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Abstract—Data-driven approaches have gained increasing in-
terests in fault detection of photovoltaic systems due to the
availability of sensor data. However, the noise introduced by
environmental variations and measurement variabilities pose
significant challenges on effective fault detection. Furthermore,
the change in electrical signal magnitude of a faulty photovoltaic
component is usually small, making it difficult to distinguish
an anomaly from normal ones. As such, incipient faults are
nearly undetectable when they cause less loss of electricity
generation. This paper proposes a collaborative fault detection
solution based on collaborative filtering techniques. Specifically,
the proposed solution first predicts photovoltaic strings’ current
values according to similar strings using historical data. Faults
are then detected by long-term differences between the predicted
and actual values. A key advantage of the proposed solution is
its ability to capture similarities among different photovoltaic
strings under noisy and spatial-temporally variant conditions,
which significantly enhances fault detection performance. The
proposed solution has been deployed in two large-scale solar
farms (39.36 MWp and 51.04 MWp). The results show that the
proposed solution is superior to existing data-driven solutions in
terms of efficiency, effectiveness, and robustness.

Index Terms—Data-driven, collaborative filtering, fault detec-
tion, photovoltaic, noise

I. INTRODUCTION

RECENT years have witnessed growing deployment of
photovoltaic (PV) systems in terms of number and

scale [1], [2]. The scale of a PV system can be quantified by its
installed capacity and determined by the number of PV panels,
sensors required to monitor those panels, and the complexity of
infrastructure for operating and maintaining those components.
For instance, a MW-level PV system may contain thousands of
300 W PV panels, hierarchically connected through PV strings,
combiner boxes, and inverters [1]. These PV components are
exposed to varying weather conditions, and therefore, are
prone to diverse faults. If the faults are not detected in a
timely fashion, they will not only reduce system electricity
production and cause secondary damage, but also accelerate
system aging and even cause fire hazards [3]. Therefore, it is
highly desirable to develop fault detection solutions in order
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to detect and locate incipient faults, thus helping operators
schedule operation and maintenance (O&M) activities as well
as improving the reliability of PV systems.

Fault detection techniques have been widely studied and
recent works have demonstrated their effectiveness in improv-
ing the reliability of PV systems (see [4] for a comprehensive
review). Researchers have found that PV systems reliability
can be effectively improved and O&M cost can be greatly
reduced by adopting proper fault detection solutions [1].
However, fault detection is a challenging problem in PV
systems because (1) commonly-occurring faults are complex
and diverse and (2) initially-installed supervisory control and
data acquisition (SCADA) systems collect limited amount of
information regarding the system health management [1].

Recently, both data-driven methods [1] and model-based
methods [5] have been proposed to tackle fault detection in PV
systems. These methods work well when detecting the most
serious faults that cause significant loss of power generation.
However, if an incipient fault or a specific fault (e.g., sensor
bias faults) only causes small loss of power generation, it is
difficult for existing methods to distinguish them from normal
ones, especially under low irradiance or high cloud cover
weather condition. That is because environmental variations
(e.g., drifting clouds) and measure variabilities introduce noise,
which can likely cause the power generation of normal PV
components to deviate from normal values [1]. Meanwhile,
the change in electrical signal magnitude of a faulty PV
component is much lower, and the immediate impact of the
fault might be minimal [6]. That minimal current magnitude,
coupled with noise, renders an anomaly difficult to distinguish
from normal ones. The focus of this work is to develop a
noise-robust solution to detect faults in PV systems when the
fault-induced power generation loss is difficult to distinguish
from noise-induced power generation loss.

This paper proposes a collaborative fault detection solution
to address the above challenge using the information solely
collected by the SCADA system. Recent studies have shown
that collaborative filtering (CF) techniques [7] can accurately
predict the behaviors of a targeted user based on the behaviors
of similar users of the targeted user in e-business applications.
Motivated by the above idea, this paper proposes a CF-based
method to predict the power generation of a targeted PV
component based on the power generations of similar PV
components. The key idea is that, PV components’ power
generation should be similar in the future if they are similar
in the past no matter how temporal conditions change. That
is, a faulty PV component can be detected if it does not gen-
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erate similar power as its historically similar neighbors. More
specifically, the proposed solution first quantifies historical
similarities among neighboring PV components’ power in the
case of environmental variations and measure variabilities. The
proposed method pays special attention to design a problem-
specific similarity measure since measuring similarity is the
first step towards efficient and accurate prediction. Then, the
proposed solution predicts individual PV components’ power
values using neighbor values and their historical similarities.
After that, the accumulated residuals between the predicted
values and the actual values can be used to suggest faults,
since instantaneous anomaly may not mean the occurrence of
a fault, while long-term underperformance indicates a fault.

