑛2𝑘 + 𝑛2 +𝑚𝑛) = 𝑂 (𝑛2 +𝑚𝑛) due to 𝑘 ≪ 𝑛. Similarly, to
obtain P(𝑡+1)

1 and P(𝑡+1)
2 , the complexities are both 𝑂 (𝑛𝑚). To sum

up, FIRE has the complexity of 𝑂 (𝑚𝑛 + 𝑛2 + (𝑑𝜂 + 𝑑3)𝑙𝑜𝑔(1/𝜖)). If
there is a constant 𝛾 such that𝑚 = 𝛾𝑛, the complexity can also be
written as 𝑂 (𝑛2 + (𝑑𝜂 + 𝑑3)𝑙𝑜𝑔(1/𝜖)).

4.6.2 Incremental effectiveness of FIRE. For exponential operation
𝑥𝑦 , suppose that the number of FLOPs𝑀 satisfies 1 < 𝑀 < 𝑦 − 1,
and we assume that there are 𝑁𝑡−1 records up to time 𝑡 − 1, and
𝑛𝑡 records are added at time 𝑡 . The process of calculating 𝑅 (≤𝑡 ) of

FIREwithout incremental algorithm is𝐷 (≤𝑡 )
𝑖 𝑗

= e𝑘 (𝑇
(≤𝑡 )
𝑖 𝑗

−𝑡 )
, 𝑅 (≤𝑡 ) =

𝑅 (≤𝑡 )⊙𝐷 (≤𝑡 ) , the number of FLOPs of the former is𝑀1×(𝑁𝑡−1+𝑛𝑡 ),
and the number of FLOPs of the latter is 𝑁𝑡−1 + 𝑛𝑡 , so the to-
tal number of FLOPs is (𝑀1 + 1) × (𝑁𝑡−1 + 𝑛𝑡 ). While the pro-
cess of calculating 𝑅 (≤𝑡 ) of FIRE with incremental algorithm is

𝐷
(<𝑡 )
𝑖 𝑗

= e𝑘 (𝑇
(<𝑡 )
𝑖 𝑗

−𝑡 )
, 𝑅 (≤𝑡 ) = 𝑅 (<𝑡 ) ⊙ 𝑇 (<𝑡 ) + 𝑅 (𝑡 ) , the number of

FLOPs of the former is𝑀2 × 𝑁𝑡−1, and the number of FLOPs of the
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latter is𝑁𝑡−1+𝑛𝑡 , so the total number of FLOPs is (𝑀2+1)×𝑁𝑡−1+𝑛𝑡 .
Suppose 𝑀1 ≈ 𝑀2, obviously, the complexity of FIRE without an
incremental algorithm is higher than that of FIRE with an incre-
mental algorithm. In some industrial recommendation scenarios,
the frequent interactions of a large number of users will lead to the
continuous updating of records. In order to recommend items to
users in real time, FIRE with an incremental algorithm is superior
to FIRE without an incremental algorithm in efficiency.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Dataset. We adopt four real-world datasets to evaluate the
performance of FIRE, including MovieLens 1M (900K ratings with
6,040 users and 3,706 items across 8months), DoubanMovie (1001,970
ratings with 10,000 users and 10,000 items across 12 years), Amazon
Book (344,201 ratings with 19,414 users and 19,055 items across
9 months) and Amazon Electrionics (194,494 ratings with 20,000
users and 15,000 items across one year). For the MovieLens 1M
dataset, both users and items have side information, while for the
other three datasets, only items have side information. More details
about the datasets are summarized in the appendix. It should be
noted that due to the sparsity of these datasets, we set a large time
interval for each dataset. However, our method can handle different
time intervals without any modification.

5.1.2 Metrics. We evaluate FIRE and the state-of-the-art recom-
mendation algorithms in top-N recommendation task with three
ranking metrics: 1) F1, which balances between precision and recall
by harmonic mean; 2) Mean Reciprocal Rank (MRR), which evalu-
ates the performance of ranking according to the harmonic mean of
the ranks; and 3) Normalized Discounted Cumulative Gain (NDCG),
which accumulate the gains from ranking list with the discounted
gains at lower ranks. Note that we use four-star or five-star ratings
as positive ones in top-N recommendation.

