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A B S T R A C T

In online social communities, many recommender systems use collaborative filtering, a method that makes
recommendations based on what are liked by other users with similar interests. Privacy issues arise in this
process, as sensitive personal information (e.g., content interests) may be collected and disclosed to the
recommender server. Existing privacy-preserving collaborative filtering techniques trade either efficiency or
accuracy for privacy, which are not suitable for online social communities with large amount of users. In this
paper, we propose YANA (short for “you are not alone”), a user group-based privacy-preserving recommender
system for users in online social communities. In this system, users are organized into groups with diverse
interests and interact with the recommender server via interest-specific pseudo users, so that individual user's
personal interest information remains hidden from the server. A suit of secure multi-party computation
protocols and recommendation strategies are proposed to protect user privacy from group members in the
recommendation process. A prototype system has been implemented on both mobile devices and desktop
computers, and evaluation using real-world data demonstrates that YANA can effectively protect users’ privacy,
while achieving high recommendation quality and energy efficiency.

1. Introduction

Online social communities have become an integral component of
people's daily lives, allowing users to easily create and share content
with each other, and enjoy a variety of online applications and services
on a real-time basis. Therefore, recommender systems that can
accurately and efficiently identify and deliver interested content to
individual users have become increasingly important. Many existing
recommender systems [1–8] adopt collaborative filtering (CF), a
popular recommendation method that has high accuracy, low over-
head, and is generally applicable to various application domains. CF
works based on the idea that people who had similar interest in the past
are likely to have similar interest in the future. In CF-based systems,
the server collects user information, and then predicts a user's interest
in an item based on the decisions (or ratings) of other similar users. In
this process, users’ personal interests will be exposed to the recom-
mender server, which raises privacy concerns [9,10]. Recommender
servers (service providers) not only gain information regarding users’
private interests, but also, in some cases, may share users’ private data

with third parties to make personalized advertisements [11]. Moreover,
user privacy may be exposed to the public via the open APIs of service
providers [12] or attacked by malicious users [13,14] in online
communities. To address these privacy issues, a recommender system
for online social communities should prevent the service provider from
obtaining users’ private data while providing personalized content
recommendation with high quality and high efficiency.

Recent research efforts toward privacy-preserving collaborative
filtering (PPCF) have generated solutions in two main categories.
One is based on secure multi-party computation (SMPC) [15–18],
and the other is based on randomization [19–21]. SMPC-based
methods require a large amount of computation and communication
in order for users to jointly compute a value (e.g., overall rating for an
item) without disclosing their personal values (e.g., individual ratings).
However, in online social communities, where the number of users and
content items can reach millions or even billions, SMPC-based
methods are inefficient and scale poorly. Meanwhile, this kind of
methods is not suitable for specific applications, such as mobile
recommender systems, in which mobile devices have limited computa-
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tion and communication capabilities and battery capacities.
Randomization-based methods put noises on user ratings before
sending them to the server. This kind of methods generally trade
accuracy for privacy, which means users will receive lower-quality
recommendations in order to protect their privacy. Still, randomiza-
tion-based methods cannot guarantee user privacy, since the server has
a very high chance to reconstruct the true ratings of the users as shown
by recent works [22–24].

In this paper, we present YANA (short for “you are not alone”), an
efficient privacy-preserving recommender system for users in online
social communities. YANA can protect user privacy, while at the same
time achieving high recommendation quality and energy efficiency.
YANA is group based – it automatically organizes users into groups
with diverse interests, so that each user's private interests can be
hidden among a set of users against recommender server. A number of
pseudo users are created for each user group, each pseudo user
represents a unique interest, and the union of all pseudo users covers
all interests of a user group. The pseudo users communicate with the
recommender server on behalf of the real users. The real users can then
obtain personalized recommendations based on the server's recom-
mendations to the pseudo users and their interest distribution among
pseudo users, without exposing any private data to the server. We
propose four SMPC protocols for different in-group computations,
which ensure user privacy from group members in the recommenda-
tion process with high efficiency.

To the best of our knowledge, this is the first complete work that
tackles the efficiency problem of privacy-preserving recommender
systems for online social communities.

Compared with our previous work [25], this paper improves YANA
by proposing a new user group construction protocol, a novel user
interest modelling method, as well as a suit of new SMPC protocols to
strictly protect user privacy in user group construction, user interest
modelling and content recommendation. Meanwhile, formal proofs are
provided to prove the privacy preservation feature of YANA. Our key
contributions are as follows:

1. We propose YANA, a novel user group-based privacy-preserving
recommender system for users in online social communities, which
can efficiently protect individual user's content interest privacy in
the recommendation process.

2. We propose four secure multi-party computation protocols to
achieve efficient privacy-preserving operations in different scenarios
inside user groups. These protocols can be adopted by many
applications to achieve efficient privacy-preserving computation.

3. We develop a prototype system to evaluate YANA on both mobile
devices and desktop computers using real-world data. Experimental
results demonstrate that, compared with state-of-the-art privacy-
preserving CF approaches, YANA is much more efficient and
achieves better recommendation quality.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 formulates our problem and presents a high-
level overview of YANA. Sections 4–6 present the details of the YANA
system design, including user grouping, pseudo user management, and
the privacy-preserving recommendation algorithm. Section 7 analyzes
the privacy protection capabilities of YANA. Detailed experimental
results are presented in Sections 8 and 9 concludes this paper.

2. Related work

Existing works on privacy-preserving collaborative filtering (PPCF)
can be classified into two main categories. Works in the first category
use homomorphic encryption-based secure multi-party computation
[15–18,26–30] to avoid disclosing personal information to the central
server. Canny proposed a secure multi-party computation (SMPC)
method on encrypted data to achieve PPCF [15], in which homo-

morphic encryption and distributed threshold decryption are adopted
to protect user privacy while ensuring SVD-based CF. Miller et al. [16]
proposed the PocketLens system, which also protects user privacy by
homomorphic encryption based SMPC. Polat and Du proposed PPCF
solutions on both vertically partitioned data [17] and horizontally
partitioned data [18] based on homomorphic encryption. Armknecht
et al. [26] proposed a distributed recommender system and an
improved homomorphic encryption scheme, which can efficiently
compute real numbers for recommendation. Kikuchi et al. [27] adopted
homomorphic encryption to achieve three PPCF schemes: basic CF,
clustering-items CF and sampling-users CF. Basu et al. [28] proposed a
PPCF solution based on weighted slope one predictor, which adopts
homomorphic encryption to protect user privacy. Meanwhile, they
proposed how to implement such PPCF solution on the cloud in their
another work [29]. Jeckmans et al. [30] proposed a PPCF solution
based on homomorphic encryption, which can enable recommenda-
tions using data that are shared among different service providers.
However, large-scale secure multi-party computation based on homo-
morphic encryption among users is inefficient and not applicable in
online social communities. Our user group-based solution significantly
reduces the scale of secure multi-party computation by confining the
computation within each user group (with a typical group size of 10–
50), thus making the system much more scalable. In addition, our
solution can avoid expensive encryption and decryption operations
adopted in previous works to further improve the efficiency.