The proposed solution has been adopted by two large-scale
PV systems with DC nominal capacity of 39.36 MW and
51.04 MW, respectively. Multi-month operation demonstrates
the effectiveness, efficiency, and robustness of the proposed
solution. The main contributions of this work are summarized
as follows:

1) This work introduces CF-based techniques to detect
commonly-occurred faults in a robust way in PV sys-
tems. To our best knowledge, it is the first work to
leverage CF techniques for fault detection applications
in PV systems.

2) Field SCADA data are used to evaluate the proposed
solution. Results demonstrate that the proposed solution
outperforms existing methods. Furthermore, the pro-
posed solution is more robust against irradiance and
cloud cover. Specifically, at a flat terrain PV site, the
proposed method achieves 96.3% detection accuracy
for the top-100 faults, while existing methods achieve
90.3% accuracy or lower. At a mountainous PV site,
the proposed method achieves 97.1% detection accu-
racy, significantly outperforming existing methods with
72.1% detection accuracy.

The rest of this paper is organized as follows: Section II
formulates the targeted problem. Section III details the pro-
posed collaborative fault detection method. Section IV presents
experimental results. Section V surveys related work and dif-
ferentiates our work from prior. Finally, Section VI concludes
this work.

II. PROBLEM FORMULATION

In this section, we first introduce the fault detection problem
in large-scale PV systems. Then, we analyze the challenge
caused by noisy data. After that, we motivate the targeted
problem and our solution.

A. Problem Description

As mentioned in [1], a grid-connected large-scale PV system
is connected hierarchically — multiple PV strings are con-
nected into a combiner box in parallel, and multiple combiner
boxes are connected to an inverter. Fault detection should be
performed at the most fine-grained component level to help
O&M. At that device level, unique information is required
such that one device can be distinguished from others. For a
large-scale PV system, the PV string level is the finest-grained

level of information collected by existing SCADA systems,
and a PV string’s current value is the unique factor that can
distinguish it from others. As such, this study leverages PV
strings’ current value to implement fault detection.

Let us consider a PV system composed of s sensors
collecting PV strings’ current values and monitoring a vary-
ing process. Each sensor i provides the measurement vector
Xi = [x(j)

0,i , x(j)1,i , . . . , x(j)N−1,i]
T
1×N , denoting the current values

generated from PV string i in combiner box j during period
N ( the number of timestamps). If PV string i is affected
by a fault at time t∗, the current value of the PV string is
changed. Different types of faults may have different effects
on current values, but usually produce lower current values
compared with normal ones. Additionally, an instantaneously
lower current value may not indicate a fault, while long-term
underperformance does.

B. Noisy Data in PV Systems

PV strings’ currents are typically noisy due to environmental
variations (e.g., drifting clouds) and measurement variabili-
ties [8]. Existing fault detection methods usually solve the
noise problem by smoothing data to enlarge current differences
between normal and faulty PV strings. A recent work [8]
pointed out that averaged data would reduce the measurement
variabilities and improve the effectiveness of fault detection
methods. Inspired by this work, Zhao et al. adopted the fil-
tering algorithm to smooth environmental variations and mea-
surement variabilities as well, leading to improved effective-
ness of their proposed hierarchal detection (HD) method [1].
They pointed out that although filtering algorithm increases
the performance of detection method, noise is the foremost
reason for lower detection accuracy [1], [8].

Figure 1 (left) shows the currents of 7 normal PV strings
in the same combiner box on a specific day in a 39.36 MWp
PV system. The 7 PV strings’ currents are slightly different
due to noise introduced by sensors at the same time instant,
among which PV string No. 3 (dashed green line) is detected
as a faulty PV string by the HD method [1]. Figure 1 (right)
shows the ranking variations of PV string No. 3 under different
irradiance. Here, the ranking can be viewed as fault seriousness
that causes the most of power loss. We estimate the quantile
regression model [9] to observe the relationship between the
irradiance and rankings. The quantile τ is set as .5. We can
see that the filtering algorithm decreases its rankings (with
mean from 37 to 136). Also, the ranking is lower under lower
irradiance. This shows that noise makes a faulty PV string
difficult to distinguish from normal ones, especially under
low irradiance conditions. The higher the rankings of PV
strings, the higher the possibility that it will be maintained
by operators. Therefore, if we can properly address the noise
issue, it is very promising to improve the performance of fault
detection accuracy and facility O&M.