5.1.3 Compared Methods. FIRE is compared with eleven CF meth-
ods. Among them, BPR [20], LightGCN [11], NFM [10], IFM [35] and
GF-CF [24] are non-sequential CF methods that treat all user inter-
actions equally regardless of temporal information, while RRN [33],
DeepCoevolve [5], JODIE [17], SPMF [30], IncCTR [32] and SML [36]
belong to sequential CF methods that take temporal information
into account. Note that LightGCN, DeepCoevolve and JODIE are
graph based CF methods, which can mine more user/item features
on the user-item interaction graph. IFM and NFM can take side
information as their input, which is the same as FIRE. More details
of the methods are summarized in the appendix.

5.2 Accuracy Comparison
Table 1 shows the performance comparison between FIRE and ten
state-of-the-art CF methods in all four datasets. As shown in the
table, FIRE substantially outperforms all the compared methods.
Besides, we can draw the following observations from the results.
1. Sequential methods can outperform non-sequential methods
because the non-sequential methods treat all ratings equally while
ignoring the varying importance of interactions in different time
periods. On the contrary, sequential methods can better capture the
user preference drifts over time and thus achieve better accuracy.

2. GNN-based methods are better than non-graph based methods
as shown by the comparison between LightGCN and BPR, JODIE
and RRN, and FIRE and SML. The main reason is that GNN-based
methods can leverage graph structure information to facilitate rec-
ommendation, which can help users/items to enrich their represen-
tations from their neighborhoods.
3. FIRE consistently outperforms all the state-of-the-art CF meth-
ods in all datasets. The main reason is FIRE can learn from both the
temporal information and the side information of users and items.
With the help of the proposed temporal information filter, FIRE
can mine the time-varying features of users and items from the
user-item interaction sequences, and capture the temporal dynam-
ics of users and items, to improve the recommendation accuracy.
With the help of the proposed side information filter, FIRE can
not only address the cold-start issue for new users/items but also
improve the accuracy by auxiliary information. In addition, on two
extremely sparse datasets, Amazon Book and Amazon Electronics,
the accuracy of FIRE is much higher than traditional incremental
recommendation algorithms such as SPMF and SML, and better
than graph based incremental recommendation algorithms Jodie
and DeepCoevolve. This shows that FIRE can also deal with sparse
data by the design of temporal and side information filters.
4. It is interesting that LightGCN is a strong baseline which is non-
incremental but outperforms some incremental baselines by always
adopting the whole dataset. Incremental methods, e.g., IncCTR and
SML, mainly try to improve the efficiency of model updating with-
out sacrificing performance. Temporal methods, e.g., DeepCoevolve
and Jodie, achieved comparable performance to LightGCN due to
adopting temporal information.

5.3 Ablation Study
We conduct ablation study on Douban Movie and MovieLens 1M
to analyze the importance of temporal information and side infor-
mation to FIRE, and Table 2 shows the results. GF-CF adopts Eq (1)
for recommendation, which does not contain any temporal or side
information and can be used as a benchmark of FIRE.
• Importance of temporal information filter. Comparing GF-CF
with FIRE (2) on Douban Movie dataset, FIRE achieves better per-
formance than GF-CF on all metrics, which shows the importance
of temporal information in helping FIRE to improve the recom-
mendation accuracy. Similar observations can also be found in the
MovieLens 1M dataset.
• Importance of side information filter. From the results on Douban
Movie, we can conclude that item side information (𝛿2 ≠ 0) is
beneficial for FIRE by comparing FIRE (3) against FIRE (1) and
FIRE (4) against FIRE (2), respectively. Similar observations can be
found in the MovieLens 1M dataset. Note that FIRE only with side
information takes the same input as NFM and IFM. FIRE only with
side information can outperformNFMand IFM,which demonstrates
that the advantages of FIRE are mainly from the algorithm design
rather than adopting more information than other CF methods.

5.4 Efficiency Analysis
In this experiment, we compare the efficiency of FIRE against other
incremental CF algorithms on theMovieLens 1M dataset. The exper-
iments are all conducted with the same hardware. Figure 1 shows
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Table 1: Accuracy comparison between FIRE and the other methods in four datasets. Since there are no training parameters
in GF-CF and FIRE, the results are fixed every time, so the standard deviations are not reported in the results.