Works in the second category apply randomized perturbation on
users’ private data before sending them to the recommender server,
such that the noise can help hide user privacy [19–21]. These methods
trade accuracy for privacy, which means users cannot obtain high-
quality recommendations as those in non-privacy-preserving recom-
mender systems. However, as shown by recent studies [22–24], the
server may still be able to partially recover users’ private information
from the perturbed user data it receives via machine learning methods.
McSherry et al. [31] applied differential privacy on the Netflix dataset,
and they claimed that the noise introduced by differential privacy
method would not significantly degrade recommendation accuracy. But
still, recommendation accuracy had to be traded for privacy in their
work. Recently, Shokri et al. proposed an obfuscation method to
preserve user privacy [32], which obfuscates the user-item connections
among similar users before user data are sent to the central server. This
type of obfuscation may hide user interests in particular items, but may
still reveal user interests at a higher level. For instance, the server may
not know the exact items that Alice likes, but the server can infer that
Alice has interest in alcoholism because most of the items after
obfuscation are related to alcoholism. Meanwhile, the obfuscation
among users may also hurt recommendation accuracy. Boutet et al.
[33] proposed an obfuscation mechanism to hide exact profiles of
users, and a randomized dissemination algorithm was proposed to
ensure differential privacy during the dissemination process. Chow
et al. [34] proposed a practical system for PPCF, in which users are
clustered and then recommendations are generated based on the
average of randomized ratings from similar users in the same cluster.
Casino et al. [35] proposed a PPCF method based on micro-aggrega-
tion, in which k-anonymity can be guaranteed and better efficiency and
privacy protection are achieved as compared with Gaussian noise-
based PPCF method. However, as demonstrated in their studies,
tradeoff between accuracy and privacy should be made in all the above
three methods. Overall, randomization-based PPCF solutions are as
efficient as YANA, but accuracy has to be compromised for privacy in
these methods. Thus, the recommendations of these methods cannot
be as accurate as YANA.

In YANA, users are organized into groups with diverse interests in
order to hide each user's privacy among a group of users. This idea is
similar to that of k-anonymity [36,37] and l-diversity [38] in privacy-
preserving data publishing. However, with k-anonymity and l-diversity,
the server anonymizes sensitive user data centrally to prevent third
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parties from identifying individual users or linking specific features to a
user. Our problem is different and more challenging in that no central
server could be trusted, and the groups should be formed and
maintained in a distributed and privacy-preserving fashion.

In this work, an efficient privacy-preserving clustering algorithm is
proposed to model user interest. This differs from existing works on
privacy-preserving clustering [39,40] in two aspects: (a) we can
optimally identify the number of user interest groups in a privacy-
preserving fashion; and (b) we adopt a privacy-preserving distributed
MinHash method to make clustering much more efficient.

3. Overview

In this section, we first formulate our problem and then present the
high-level design of the proposed solution – YANA.

3.1. Problem formulation

In online social communities, users can post, read or comment on
online posts, such as articles, pictures, music or videos via desktop
computers or mobile devices. Given a user u and an online post (item)
i, if u has posted/read/commented on i, we say u is interested in i, then
we denote u's rating to i as r = 1i u, . Otherwise, r = 0i u, . Based on the
binary ratings (“0” or “1”), the recommender system can generate
predicted scores of items to specific users ranging in [0,1], and
recommend items with high scores. Note that, we only consider the
protection of user privacy on binary ratings. Other ratings, such as
movie ratings on a scale of 1-5, can still be supported by YANA if these
ratings are normalized into the range of [0,1], and all technique details
of YANA do not need to change for such normalized ratings. For
instance, we can normalize 1–5 ratings by dividing the values by 5, so
that “1, 2, 3, 4, 5″ will be normalized to “0.2, 0.4, 0.6, 0.8, 1.0″,
respectively. And the recommended ratings ranging in [0,1] can also be
scaled back to 1–5 similarly.

Users’ online activities can be accurately identified by online service
providers in ordinary cases. However, with the advances of anonymous
web browsing techniques [41], e.g., trusted proxy, virtual private
network, etc., online users can hide their IP addresses and any other
personally identifiable information from the website that they are
visiting, which enables the protection of user privacy from online social
communities. But recommender systems rely on user interests in the
past to predict their interests in the future, so that we need a PPCF
method which can protect user privacy while still providing accurate
recommendations.

Among all user activities in online social communities, we denote
users’ post and comment information as “public” information, because
users intend to interact with other users through these activities. But,
users’ read information does not give such intimation, and these read
information may contain users’ privacy. Thus, we denote users’ read
information as “user privacy”, and to be strong enough, all users
privacy (read information) should be protected from recommender
server and other users during recommendation process.

3.2. System overview

To protect users’ personal content interest privacy, we have
proposed YANA, a user group-based privacy-preserving recommender
system for online social communities. Using YANA, users of online
social communities can obtain high-quality recommendations without
sacrificing their content interest privacy to any party. Targeting at the
large-scale users and items in online social communities, YANA is
designed to be efficient and scalable. As illustrated in Fig. 1, YANA
consists of three key components:

• User groups. YANA automatically organizes users into groups with
diverse content interests, and individual users’ content interests are
hidden and aggregated within each group. Thus, user privacy is
protected from the server. Inside each user group, users collaborate
via privacy-preserving mechanisms, including efficient secure multi-
party computation (SMPC), to protect user privacy from being
inferred by other members in the same user group.

• Pseudo users. To obtain recommendations, the users in a user
group maintain a set of pseudo users to interact with recommender
server on behalf of real users. Each pseudo user represents a unique
interest liked by at least one group member. The pseudo users
together cover all interests of the group members. The server makes
recommendations to the pseudo users based on their interests, and
the real users can re-calculate their personalized recommendations
based on their own interest distributions and recommendation
scores to the pseudo users.

• Recommendation algorithm. To make recommendations, the
server first needs to collect pseudo users’ item ratings. We achieve
item ratings through efficient secure multi-party computation inside
each user group, and the aggregated item ratings of each group are
sent to the server via pseudo users. The server then runs the
proposed collaborative filtering algorithm to make recommenda-
tions to the pseudo users. These recommendation scores to pseudo
users are used by the real users to calculate their own personalized
recommendations.

4. User grouping

In this section, we describe how users are organized into user
groups in a distributed and privacy-preserving fashion.

4.1. User group definition and construction

We leverage user groups to hide individual users’ content interests
among a set of users with diverse interests, such that no one can
associate any specific interest with a particular user. A user group is
defined as follows:

Definition 1 (User Group). A user group g is a 3-tuple: { , , }g g g ,
in which g is a set of users who have joined g and collaborate together
to hide the privacy of each other, g is the combined set of interests that
users in g have, and g is a set of pseudo users who communicate with
the server on behalf of the real users in g.Please note that the privacy
setting of this work adopts the semi-honest model [42]. In real world

Fig. 1. YANA: efficient user group-based privacy-preserving recommendation for online social communities.
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applications, totally-honest behaviors are hard to enforce, so that semi-
honest behaviors are assumed in many settings [42]. In semi-honest
model, users follow the computation protocols honestly except that
they can store intermediate data and infer information based on
intermediate data. Based on the semi-honest assumption, user
groups can be formed to securely hide the privacy of each user
among a set of users.

Next, we propose a group construction protocol which can auto-
matically organize users into groups with diverse interests in a
distributed and privacy-preserving fashion. Formal proofs will be given
to show that user privacy can be protected inside user groups and the
construction procedure would not reveal any user privacy in Section 7.
The overall procedure of user group construction is described in
Algorithm 1.

Algorithm 1. USecureConstruct( ).

Require: U is the set of users in the system.
1: For each user u U∈ , Ku is the expected user group size of u;
2: while Not all users in U are in user groups do
3: for each u U∈ who has not joined any user group do
4: u chooses to be the “host” of a user group with probability
Pr u K U( ) = /| |host u ;
5: if u is host then
6: u invites its friends to join its group;
7: end if
8: end for
9: for each do
10: Let Hu be the set of u's friends who are hosts of user

groups;
11: if H ≠ ∅u then
12: u randomly chooses v H∈ u and joins the group of v;
13: else
14: Let Ju be the set of u's friends who already joined user

groups;
15: if J ≠ ∅u then
16: u randomly chooses v J∈ u and joins the group of v;
17: end if
18: end if
19: end for
20: for each user group g do
21: Let u be the host of g;
22: if K≥g u then

23: g is formed;
24: end if
25: end for
26: end while

For each user group g constructed by Algorithm 1, the number of
users in g — Kg should be no less than 3. If g only contains two users
(u1 and u extsubscript2), then u1's privacy could be easily inferred from
their jointly computation results by u2, and vice versa. For a user group
g with K ≥ 3g , we prove that all users’ privacy can be protected in
Section 7. It should be noted that users may choose to leave a user
group due to various reasons after the user group has been formed.
Thus, once a user requests to leave, the other users in the same user
group should check whether their requirements are met, i.e., whether
their privacy can be protected within the user group. If all their
requirements are still met, then the user group does not need to be
changed. Otherwise, they should dismiss their user group, and re-
construct new user group using the above SecureConstruct algorithm.