C. Collaborative Filtering Techniques for Noise Data

As one of the most important techniques in recommender
systems, collaborative filtering [7] is an algorithm that predicts
a user’s preferences on items that have not been seen by the
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Fig. 1: Normal current values in the same combiner box on a specific day (irradiance = 6469.44 Wh/m2/day ) (Left) and anomaly ranking
(Right) of PV string No. 3 during a monitoring period.

user. Among existing CF techniques, user-based collaborative
filtering [10] is one of the most widely adopted methods,
which generally takes two steps: (1) compute user similarities
among all users and (2) compute the recommendation scores
for the targeted user based on the ratings from the k neighbors
with highest similarities. The basic idea behind this design is
the assumption that: users who are similar in the past will also
be similar in the future. Similarly, we can place the following
assumption on the strings in PV systems, i.e., PV strings that
have similar current values in the past will also have similar
current values in the future no matter how the other conditions
change. In other words, if a PV string suddenly does not
generate similar current values as its neighbors, we can suggest
that a fault might occur on this PV string. If such abnormal
pattern continues for a period of time, e.g., several hours, we
should have higher confidence to suggest a fault for this PV
string.

Following the above idea, we can predict PV strings’ current
values according to the similarities calculated using data in
the past, and the gaps between predicted and actual values
can be used to suggest whether a fault occurs. However,
two challenges arise here due to the differences between PV
systems and traditional recommender systems. (1) Similarity
measure. The PV string’s current values are noisy and spatial-
temporal, as such it is not clear how to accurately and
effectively measure the similarity between different PV strings.
(2) Fault suggestion. Based on the predicted current values and
actual current values, it is also not clear how to define a gap
to suggest a fault from real-time fault detection at different
PV sites.

III. PROPOSED METHOD

This section first gives an overview of the proposed col-
laborative detection method. Then, it details the steps of the
method, coupling with how it addresses the noisy data issue.

A. Method Overview

Figure 2 illustrates the flow of the proposed method, which
consists of the following steps: (1) Current prediction. This

step first quantifies pairwise neighbor PV strings’ similarities.
Then, it predicts each PV string’s current values using the
current values generated by its neighbors and similarities be-
tween itself and its neighbors. (2) Fault seriousness evaluation.
This step evaluates each PV string’s fault seriousness, which
is defined as the daily accumulated residuals between the
predicted and actual current values. If the residuals are induced
by noises, the accumulated residuals will be around 0 by
assuming a Gaussian distribution over the noise-induced resid-
uals. If the residuals are induced by faults, the accumulated
residuals will be monotonically increasing, which is clearly
different from the noise-induced residuals. Theoretically, the
higher the fault seriousness, the higher possibility of a PV
string is faulty. (3) Fault detection. The PV strings with the
highest fault seriousness are detected as faults. Here, we use
an auto-thresholding method to identify faulty strings.

B. Current Prediction

This study uses the CF technique to predict each PV string’s
daily current values.

First, it measures the similarities among neighboring PV
strings’ current values. Here, neighboring PV strings are
defined as other PV strings that are connected to the same
combiner box. To address the noisy data issue in PV systems,
we should choose an appropriate similarity measure that is
robust under noises. A variety of methods can be adopted
to describe similarity, in which correlation-based similarity
measures, e.g., Pearson correlation and Cosine similarity, are
most widely used [10]. Given two PV strings i and k connected
to the same combiner box j, their Pearson correlation and
Cosine similarity are defined in Equation 1 and Equation 2,
respectively.

Corri,k =

∑n−1
l=0 (x

(j)
l,i − x̄(j)i )(x(j)l,k − x̄(j)k )√∑n−1

l=0 (x
(j)
l,i − x̄(j)i )2

√∑n−1
l=0 (x

(j)
l,k − x̄(j)k )2

,

(1)
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Fig. 2: Overview of the collaborative fault detection process.