Models MovieLens 1M Douban Movie Amazon Book Amazon Electronics

F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

BPR 0.019 ± 0.000 0.027 ± 0.001 0.003 ± 0.000 0.004 ± 0.000 0.007 ± 0.000 0.008 ± 0.000 0.003 ± 0.000 0.003 ± 0.000
LightGCN 0.041 ± 0.001 0.061 ± 0.001 0.004 ± 0.000 0.005 ± 0.000 0.013 ± 0.000 0.013 ± 0.000 0.006 ± 0.000 0.007 ± 0.001
NFM 0.021 ± 0.001 0.032 ± 0.001 0.003 ± 0.000 0.003 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
IFM 0.014 ± 0.001 0.027 ± 0.001 0.003 ± 0.000 0.003 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
GF-CF 0.031 0.046 0.007 0.010 0.023 0.024 0.008 0.008

RRN 0.045 ± 0.004 0.050 ± 0.008 0.002 ± 0.000 0.003 ± 0.000 0.004 ± 0.000 0.004 ± 0.000 0.007 ± 0.000 0.007 ± 0.000
DeepCoevolve 0.064 ± 0.005 0.091 ± 0.010 0.002 ± 0.000 0.003 ± 0.000 0.004 ± 0.000 0.003 ± 0.000 0.003 ± 0.000 0.004 ± 0.000
JODIE 0.067 ± 0.002 0.092 ± 0.003 0.002 ± 0.000 0.005 ± 0.000 0.008 ± 0.000 0.008 ± 0.001 0.008 ± 0.001 0.006 ± 0.001
SPMF 0.023 ± 0.001 0.021 ± 0.000 0.004 ± 0.000 0.005 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.003 ± 0.000 0.002 ± 0.000
IncCTR 0.021 ± 0.002 0.032 ± 0.004 0.004 ± 0.001 0.005 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000
SML 0.032 ± 0.002 0.050 ± 0.005 0.005 ± 0.000 0.006 ± 0.001 0.004 ± 0.001 0.005 ± 0.001 0.002 ± 0.000 0.003 ± 0.000

FIRE (Ours) 0.070 0.112 0.009 0.013 0.024 0.025 0.008 0.009

Models MovieLens 1M Douban Movie Amazon Book Amazon Electronics

MRR@5 MRR@10 MRR@5 MRR@10 MRR@5 MRR@10 MRR@5 MRR@10

BPR 0.115 ± 0.004 0.121 ± 0.005 0.008 ± 0.000 0.009 ± 0.000 0.015 ± 0.000 0.016 ± 0.000 0.006 ± 0.000 0.006 ± 0.000
LightGCN 0.187 ± 0.003 0.184 ± 0.003 0.022 ± 0.001 0.022 ± 0.001 0.027 ± 0.000 0.027 ± 0.001 0.013 ± 0.001 0.015 ± 0.001
NFM 0.169 ± 0.002 0.165 ± 0.003 0.010 ± 0.001 0.010 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
IFM 0.156 ± 0.007 0.155 ± 0.004 0.010 ± 0.000 0.009 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
GF-CF 0.141 0.151 0.024 0.027 0.042 0.042 0.015 0.016

RRN 0.088 ± 0.006 0.101 ± 0.022 0.011 ± 0.000 0.013 ± 0.001 0.009 ± 0.001 0.011 ± 0.001 0.013 ± 0.000 0.015 ± 0.000
DeepCoevolve 0.155 ± 0.022 0.169 ± 0.020 0.006 ± 0.000 0.011 ± 0.000 0.016 ± 0.000 0.017 ± 0.000 0.009 ± 0.000 0.018 ± 0.001
JODIE 0.177 ± 0.003 0.209 ± 0.003 0.007 ± 0.000 0.010 ± 0.000 0.017 ± 0.001 0.018 ± 0.001 0.012 ± 0.000 0.013 ± 0.001
SPMF 0.105 ± 0.002 0.067 ± 0.001 0.016 ± 0.001 0.016 ± 0.001 0.003 ± 0.000 0.002 ± 0.000 0.004 ± 0.001 0.002 ± 0.000
IncCTR 0.094 ± 0.009 0.100 ± 0.011 0.018 ± 0.001 0.021 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.004 ± 0.000 0.004 ± 0.000
SML 0.156 ± 0.004 0.154 ± 0.009 0.023 ± 0.001 0.023 ± 0.001 0.010 ± 0.001 0.010 ± 0.001 0.003 ± 0.000 0.007 ± 0.000