4.2. User interest modelling

User interest modelling can discover internal interest groups inside

each subcommunity, which are more adequate in reflecting users’ true
interests. For instance, in the subcommunity of “News”, interest groups
such as “Business News”, “Technology News”, “Sports News” etc., could
be discovered. A subcommunity may draw the attention of different
sets of users, but a interest group could be only interested to specific set
of users. User interest modelling is beneficial to YANA in two folds: 1)
user interest are more focused in each interest group, and recommen-
dations inside interest groups could ensure that no “noise” ratings from
uninterested users are considered during recommendation process;
and 2) the interest groups can also help generate pseudo users in user
groups, we will show how to generate and maintain pseudo users based
on the interest groups in later sections.

In YANA, we model user interest by a privacy-preserving user
interest clustering algorithm, which clusters similar items into interest
groups. After interest group modelling, each user will have an interest
distribution over these interest groups based on the items they like and
the interest groups that those items belong to. Here, k-centroids
clustering method [43] is adopted to cluster similar items. As a variant
of the classic k-means clustering algorithm [44], k-centroids clustering
works as follows: (1) Randomly select k items as the initial k centroids.
(2) Compute the distances of other items to the k centroids, and assign
each item to the cluster whose centroid is closest. Then, compute the
item distances inside each cluster, and choose the item with the
smallest average distance to other items in the cluster as new centroid.
(3) Repeat the previous step until the centroids do not change. The
reason we choose k-centroids clustering is that only item distance
calculations are required during clustering process, so that privacy
preservation could be performed very efficiently. Other kinds of
clustering techniques, such as distribution-based clustering (e.g. EM
clustering), density-based clustering (e.g. DBSCAN, OPTICS) etc.,
requires very complex computations during clustering process. In these
methods, privacy-preserving protocols with high computation over-
head (e.g. homomorphic encryption based secure multi-party compu-
tation) are required to protect user privacy, which are not very efficient
in online social communities with large-scale users and items.

Two main issues need to be addressed when applying the k-
centroids clustering method to our problem: 1) determining the
optimal number of clusters — k; and 2) efficient calculation of item
distances in a distributed and privacy-preserving way.

Optimal number of clusters — k. One key challenge in k-
centroids clustering is how to choose the appropriate number of
clusters — k. A better number of clusters not only helps generate more
accurate interest groups, but also helps generate more accurate pseudo
users. Here, we adopt an idea that is similar to X-means [45]. In X-
means, Bayesian Information Criterion (BIC) is adopted to score
clusterings with different k values, and the k value that achieves the
highest BIC score is chosen as the optimal k value. The BIC score is
defined as follows [45]:

BIC C l I C k d m( ) = ( | ) − ( + 1)
2

loĝ
(1)

where I is the dataset, C is a clustering on I, k is the number of clusters
in C, d is the dimensionality of C, m is the number of items in I and
l I C( | )̂ stands for the log-likelihood of I given clustering C. A smaller k
can have smaller l I C( | )̂ , and larger k will result in bigger mlogk d( + 1)

2 .
Thus, a balanced (optimal) k can be chosen to achieve the highest BIC
score.

Using the real-world dataset we have collected, we tested the item
distance distribution inside each cluster with the Anderson-Darling test
[46], and found that the distribution is Gaussian. Then the probability
of each item i can be computed by the server as follows:

⎛
⎝⎜

⎞
⎠⎟Pr i m

m π σ σ
D i μ( ) = × 1

2
exp − 1

2
( , )i

d i2
2

(2)

where mi is the number of items in the cluster that i belongs to, D i μ( , )i
is the distance between i and μi, σ D i μ m k= ∑ ( , ) /( − )i I i∈

2 is the
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maximum likelihood estimate (MLE) for the variance of I. Therefore,
the log-likelihood is:

∏l I C Pr i( | ) = log ( )̂
i I∈ (3)

⎛
⎝⎜

⎞
⎠⎟∑ m

σ
D i μ mR= log − 1

2
( , ) −

i I
i i

∈
2

2

(4)

where R π d σ m= log(2 ) + log + log1
2 is a constant.

Based on the BIC score above, the server can run the k-centroids
algorithm multiple times with different k values, and choose
k BIC C* = argmax ( )k ii (ki is the number of clusters in Ci) as optimal
number of clusters.

Efficient privacy-preserving item distance calculation.
Another challenge in the k-centroids clustering process is to compute
the distance between items efficiently without compromising user
privacy. To preserve user privacy, we need a secure multi-party
computation among the users to calculate the distance between any
two items. Let n be the number of users in the system; note that n is
large in online social communities. Thus, secure multi-party computa-
tion among n users could be rather time-consuming. To achieve high
efficiency, we propose a privacy-preserving distributed MinHash
method to estimate the distance between items. MinHash is an efficient
method for estimating the Jaccard similarity between two sets [47]. It
has the following property:

h C h C
C C
C C

Pr [ ( )== ( )] =
| ∩ |
| ∪ |h i j

i j

i j
∈

(5)

where is a set of hash functions, h ∈ can be any random
permutation function on a given set, h C( )i is the index of the first “1”
after randomly permuting all the elements in Ci.

In the proposed privacy-preserving distributed hashing scheme,
random permutation is achieved via anonymous random walk among
users. The hash values are stored in the data structure
HashVector key value〈 , 〉 as shown in Fig. 2. In the anonymous random
walk, each user has a predefined probability of adding its information
to the HashVector , so that no one else knows if a user's information is
contained in a HashVector .

Users are visited in the anonymous random walk process. Once user
u receives the HashVector , u chooses items that he/she likes but are not
contained in HashVector and adds them into HashVector with a
predefined probability ρu (using a Global Unique Identifier (GUID)
as “key” and the list of items as “value”). By adopting the GUID as key
in the HashVector , each user is anonymized, so that user interest can
not be associated with any specific user. Meanwhile, 128-bit GUIDs are
generated from random numbers containing 122 random bits, so that
the total number of unique GUIDs is 2122. This number is so large that
the probability that different users generate the same GUID is
negligible. In the anonymous random walk process, the HashVector
grows as more users are visited and more items are added. After all
items are added in the HashVector , the random walk stops. Then, the
final user will send HashVector to the server through an anonymous
communication protocol, so that the server cannot know whether the
user who sends the HashVector has added its information into the
HashVector . After running the anonymous random walk process for
multiple times, the server can estimate the Jaccard distance between

items. The detailed procedure of the distributed hash algorithm is
presented in Algorithm 2.

Algorithm 2. U I ρSecureHash( , , ).

Require: U is the set of users, and I is the set of items. ρ is the
predefined probability set of users. 1: HashVector = ∅;

1: Hash Vector=ϕ;
2: The server randomly chooses user u U∈ ;
3: while Not all items in I are in HashVector do
4: if u receives HashVector the first timethen
5: u randomly generates r0 ≤ ≤ 1u ;
6: if r ρ≤u u then

7: u randomly generates GUIDu;
8: ItemList u I I( ) = { − }u HashVector ;
9: HashVector put GUID ItemList u. ( , ( ))u ;
10: end if
11: end if
12: u randomly selects u F′ ∈ u (Fu is the set of u's friends) and
sends HashVector to u′; (random walk)
13: u u= ′;
14: end while
15: while HashVector is sent to serverdo
16: u sends HashVector to the server with possibility ρu; (anon-
ymous communication)
17: if HashVector is not sent to the server then
18: u runs one more random walk;
19: end if
20: end while

Based on the SecureHash algorithm, given two items i1 and i2, their
Jaccard distance can be measured by 1 minus their Jaccard similarity
as follows:


i i

h i h i
random walks

JD( , ) = 1 −
∑ ( ( )== ( ))
#1 2

1 2
(6)

where  x( ) is an indicator function, if x=true then  x( ) = 1, otherwise
 x( ) = 0.

Privacy-preserving k-centroid clustering. After calculating
item distances based on the distributed hashing method, the server
can cluster all the items into interest groups with different cluster
numbers — k, and choose the optimal k by the BIC score based
method. Then, the clustering with optimal k is the optimal interest
groups clustering. These interest groups can help increase recom-
mendation accuracy and generate pseudo users inside each user
group.

4.3. Complexity analysis

4.3.1. Complexity of user interest modelling
In user interest group clustering, the server will cluster m items

into k interest groups involving n users. The complexity for running
SecureHash protocol among n users are O(mn), as each user will go
through all the items once visited. After the SecureHash protocol, the
server can estimate the Jaccard Distance of items, and the complexity
is O n m( * )2 as the length of each HashVector is O(n) and O m( )2 times of
calculation is required to compute the distance among m items. After
obtaining item distances, the server can run k-centroids algorithm to
cluster m items into k clusters. As the distances are already known,
the complexity of clustering is O k m( * )2 . At last, the BIC score is
calculated for clusterings of different k values, and the complexity of
which is O(m). Overall, the complexity for user interest group
clustering is O n m O k m O m( * ) + ( * ) + ( )2 2 . Although n and m could be
large, the clustering computation are mainly performed on recom-
mender server, so that polynomial complexity is acceptable.

Fig. 2. HashVector in privacy-preserving distributed hashing.
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4.3.2. Complexity of user group construction
The user groups are constructed in a peer-to-peer way. Assuming that

users have constant numbers of friends and the algorithm stops within
constant number of rounds, then the complexity for each user is O F( )u ,
where Fu is the set of friends of user u. This is because each user only
chooses one of its friends and join the friend's group in each round.

5. Pseudo user management

After user grouping, pseudo users are generated to protect user
privacy during recommendation process. Real users interact with the
server through the pseudo users, and all the information sent to the
server by the pseudo users are the aggregated results of a group of
users, so that the server cannot obtain the personal information of
individual real users. Each pseudo user acts as a “delegate” for a
particular interest, and the recommendations that the server makes to
the pseudo user can be utilized to generate personalized recommenda-
tions by real users who have that interest.

5.1. Pseudo users generation

Pseudo users are generated based on the interests of the users
inside each user group. In this section, we first present the
SecureSearch algorithm to find the set of interests inside a given user
group with privacy. In the SecureSearch protocol, in order to check if a
set of users share a set of interests, users can run secure multi-party
summation protocols in which user input is a randomly generated
positive number if the user is interested in a specified interest and 0
otherwise. If the computation result is positive, it means that at least
one user in the user group is interested in that interest. If the
computation result is 0, it means no one in the group is interested in
that interest, but does not reveal any further information. To achieve
efficient secure multi-party summation, we adopt the SecureSum
protocol [48], whose key steps are described below: (1) Each user
randomly divides his/her input value into r parts such that the sum of
the r parts equals to the input value. (2) Users randomly “shuffle”
(send/receive) their divided parts to/from other users to obfuscate the
values. (3) Each user sends the sum of his/her local obfuscated parts to
the “host”, and the “host” computes and returns the sum without
obtaining and revealing any party's privacy. Based on the SecureSum
protocol, the SecureSearch algorithm is proposed in Algorithm 3.

Algorithm 3. g SSecureSearch( , ).

Require: g is a given user group. S is the set of interests.
1: = ∅g ;

2: for each interest s S∈ do
3: for each u ∈ g do

4: if u is interested in sthen
5: x Random Z= (ϵ , )u s u u, ; (ϵ > 0u is a small number and
Z ⪢ϵu u)
6: else
7: x = 0u s, ;
8: end if
9: end for
10: All u ∈ g run a SecureSum protocol and compute

sum x= ∑s u u s∈ ,g
;

11: if sum > 0s then
12: s= ∪ { }g g ;

13: end if
14: end for
15: return The set of interests that users in g have — g.

Using the SecureSearch algorithm, users in the same user group g

can find a set of interest – g liked by users in g without exposing the
interest privacy of any user. Then, the group members will construct a
set of pseudo users g, each of which represents a unique interest in g.

5.2. Pseudo users maintenance

Given a user group g, after the generation of pseudo users, users in
g run a round-robin protocol to represent one pseudo user and act as
the “host” when maintaining the pseudo user's interest profile. Also, to
achieve load balance among users in the user group, the users choose a
time interval for periodic execution of round-robin protocol to transfer
pseudo user profile(s) to the successive neighbor along the “ring of
users”. Note that the ring of users can be formed in various ways. In
YANA, we form the ring by the order of users joining g.

For each pseudo user p ∈ g with interest s, the interest profile of p is
defined as the union of items that belong to s and are liked by users in g:

interest p I I( ) = ⋃ ( ∩ )
u

u s
∈ g (7)

where Iu is the set of items liked by user u and Is is the set of items
belonging to s. After the generation of pseudo users, the users in a user
group should decide the item ratings of pseudo users. This step is
important, as the recommender system rely on the pseudo users’ decisions
to make recommendations to other pseudo users (with similar interests)
in other user groups. The item ratings of pseudo users could be computed
as Eq. (8) in Section 6.1.

For a user group g, since no user in g would like to expose his/her
interest privacy, a privacy-preserving protocol is needed to generate interest
profile and item ratings for each pseudo user p. We propose the SecureRate
algorithm to address this issue. Given pseudo user pwith interest s, users in
g run the SecureSum protocol to check if there exists users in g who are
interested in items from s, and add interested items into the profile of p.
Then, users in g run SecureSum protocol again to compute the ratings of
items. The details of the SecureRate algorithm is presented in Algorithm 4.

Algorithm 4. g p sSecureRate( , , ).

Require: g is a user group, p is the pseudo user to maintain in-
terest s in g.

1: s = ∅p ;

2: For all u ∈ g, u gets the set of items belonging to interest s — Is
from the recommender server;
3: for each i I∈ s do
4: for each u ∈ g do

5: ifu likes i then
6: x Random Z= (ϵ , )u i u u, ; (ϵ > 0u is a small number and
Z ⪢ϵu u)
7: else
8: x = 0u i, ;
9: end if
10: end for
11: All users in g run a SecureSum protocol to compute

sum x= ∑i u u i∈ ,g
;

12: if sum > 0i then
13: s s i= ∪ { }p p ;

14: end if
15: end for
16: for each i s∈ p do

17: Each u ∈ g computes λ u s( , )p and r λ u s* ( , )i u p, locally;

18: All users in g run the SecureSum protocols to compute ri p, as

Eq.(8);
19: end for
20: return: sp;
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5.3. Complexity analysis

5.3.1. Pseudo user generation
To generate a set of pseudo users inside a given user group g, users

need check l interests, and one SecureSum protocol is required each
time. As the complexity of SecureSum isO K r( + ) for each user (K is the
number of users in a user group and r is the number of rounds in
SecureSum), the total complexity is O l K r( *( + )) per user. As l, K and r
are all not large, the cost of pseudo user generation process is small.

5.3.2. Pseudo user maintenance
During pseudo user interest profile generation, the users inside a

given user group g would run the SecureSum protocol O(m) times to
determine if an item should be in the interest profile of a pseudo user,
where m is the number of items. Since the complexity of SecureSum is
O K r( + ) for each user, the total complexity is O m K r( ( + )) per user.
This complexity is a bit high, but acceptable as it runs only once after a
user group is formed.