FIRE (Ours) 0.422 0.411 0.027 0.031 0.043 0.044 0.017 0.018

Models MovieLens 1M Douban Amazon Book Amazon Electronics

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

BPR 0.130 ± 0.004 0.149 ± 0.005 0.011 ± 0.001 0.016 ± 0.001 0.018 ± 0.000 0.024 ± 0.000 0.007 ± 0.000 0.009 ± 0.000
LightGCN 0.218 ± 0.003 0.233 ± 0.001 0.026 ± 0.001 0.031 ± 0.001 0.033 ± 0.001 0.040 ± 0.001 0.016 ± 0.001 0.021 ± 0.001
NFM 0.212 ± 0.008 0.228 ± 0.006 0.012 ± 0.001 0.015 ± 0.002 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.000
IFM 0.186 ± 0.004 0.211 ± 0.005 0.013 ± 0.000 0.016 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
GF-CF 0.161 0.196 0.030 0.039 0.052 0.060 0.019 0.023

RRN 0.115 ± 0.004 0.141 ± 0.025 0.012 ± 0.000 0.015 ± 0.001 0.012 ± 0.001 0.015 ± 0.001 0.016 ± 0.000 0.021 ± 0.000
DeepCoevolve 0.198 ± 0.024 0.242 ± 0.024 0.007 ± 0.000 0.012 ± 0.000 0.017 ± 0.000 0.018 ± 0.001 0.010 ± 0.001 0.019 ± 0.001
JODIE 0.238 ± 0.002 0.247 ± 0.005 0.009 ± 0.000 0.019 ± 0.000 0.023 ± 0.001 0.027 ± 0.002 0.016 ± 0.002 0.019 ± 0.002
SPMF 0.145 ± 0.009 0.119 ± 0.004 0.022 ± 0.003 0.025 ± 0.001 0.003 ± 0.000 0.004 ± 0.000 0.006 ± 0.001 0.005 ± 0.001
IncCTR 0.123 ± 0.006 0.149 ± 0.004 0.022 ± 0.001 0.029 ± 0.001 0.003 ± 0.000 0.003 ± 0.000 0.005 ± 0.000 0.006 ± 0.000
SML 0.183 ± 0.005 0.197 ± 0.004 0.029 ± 0.001 0.033 ± 0.002 0.013 ± 0.002 0.015 ± 0.002 0.004 ± 0.000 0.009 ± 0.000

FIRE (Ours) 0.471 0.481 0.035 0.046 0.053 0.063 0.020 0.026

Figure 1: Efficiency of FIRE and other in-
cremental CF methods.

Figure 2: Sensitivity analysis on three hyper-parameters: number of primary factors,
decay factor and similarity threshold.

the total time for training and inference of FIRE and the other in-
cremental algorithms for model updating in each new time period.

Note that “FIRE w/o EI” means FIRE without efficiency improve-
ment. As we can see from the results, FIRE achieves the highest
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Table 2: Ablation study on two datasets. Note that no user side information is avail-
able in the Douban Movie dataset.

Setting Douban Movie
F1@5 MRR@5 NDCG@5 F1@10 MRR@10 NDCG@10

GF-CF 0.007 0.024 0.030 0.010 0.027 0.039

FIRE

(1) 𝛿2 = 𝛿3 = 0 0.001 0.005 0.007 0.002 0.005 0.008
(2) 𝛿2 = 0, 𝛿3 ≠ 0 0.009 0.027 0.034 0.013 0.030 0.045
(3) 𝛿2 ≠ 0, 𝛿3 = 0 0.003 0.012 0.015 0.005 0.015 0.021
(4) 𝛿2 ≠ 0, 𝛿3 ≠ 0 0.009 0.027 0.035 0.013 0.031 0.046