For pseudo user management, the users in a user group need to
determine the corresponding item ratings of pseudo user. For each new
item, the users need to run the SecureSum protocol once to calculate
the goodness of the item. So the complexity of generating item ratings
of pseudo users is O K r( + ) per user. Since K and r are not large, this
cost is small for each user.

6. Privacy-preserving content recommendation

After user grouping and generation of pseudo users in each user
group, the server can collect the interest profiles of pseudo users of all
user groups. Then, the server can make recommendations to the
pseudo users based on the item ratings of other pseudo users.
However, the use of pseudo users and user groups, while protecting
user interest privacy, introduces new challenges to the recommenda-
tion process:

• Group ratings of items. There are a set of users in each user
group, some users may have shared interests. So how to measure the
ratings of items within a user group is challenging.

• Server-side recommendation. The server cannot obtain a
standard user-item rating matrix, which is required in the standard
collaborative filtering algorithm. Thus, another challenge is how to
make the standard collaborative filtering algorithm work in the new
form of data.

• Client-side recommendation. In our system, the server makes
recommendations only to the pseudo users, each of which represents
a unique interest. But each real user may have multiple diverse
interests. How to generate accurate and personalized recommenda-
tions for each real user based on the recommendations for the
pseudo users is challenging.

6.1. Group ratings of new item

In this work, we leverage the interest-based collaborative filtering
method, which considers the interests of individual users and the final
decision is determined by users who are interested in the same type of
items in the past. This guarantees that the decisions are made by the
“experts”, and the decisions of users who are never interested in that
type of items will not be included as “negative” ratings (their weights
are 0). This can help make “fair” recommendations for the items,
because “noise” ratings from uninterested users are ignored in item
rating.

To determine the rating of an item inside a user group, we need to
consider two factors: (1) to what extent the users in the group like the
item, i.e., the number of users who like the item, and (2) the
importance (or “expertise”) of each user in the group for this type of
items. Based on these two factors, the item rating of pseudo user is

computed as follows:

r
r λ u s

λ u s
=

∑ × ( , )

∑ ( , )i p
u i u p

u p
,

∈ ,

∈

g

g (8)

where r = 1i u, if u is interested in i, and 0 otherwise. sp is the interest
profile of pseudo user p, and λ u s( , )p is defined as follows:
λ u s I I I( , ) = | ∩ |/p s u up . In Eq. (8), weighted-average is to measure how
users in the group like an item and λ u s( , )p is adopted as “weight” to
measure how important an user is for that interest.

Given an item i and a pseudo user p inside user group g, after the
item rating ri p, is computed by SecureRate algorithm, the real user who
maintains p will send ri p, to the recommender server. Once receiving all
the item ratings, the recommender server can then compute recom-
mendation scores for pseudo users on the server side.

6.2. Server-side recommendation

For the recommender server, we adopt the memory-based colla-
borative filtering method, which is similar to the CF algorithm
proposed by Herlocker et al. [49]. In our system, the server cannot
see real user data, but only pseudo user data. Thus, the server will
calculate the similarities among the pseudo users, and make recom-
mendations to each pseudo user based on what are liked by other
pseudo users with similar interests. The server generates the recom-
mendation score of item i for pseudo user p as follows:

γ i p
r sim p p

sim p p
( , ) =

∑ × ( , ′)

∑ ( , ′)
p P i p

p P

′∈ , ′

′∈

i

i (9)

where Pi is the set of pseudo users in the system who has rated items
with the same interest of i, sim p p( , ′) is the Jaccard similarity between
pseudo users p and p′. ri p, ′ is obtained from the pseudo user p′. After the
calculation of γ i p( , ), the server will recommend highly-rated items to
pseudo user p. It should be noted that if two pseudo users p and p′ are
not of the same interest then sim p p( , ′) is 0. This means that all
recommendation scores are computed among pseudo users who like
that kind of items before, so that “noise” ratings from uninterested
users are ignored.

6.3. Client-side recommendation

The item recommendation scores from the server can only reflect
how the pseudo users like the items. After obtaining the scores, real
users should re-calculate their personalized recommendation scores of
items based on the server-side scores of items and their interest
distributions on the pseudo users in their user groups. For instance,
if a real user shares very similar interests with a pseudo user, then
items recommended to the pseudo user should also be rated high to the
real user. On the other hand, if a real user does not share similar
interests with a pseudo user, then items recommended to the pseudo
user should be rated low to the real user. Since real users may have
several different interests, i.e., share different levels of interests with
different pseudo users, we should combine the recommendations to
different pseudo users to achieve accurate personalized recommenda-
tions to each real user. As an item may be recommended to different
pseudo users with different scores, and real users also have different
levels of interests for different pseudo users, we combine the scores
using a linear model as follows:

∑γ i u λ u s γ i p( , ) = ( , ) × ( , )
p

p
∈ g (10)

where g is the set of pseudo users in u's group, and sp is the interest
profile of pseudo user p. λ u s( , )p is adopted here to measure how
important sp is to user u, which can be computed as in Eq. (8). Based
on Eq. (10), items with high γ i p( , ) will be more likely recommended to
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users with high λ u s( , )p , which is reasonable as users with high λ u s( , )p

indeed showed strong interest on sp in the past. Please note that γ i u( , )
is computed by each user locally, so that user privacy would not be
exposed at all.

6.4. Complexity analysis

In the recommendation process, the group rating of items requires
O( )g SeureSum computations, thus the complexity is O K r( ( + ))g
per user. The recommendations to pseudo users are made by the
server, which is O mn( ′), where m is the number of items and n′ is the
number of all pseudo users in the system. For local recommendation
computation, the users need to re-calculate the recommendation scores
from the scores to pseudo users. The computation of this step can be
done locally, and the complexity is O( )g for each item. Overall, the
computation complexity of recommendation process is small.

7. Privacy protection in YANA

In the previous sections, the technical details of YANA have been
presented. We can see that all users’ privacy are aggregated among a
group of users to hide the privacy of individual users. In this section, we
discuss the privacy preservation feature of YANA. First, we show that
the proposed user group structure can protect user privacy. Then, we
prove that user privacy will not be exposed by computations inside user
groups, which are user group construction, user interest modelling,
pseudo user management, and content recommendation. Please note
that, all the discussions are with the premise that data storages and
communications are secure in the system. The case that data storages
and communications are under attack is beyond the scope of this
paper.

7.1. Privacy preservation feature of user groups

In YANA, the user groups (with no less than 3 users) can protect
user privacy under the semi-honest model, i.e., no user is distinguish-
able from another user in the same user group. We prove this by the
following theorem:

Theorem 7.1. Let g be a user group constructed by Algorithm 1, and
≥ 3g . Π u u( , )1 2 is an algorithm for user u1 to infer the interest

privacy of user u2 in the same user group during the recommendation
process (following the semi - honest behavior). Let I u u( , )Π 1 2 denote the
result of u1 executing Π on u2. Then, for any user u ∈ g and any
other two users u u, ∈ g1 2 , I u u( , )Π 1 and I u u( , )Π 2 are perfectly
indistinguishable.

Proof. Let j I p r{ ∈ | ∃ ∈ , > 0}g j p, be the set of items satisfying that
r > 0j p, in g, where I is the set of items in the system. The only
information that can be utilized by Π are u's input data Inputu and the
computation outputs Output , because 1) all the other intermediate data
are random numbers in YANA, and 2) no further information could be
obtained by u as users in g are not colluding in the semi-honest model.

Then, for each item i j I p r∈ { ∈ | ∃ ∈ , > 0}g j p, , the information
about i is contained in Output i Input i( ) − ( )u , where Output i( ) is the
output of the computation on i and Input i( )u is the input of u in the the
computation on i. There are two scenarios to be discussed:

• Output i Input i( ) − ( ) = 0u . In this case, neither u1 nor u2 is interested
in i, so that

Pr i I u u Pr i I u u( ∈ ( , )) = 0, ( ∈ ( , )) = 0Π Π1 2

• Output i Input i( ) − ( ) > 0u . As Output i Input i( ) − ( )u is the combined
information of u1, u2 and users in u u u− { , , }g 1 2 , so that Input i( )u1
and Input i( )u2 cannot be distinguished from Output i Input i( ) − ( )u in
the semi-honest model where no users are colluding, i.e.,

Pr Input i Pr Input i( ( ) > 0) = ( ( ) > 0)u u1 2

In both cases, we have

Pr i I u u Pr i I u u( ∈ ( , )) = ( ∈ ( , ))Π Π1 2

Thus, we can say that I u u( , )Π 1 and I u u( , )Π 2 have the same distribution
over j I p r{ ∈ | ∃ ∈ , > 0}*g j p, , i.e., I u u( , )Π 1 and I u u( , )Π 2 are perfectly
indistinguishable.□.

As any two users in the same user group are perfectly indistinguish-
able from the view of other parties (i.e., other users in the same group
or the recommender server), so that any inferring about user privacy
can only be random guesses over j I p r{ ∈ | ∃ ∈ , > 0}*g j p, inside user
group g. And for any inferred user interest profile
I j I p r⊆ { ∈ | ∃ ∈ , > 0}*u g j p, of user u, Pr I I( = ) = 1/2u u

j I p r|{ ∈ |∃ ∈ , >0}|g j p,

(Iu is the real interest profile of u). As j I p r|{ ∈ | ∃ ∈ , > 0}|g j p, is
usually large for user groups (i.e., over 100), so that the probability
Pr I I( = )u u is negligible.

7.2. Privacy protection in user group construction

The user groups can hide a user's privacy among a set of users
based on the above analysis. Here, we show that the user group
construction process would not expose user interest privacy. The user
privacy definition is adopted from Goldreich's work [42], quoted below:

Definition 2. (privacy w.r.t semi-honest behavior) [42]:

• f : (0, 1*) ↦(0, 1*)m m be an m-ary function, and f x x( , …, )i m1 denotes
the ith element of f x x( , …, )m1 .

• For i i i m m= { , …, } ⊂ [ ] = {1, …, }t
def

1 , f x x( , …, )I m1 denotes the sub-
sequence f x x( , …, )i m11 , …, f x x( , …, )i m1t .π.

• is an m-party protocol for computing f.

• VIEW x( )i
π is the View of the i-th party during an execution of π on

x x x= ( , …, )m1 .

• VIEW x I VIEW x VIEW x( ) = ( , ( ), …, ( ))I
π def

i
π

i
π
t1 , for I i i= { , …, }t1 .

We say that π privately computes f if there exists a polynomial-time
algorithm, denoted S, such that for every I as shown above, we have

S I x x f x f x

VIEW x OUTPUT x

{( ( , ( , …, ), ( )), ( ))}

≡ { ( ), ( )}

i i I x
def

I
π π

x

∈(0,1*)

∈(0,1*)

t m

m

1

where OUTPUT x( )π denotes the output sequence of all parties during
the execution represented in VIEW x( )I

π .
The above definition states that a computation protocol is privacy-

preserving if the view of each party during the execution of the protocol
can be simulated by a polynomial-time algorithm knowing only the
input and the output of the party.

Another key theory that we adopt to prove the privacy-preservation
feature of each component in YANA is the Composition Theorem in
semi-honest model (Theorem 7.2). Detailed proof of Theorem 7.2 could
be found in [42], and thus is omitted here.

Theorem 7.2. (Composition Theorem for the semi - honest model)
[42]:Suppose that g is privately reducible to f and that there exists a
protocol for privately computing f. Then there exists a protocol for
privately computing g.

Based on Definition 2 and Theorem 7.2, we prove that the
SecureConstruct algorithm does not reveal any user interest privacy.

Theorem 7.3. Let U be a set of users in an online social community
(U| | > 1). The execution of SecureConstruct (Algorithm 1) on U reveals
none of the interest privacy of users in U.

Proof. During the execution of SecureConstruct, the only step that
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contains communication is to choose a user group to join, in which no
information with regards to user privacy are revealed. Therefore, the
SecureConstruct protocol will not expose user privacy at all. □.

7.3. Privacy protection in user interest modelling

In YANA, user interests are modelled by the proposed user interest
modelling algorithm. Here, we prove that the proposed user interest
modelling method is privacy-preserving for users.

Theorem 7.4. Let U be a set of users in an online social community
(U| | > 1). The execution of the proposed user interest modelling
method on U is privacy - preserving for all users in U.

Proof. During the user interest modelling process, the only step that
requires communication is the distributed item similarity computation
— SecureHash algorithm. All other steps are performed by the
recommender server, during which no user interest privacy could be
obtained. By applying the Composition Theorem, if we can prove that
SecureHash is privacy-preserving, then we can prove that the user
interest modelling method is privacy-preserving.

Here, we construct a simulator to simulate the three main stages of
the SecureHash algorithm as follows:

• Stage 1: In this stage, a user u receives an empty HashVector , and
decides to add its data to HashVector with probability ρu. If u
chooses not to add its data, the output of u is an empty HashVector
which could be easily simulated. Otherwise, the simulator for u can
generate a random GUID′u, and simulate GUID ItemList u( , ( ))u with
GUID ItemList u( ′ , ( ))u . This ensures that u's GUID is different each
time u adds its data, such that no one can associate any user with
any GUID. As the GUIDs are uniformly distributed on (0, …, 2 )122 ,
the simulated output of u is indistinguishable from what the next
user views in real random walk.

• Stage 2: In this stage, a user u receives an non-empty HashVector .
Again, if u chooses not to add its data, the output of u could be easily
simulated by shuffling the GUIDs in the HashVector . Otherwise, the
simulator for u can generate a random GUID′u, and simulate
GUID ItemList u( , ( ))u with GUID ItemList u( ′ , ( ))u . Then, the simulator
adds GUID ItemList u( ′ , ( ))u into the received HashVector . At last, the
simulator shuffles the GUIDs in the HashVector . As the shuffles
would not change the order of items in HashVector , so that the
Jaccard similarity estimation would not be affected. As GUIDs are
uniformly distributed on (0, …, 2 )122 , the simulated output of u is
indistinguishable from what the next user views in real random
walk.

• Stage 3: In this stage, a user u finds that all items are contained in
its received HashVector , and u chooses to send the HashVector to the
server with probability ρu. No matter what u chooses, the simulator
can simulate u's output by shuffling the GUIDs in the HashVector .
Then, u's output is sent to either another user or the server. Again,
as GUIDs are uniformly distributed on (0, …, 2 )122 , the simulated
output of u is indistinguishable from what the receiver views in real
random walk.

As the generation of GUID during simulation could be regard as
constant, the above simulator is linear in the size of n (the number of
users). This means that a polynomial-time simulator is successfully
constructed. Thus, the SecureHash algorithm is privacy-preserving for
all users. Then, by applying the Composition Theorem, we can say that
the proposed user interest modelling method is privacy-preserving for
all users in U.□.

7.4. Privacy protection in pseudo user management

In pseudo user management, the SecureSearch algorithm is adopted
to find the set of interests inside a user group, and the SecureRate

algorithm is adopted to compute the aggregated item rating by users
inside a user group. All joint computations in SecureSearch and
SecureRate are performed by the SecureSum algorithm inside each
user group, and we have shown in previous sections that the user
groups can provide secure environment for users to achieve joint
computation. Here, we prove that the SecureSearch algorithm and the
SecureRate algorithm are privacy-preserving in Theorems 7.5 and 7.6.

Theorem 7.5. Let g be a user group, then the execution of
SecureSearch among users in g reveals none of the interest privacy
of users in g.