Setting MovieLens 1M
F1@5 MRR@5 NDCG@5 F1@10 MRR@10 NDCG@10

GF-CF 0.031 0.141 0.161 0.046 0.151 0.196

FIRE

(1) 𝛿1 = 𝛿2 = 𝛿3 = 0 0.004 0.074 0.090 0.009 0.079 0.112
(2) 𝛿1 = 𝛿2 = 0, 𝛿3 ≠ 0 0.035 0.149 0.178 0.052 0.148 0.205
(3) 𝛿1 ≠ 0, 𝛿2 = 0, 𝛿3 = 0 0.065 0.420 0.467 0.108 0.407 0.472
(4) 𝛿1 = 0, 𝛿2 ≠ 0, 𝛿3 = 0 0.008 0.074 0.090 0.014 0.081 0.116
(5) 𝛿1 ≠ 0, 𝛿2 ≠ 0, 𝛿3 = 0 0.064 0.418 0.464 0.105 0.400 0.467
(6) 𝛿1 ≠ 0, 𝛿2 ≠ 0, 𝛿3 ≠ 0 0.070 0.422 0.471 0.112 0.411 0.481

Table 3: Performance on new user and
item recommendation on two datasets.

MovieLens 1M (new user recommendation)

Setting F1@5 MRR@5 NDCG@5

FIRE w/o SI 0.004 0.093 0.118
FIRE w/ SI 0.070 0.578 0.633

Setting F1@10 MRR@10 NDCG@10

FIRE w/o SI 0.009 0.083 0.127
FIRE w/ SI 0.116 0.545 0.627

Douban Movie (new item recommendation)

Setting F1@5 MRR@5 NDCG@5

FIRE w/o SI 0.001 0.010 0.017
FIRE w/ SI 0.020 0.166 0.202

Setting F1@10 MRR@10 NDCG@10

FIRE w/o SI 0.002 0.011 0.019
FIRE w/ SI 0.030 0.160 0.221

efficiency, i.e., about 3X more efficient than SPMF and 6X more
efficient than SML. The reason why FIRE is so efficient is that it
does not have a very time-consuming training phase for model
parameters. We also compare FIRE with FIRE w/o EI to verify the
effectiveness of two efficiency improvement methods proposed in
section 4.5. The results show that FIRE is about 2X faster than FIRE
w/o EI, although FIRE w/o EI also achieves good efficiency compar-
ing to the other incremental CF methods. Therefore, we conclude
that the two efficiency improvement tricks are indeed helpful.

5.5 Hyper-parameter Analysis
We analyze the effects of three important hyper-parameters on the
performance of FIRE in Figure 2.
• Number of primary factors 𝑙 . With the increase of the number
of primary factors, MRR@5 and NDCG@5 first increase and then
decrease, reaching the peak at 𝑙= 128, while the MRR@10 and
NDCG@10 fluctuate smoothly. It shows that when the number of
primary factors is too small, FIRE cannot fully extract user and item
features from user interactions, while when the number of primary
factors is too large, no further improvements are observed due to
model saturation.
• Decay factor 𝑘 . With the increase of the decay factor, MRR@5
and NDCG@5 first increase and then decrease, while MRR@10
and NDCG@10 do not change much. When the decay factor is too
large, compared with the interactions at the current period, FIRE is
not able to extract the useful features of users and items from the
historical interactions due to almost complete attenuation of the
historical interactions. While when the decay factor is too small,
FIRE can not distinguish between the historical interactions and
the current interactions, making it unable to learn the temporal
features of users and items over time.
• User similarity threshold 𝜖1. All metrics first increase and then
decrease with the increase of the user similarity threshold, and
reach the peak at 𝜖1 = 0.6. When the user similarity threshold
is too low, some dissimilar users also participate in the current
user’s recommendation, resulting in low recommendation accuracy
and affecting the efficiency of the model. When the user similarity

threshold is too high, only a few neighbors participate in each user’s
recommendation. Although it can greatly improve the efficiency, it
can not obtain high recommendation accuracy.

5.6 New User/Item Recommendation Issue
We conduct experiments on two datasets to verify that FIRE can
solve the new user/item recommendation issue when combined
with side information. In the experiment, we use users/items that
do not appear in the training phase as new users/items for test. The
results are shown in table 3. Note that FIRE w/ SI and FIRE w/o
SI represent FIRE combined with side information or not, respec-
tively. We can see that the accuracy of FIRE w/ side information is
much higher than that of FIRE w/o side information, indicating that
the introduction of side information can effectively solve the new
user/item recommendation issue. In fact, side information describes
the static characteristics of users. When there is a lack of user in-
teractions, FIRE can learn user preference from side information
and recommend items to users. It should be noted that the values
of MRR and NDCG in table 3 are much higher than those in table 1,
because the rated items (or users) of each new user (or item) are
more than those of users (or items) that appear in the training phase
on average, resulting in higher chance of being predicted.