Proof. We construct a simulator to simulate the stages of the
SecureSearch algorithm as follows:

• Stage 1: In this stage, each user obtains the set of interests from
the server. This can be easily simulated by the simulator, and no
user privacy is revealed during this stage.

• Stage 2: In this stage, all users in g check if each interest s ∈ is
interested to users in g. During this stage, the only communications
among users in g are random shares of their inputs in the
SecureSum algorithm. The simulator for each user can simulate
each random share with another randomly generated number
ensuring that the summation of all newly generated numbers is
equal to the summation of originally shares. As all the sent/received
numbers during the SecureSum algorithm are randomly distributed
on R, so that the simulated outputs of each user are indistinguish-
able from the views of all other users in real computation.

• Stage 3: After a secure summation among users in g for interest s, if
the result is greater than 0, users in g would add s into g. As this
result is an aggregated number randomly distributed on R, no
privacy of users in g could be obtained from it. Thus, this can be
easily simulated by the simulator using the returned value of the
SecureSum algorithm.

The above simulator is linear in the size of inputs/outputs of each
user, so that we can claim that a polynomial-time simulator is
successfully constructed. Thus, the execution of SecureSearch is
privacy-preserving for users in g.□.

Theorem 7.6. Let g be a user group, then the execution of SecureRate
among users in g reveals none of the interest privacy of users in g.

Proof. The procedure of SecureRate is very similar to SecureSearch.
Thus, this theorem can be similarly proved as Theorem 7.5, so formal
proofs are omitted here.□.

The execution of SecureSearch and SecureRate are privacy-preser-
ving based on Theorems 7.5 and 7.6. And all execution results of the
two algorithms are aggregated information of all users in the same user
group. As we have proved that any two users in the same user group are
indistinguishable from the aggregated information in the semi-honest
model, so we can say that the proposed pseudo user management
method is privacy-preserving.

7.5. Privacy protection in content recommendation

Three steps are adopted in the proposed content recommendation
process:

• 1) Item rating inside user groups. The item rating is achieved by the
proposed SecureRate algorithm. We have discussed the privacy
preservation feature of SecureRate in Section 7.4, which shows that
user privacy can be protected against group members. And all item
ratings are sent to the server via pseudo users, so that the
recommender server can know nothing about the privacy of real
users;

• 2) Server side recommendation. The server side recommendation
are only using the interest profiles of pseudo users, so that the
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privacy of real users are protected from the server. Meanwhile, we
have shown in Section 7.4 that user privacy can be protected inside
each user group when maintaining pseudo users. Thus, the server
side recommendation is privacy-preserving;

• 3) Client side recommendation. The client side recommendations
are all computed based on recommendation scores to pseudo users
and user interest distribution on the interest groups on the client
side. Recommendation scores to pseudo users contains no privacy of
real user, and user interest distributions are stored locally on each
user's machine. Thus, user privacy would not be exposed in client
side recommendation.

Overall, the privacy preservation feature of the proposed content
recommendation algorithm could be easily proved, so formal proofs are
omitted here.

8. Experimental results

We have developed a prototype system of YANA and conducted
detailed evaluation using data from Fudan BBS,1 a popular online
social community with mobile client support. YANA emphasizes high-
quality, high-efficiency, and privacy-preserving content recommenda-
tion. In YANA, users’ privacy are formally guaranteed by the privacy-
preserving algorithms and protocols described in Sections 4–6. And in
Section 7, we have shown that user privacy are protected in all
components of YANA. Therefore, the following quantitative studies
focus on recommendation quality and efficiency. Note that, all the user
groups in the experiments are formed randomly.

• Recommendation quality is measured by Precision and Recall,
defined as follows:

Precision
I I

I
Recall

I I
I

=
| ∩ |

| |
, =

| ∩ |
| |

u γ

γ

u γ

u

where Iu is the set of items that user u likes and Iγ is the set of items
that are recommended to u. Higher Precision and Recall indicate better
recommendation quality.

• System efficiency is evaluated by the runtime latency, as well as
energy consumption of the recommendation process on mobile
devices.

We compare YANA with two state-of-the-art privacy-preserving
collaborative filtering (PPCF) solutions as follows: 1) a privacy-preser-
ving k-nearest neighbor (KNN) method proposed by McSherry and
Mironov [31], which adopted the differential privacy framework to
protect user privacy in the Netflix Prize Dataset. Their method out-
performed the Cinematch method proposed by Netflix; and 2) a
privacy-preserving SVD-based collaborative filtering framework pro-
posed by Canny [15]. In this solution, users compute the singular value
decomposition (SVD) of the user-item matrix using homomorphic
encryption in a distributed way, and obtain recommendations via local
computations. In KNN, the parameters are chosen as follows [31]:
θ = 0.15, k=20, β = 15m , β = 20p , and B=1. In SVD, the dimensionality
is chosen as 10 [15]. Compared with the KNN and SVD solutions,
YANA achieves better recommendation quality (10.4% and 14.7%
improvements on average, respectively). We also compare the energy
efficiency of YANA with that of SVD, as both are distributed PPCF
solutions. Compared with the SVD method, YANA can reduce at least
30% on latency and 97% on energy consumption.

8.1. Experimental setup

YANA is implemented both on desktop computers and mobile

devices. Desktop clients are implemented on machines with Intel Core
2 Quad 2.66 GHz CPU, 4 GB memory and 10/100 Mbps Ethernet.
Mobile clients are implemented on HTC Magic smartphones. The
phone runs Android 2.1 with 528 MHz CPU, 288 MB RAM, and
1340 mAh battery. Wireless communication is through Wi-Fi
(54 Mbps) with approximately 220 ms latency between mobile devices.
The energy consumption of YANA is measured by monitoring the
runtime battery capacity of the mobile phone. The recommendation
server is also developed using Java on a workstation, which collects
pseudo users’ information, clusters items, and computes item recom-
mendations for the pseudo users.

YANA is tested using data from Fudan BBS, a popular online social
community among Chinese universities. It has over 60,000 users and
supports various content-related user interactions (such as posting,
reading, and replying to articles, etc.) and various user social interac-
tions (such as sending instant messages and emails, forwarding articles
to friends, etc.). Everyday, there are approximately 20,000 new posts,
and over 180,000 reads. Fudan BBS has over 100 subcommunities, and
our experiments are conducted on 12 of the most popular subcommu-
nities. The key characteristics of the 12 subcommunities are summar-
ized in Table 1. These subcommunities vary in number of users,
number of items, user-item rating matrix density, user activity pattern,
user interest distribution, etc. These subcommunities allow for a
comprehensive evaluation of the proposed solution, and evaluation
conducted on these subcommunities could be regarded as evaluation
on 12 different datasets. We have collected data over three consecutive
weeks, and divided the data set into a training set (data of the first two
weeks) and a testing set (data of the last week). The training set is used
to construct user groups and pseudo user profiles, and the testing set is
used to evaluate the quality and efficiency of recommendations.

8.2. Privacy leakage analysis of pseudo users

In existing privacy-preserving collaborative filtering methods, the
server cannot obtain user privacy directly, but it can still infer user
privacy by naive attack method, i.e., random guess. In YANA, user
privacy may be potentially inferred if the server treats the interest of
pseudo user as the interest of the real user who maintains that pseudo
user. Here, we analyze the amount of privacy leaked by pseudo users in
Table 2. In this study, we also adopt Precision and Recall to
quantitatively measure the privacy leakage of pseudo users, and
compare the leakage with that of random guess.

Table 1
Characteristics of 12 Subcommunities Used in the Experiments.

Astrology Auto Doctor Football Joke KeepFit

# of users 3621 1514 1086 1641 5768 1380
# of posts 678 565 286 1064 561 211
# of views 58,726 21,413 70,100 78,012 146,933 72,249

Movie Music OMTV PIC TV TVEntZ
# of users 597 223 1238 7984 303 450
# of posts 119 144 195 683 265 263
# of views 4067 12,406 7528 436,612 3041 7259

Table 2
Privacy Leakage of Pseudo Users.

Attack precision Attack recall

Random guess 5.21% –

YANA (K=10) 4.20% 4.83%
YANA (K=20) 4.13% 4.34%
YANA (K=30) 3.99% 3.36%
YANA (K=40) 3.65% 2.39%
YANA (K=50) 3.39% 1.86%

1 Fudan BBS, http://bbs.fudan.edu.cn.
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In Table 2, random guesses are performed on each subcommunity
individually and the average result for all users on all subcommunities
is presented. For YANA, the attack is performed by treating the interest
of each pseudo user as that of the real user who maintains the pseudo

user. As shown in Table 2, the attack precisions on YANA are all lower
than the attack precision of random guess, which means that attacking
pseudo users cannot gain more user privacy than performing random
guesses. This indicates that the pseudo users can strictly protect user

Fig. 3. Recommendation qualities with different K values in PIC and Joke.

Fig. 4. Recommendation quality comparison of YANA, KNN and SVD in 12 subcommunities.
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privacy. Meanwhile, both the attack precision and attack recall
decrease as K (the size of user groups) increases. This indicates that
larger user groups can provide better privacy protection.

8.3. The tradeoff between recommendation accuracy and size of user
group

As described in previous sections, user group size — K may vary
among different user groups. Concerns may arise that larger group size
may hurt recommendation quality due to interest aggregation of more
users. Fig. 3 shows the recommendation qualities with K values from
10 to 50. As we can see, recommendation precisions indeed degrade
with K values increasing, but the degradations are negligible (less than
3% degradation from K=10 to K=50). Thus, we claim that YANA can
achieve consistent high quality recommendation to users with different
group size (i.e., different K values).

8.4. Recommendation quality

Fig. 4 shows the recommendation quality of YANA as compared
with KNN and SVD algorithms.2 As we can see, YANA outperforms
KNN in all 12 subcommunities (by 10.4% on average). YANA outper-
forms SVD in 9 out of the 12 subcommunities (by 14.7% on average),
and achieves comparable quality in the other 3 subcommunities. The
improvements are achieved through the accurate interest grouping and
the novel interest based recommendation, which can accurately
identify user interests and ensure that item recommendations are
calculated based on interested users. In three subcommunities
(Astrology,Music and TV), YANA achieves much better quality than
KNN or SVD (over 20% improvement). This is because users have
much more focused content interests in these subcommunities, and
identifying such focused interest groups ensures “expert opinions”
while ignoring noises from non-experts. For instance, users’ interests
in Astrology are mainly focused on their own constellations. For the
subcommunities where YANA has no improvements over SVD, our
observation is that users have no explicit difference across different
interest groups, thus do not benefit from our interest group-based
recommendation. However, such scenario is not common, as users
have diverse interests and different levels of interests in most sub-
communities (9 out of 12). Overall, YANA achieves better recommen-
dation quality than KNN and SVD.

8.5. Recommendation efficiency

To evaluate recommendation efficiency, we compare YANA with
SVD, both of which are distributed privacy-preserving collaborative
filtering algorithms. Comparisons with KNN is not considered here, as
efficiencies are not directly comparable between a centralized solution
(KNN) and a distributed solution (YANA). But it should be noted that

the server side complexity of YANA is O(mn), which is much lower than
that of KNN (O mn( )2 ). The computation and communication complex-
ities of SVD are both O k m n( ′ log ) per user, where k′ is the decomposi-
tion factor of SVD, m is the number of items, and n is the number of
users. In contrast, the computation and communication complexities of
YANA are both O(Km) per user. Since k′ and K have similar order and n
is usually large for online social communities, YANA can be much more
efficient than SVD in terms of computation and communication
complexities, and also energy efficiency on mobile clients. Besides
comparing the latency and energy efficiency of YANA and SVD, we also
measure the latency and energy consumption of basic operations of
YANA to help us better understand the efficiency of YANA.

8.5.1. Latency
Fig. 5 shows the overall latency of recommending each item to a

user. We only consider the overall client-side latency as it would be the
bottleneck of the whole system. Please note that, for the SVD solution,
we cannot measure its communication latency, as it requires a large-
scale (O k m n( ′ log )) peer-to-peer communication. Thus, we only measure
the computation latency of the clients of SVD. Still, we can see that
YANA outperforms SVD both on desktop computers and mobile
devices in all the cases by at least 30%. The latency of YANA on
desktop computers is between 20 and 60 ms, which is fairly efficient.
The latency on mobile devices is around 1 s, which is also reasonable
and practical for users of mobile devices.

8.5.2. Energy efficiency
We further analyze the energy consumption of YANA on mobile

devices, and demonstrate that YANA is much more efficient than one of
the state-of-the-art distributed PPCF solution — SVD. This study
considers both the overall energy consumption and the energy con-
sumption of basic operations.

Overall energy efficiency. Fig. 6 shows the daily energy con-
sumption of YANA mobile clients in the twelve subcommunities, as
compared with SVD. We can see that the daily energy consumption of
YANA ranges from less than 0.01–0.16 mAh, which is really small
compared with the total capacity of the battery (1340 mAh). In
contrast, the energy consumption of SVD ranges from about 0.6–
5.36 mAh, which is over 30 times higher than that of YANA. The high
energy consumption of SVD is due to its encryption and decryption
operations during recommendation process, which is both time con-
suming and energy expensive.

Energy efficiency of the SecureSum protocol. The SecureSum
protocol, which runs in a peer-to-peer fashion is adopted to perform
computations inside user groups. In a user group of size K, each user
will send r messages to all other users in the group, and receive r
messages from other users. r is chosen by the group members, and can
be at most K − 1 (a larger r cannot provide better privacy protection).
Thus, the computation overhead is very small, as each user will only
need to compute at most the sum of K numbers.

In Fig. 7, we can see that the latency increases slightly as the group
size K increases, and it ranges from 400 ms to 500 ms, which is

Fig. 5. Overall latency comparison of YANA and SVD of recommendation per user per item.

2 The number of users per group K is set to 10 in these experiments.
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tolerable for most users (over 90% of users can tolerate a delay of
400 ms and above [50]). Energy consumption also increases with the
size of user groups, and the value ranges in 0.0005–0.001 mAh, which
is really small compared to the total capacity of the battery
(1340 mAh).

Energy efficiency of local recommendation. The calculation
of local recommendation consists of a series of local multiplications
and summations, and a sorting operation. Since there is no encryption
operation involved, the computation is efficient. As shown in Fig. 8, the
computation time per user per item ranges from approximately 1.2 to
1.5 ms. The corresponding energy consumption ranges from
0.00003 mAh to 0.0009 mAh, which is very small compared with the
capacity of the battery (1340 mAh). This study indicates that the
overhead of computing local recommendation results using the re-
commendations to pseudo users is rather small.

9. Conclusion

The increasing popularity of online social communities raises
various privacy concerns. The issue is even more severe in recommen-
der systems of online social communities, where sensitive user content
interests are collected by the recommender server in order to make
personalized recommendations. In this work, we propose YANA, an
efficient user group-based privacy-preserving recommender system for
online social communities. YANA can organize users into user groups
with diverse content interests, which can protect users’ private interests
from the server and other parties. Inside user groups, efficient secure
multi-party computation algorithms are adopted to protect user privacy

from group members. Pseudo users are created within each user group,
each representing a unique interest that the group members have. The
pseudo users communicate with the server on behalf of the real users in
each user group, and also receive recommendations from the server.
Recommendation scores can be re-calculated locally to provide custo-
mized recommendation for individual real users. We have developed a
prototype system on both desktop computers and mobile smart
phones, and evaluated the system using real-world data collected from
an online social community. The experimental results demonstrate that
YANA achieves better recommendation quality and is much more
efficient compared against state-of-the-art privacy-preserving colla-
borative filtering solutions, while preserving user interest privacy in
online social communities.
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