6 CONCLUSION
We propose the fast incremental recommendation method — FIRE,
which is a non-parametric method that does not suffer from the
time-consuming back-propagations, thus significantly improves
the efficiency of model updating. FIRE can capture the temporal
dynamics of users/items and address the cold-start issue for new
users/items through two carefully designed filters based on tem-
poral information and side information, respectively. Extensive
experiments demonstrate that FIRE can outperform the state-of-
the-art incremental CF methods in both accuracy and efficiency.
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A DETAILS OF DATASETS AND BASELINES
A.1 Datasets
Table 4 describes the detailed statistics of the four datasets used in
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Table 4: The statistics of the four datasets. Here, time span is described by year and month, e.g., 00.05 means May 2000.

MovieLens 1M Douban Movie Amazon Book Amazon Electronics

# Users 5,972 9,987 19,414 19,955
# Items 3,678 9,999 19,055 14,164
# Records 892,982 1,001,918 344,201 194,494

Training time span 00.05–00.11 08.01–17.12 13.01–13.07 15.01–15.10
Test time span 00.12 18.01 19.12 13.08–13.09 15.11–15.12
# Training records 777,387 785,047 273,785 163,906
# Test records 115,595 216,871 70,416 30,588

Density 0.0399 0.0100 0.0009 0.0007

User side information age, gender, occupation – – –
Item side information category genre, language, region category category

Book and Amazon Electrionics. In the MovieLens 1M dataset, we
first select a dense 8 months period containing approximately 900K
ratings and then use the ratings from the first seven months as
training set and the rest as test set. For the Douban Movie dataset,
we select the most dense data from 12 years, keep the top 10,000
users and 10,000 items, and we use their ratings in the first ten years
as training set and the rest as test set. In the Amazon Book dataset,
we first select a 9-month period containing 344,201 ratings with
19,414 users and 19,055 items, then we use the ratings from the first
7 months as the training set and the rest as test set. For the Amazon
Electrionics dataset, we select the user purchase records from one
year as a dense subset and keep top 20,000 users and 15,000 items,
then we use ratings from the first ten months as the training set
and the rest as test set.

A.2 Baselines
FIRE is compared with eleven state-of-the-art CF methods.
• BPR [20] is a static CF method minimizing a pair-wise loss over
positive and unlabeled examples. In BPR, we useMF [16] to initialize
user and item embeddings.
• LightGCN [11] is a GCN based static CF algorithm which simpli-
fied but outperformed the NGCF method [31] by removing feature
transformation and nonlinear activation.
• NFM [10] is a deep learning based static CFmethod that combines
the linearity of FM and non-linearity of neural network to achieve
recommendation.
• IFM [35] is a deep learning based static CF method that learns a
unique input-aware factor for the same feature in different instances
to make accurate recommendation.
• GF-CF [24] is a graph signal processing based non-parametric
method that achieves high accuracy recommendation on static
interaction graphs.
• RRN [33] is a dynamic CF method that uses two different recur-
rent neural networks (RNNs) to model the temporal dynamics of
users and items, respectively.
• DeepCoevolve [5] is a graph based incremental CF method that
uses RNN tomodel the intensity function in point process to capture
temporal dynamics of users and items. We disabled their model
updates in test phase for fair comparison.

• JODIE [17] is a graph based incremental CF method that em-
ploys two RNNs to learns the embedding trajectories of users and
items from interaction graph, respectively. We disabled their model
updates in test phase for fair comparison.
• SPMF [30] is an incremental CF method that maintains historical
data in a reservoir and combines historical and new observations
to update the recommendation.
• IncCTR [32] is an incremental CF method that consists of three
decoupled modules to construct data, handle feature and finetune
model, respectively.
• SML [36] is a state-of-the-art incremental CF method which can
transform the old model to a newmodel via a neural network-based
transfer component.
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