Cosinei,k =

∑n−1
l=0 x(j)l,i x(j)l,k√∑n−1

l=0 (x
(j)
l,i )

2

√∑n−1
l=0 (x

(j)
l,k )

2

, (2)

where n is the number of timestamps, x̄(j)i and x̄(j)
k is the

mean current value of PV string i and k in combiner box j
during period n, respectively.

However, based on our investigation, Pearson correlation
and Cosine similarity are not robust to noises. Given two noisy
observations x̂i = xi+ϵi and x̂k = xk+ϵk, where ϵi and ϵk are
two noise vectors with zero-mean Gaussian distributions, the
numerator of Equation 1 on the noisy data can be expressed
as follows:
n−1∑
l=0

(x̂(j)
l,i − x̄(j)

i )(x̂(j)l,k − x̄(j)
k ) =

n−1∑
l=0

(x(j)l,i − x̄(j)
i )(x(j)l,k − x̄(j)

k ) +

n−1∑
l=0

ϵ
(j)
l,i (x

(j)
l,k − x̄(j)k ) +

n−1∑
l=0

ϵ
(j)
l,k (x

(j)
l,i − x̄(j)i ) +

n−1∑
l=0

ϵ
(j)
l,i ϵ

(j)
l,k .︸ ︷︷ ︸

noise terms

(3)

The numerator of Equation 2 on the noisy data can be
expressed as follows:

n−1∑
l=0

x(j)
l,i x(j)

l,k =

n−1∑
l=0

x(j)
l,i x(j)

l,k +
n−1∑
l=0

ϵ
(j)
l,i x(j)l,k +

n−1∑
l=0

ϵ
(j)
l,kx(j)l,i +

n−1∑
l=0

ϵ
(j)
l,i ϵ

(j)
l,k︸ ︷︷ ︸

noise terms

. (4)

From Equation 3 and Equation 4, we can see that the noise
terms are large since x(j)l,i − x̄(j)

i , x(j)
l,k − x̄(j)k , x(j)

l,i and x(j)l,k are
large. Therefore, we can know that the above two similarity
measures are not suitable for PV systems where data noises
are prevalent.

Due to the above reason, we choose to use the Euclidean

distance-based similarity measure, which has been shown to
be effective when the noise follows Gaussian distribution [11],
[12]. The Euclidean distance can be formally described as
follows:

Disti,k =

√√√√n−1∑
l=0

(x(j)l,i − x(j)l,k )
2. (5)

Again, we can analyze its robustness on noisy data as follows:
n−1∑
l=0

(x̂(j)l,i − x̂(j)l,k )
2 =

n−1∑
l=0

(x(j)l,i − x(j)l,k )
2 +

n−1∑
l=0

2(ϵ
(j)
l,i − ϵ

(j)
l,k )(x

(j)
l,i − x(j)

l,k ) +

n−1∑
l=0

(ϵ
(j)
l,i − ϵ

(j)
l,k )

2

︸ ︷︷ ︸
noise terms

. (6)

We can see from Equation 6 that the noise terms can be small
because x(j)l,i − x(j)l,k is usually small for similar PV strings,
i.e., the Euclidean distance is more robust to noises and thus
more applicable in this work. The Euclidean distance can be
converted to similarity measure as follows:

simi,k = 1− norm(

√√√√n−1∑
l=0

(x(j)l,i − x(j)l,k )
2), (7)

where norm(·) denotes the min-max normalization func-
tion [13]. More empirical comparisons among the three sim-
ilarity measures will be presented in the experiment section
(Section IV).

Secondly, we predict a PV string’s current value x̂(j)i at
time instant t using the CF technique, as defined in Equa-
tion (8) [14]:

x̂(j)t,i =

∑
k∈Cj ,k ̸=i x(j)t,k ∗ simi,k∑

k∈Cj ,k ̸=i simi,k
, (8)

where Cj is the set of neighbors of PV string i.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 19,2020 at 03:06:54 UTC from IEEE Xplore.  Restrictions apply. 



1949-3029 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2020.2974404, IEEE
Transactions on Sustainable Energy

5

C. Fault Seriousness Evaluation

The fault seriousness of a PV string is defined as an
accumulation function that takes two factors into account: (1)
the residuals between the PV string’s predicted and the actual
current values; and (2) the duration that the residuals last. The
larger the residual, the higher the possibility that a PV string
is faulty. Also, a transiently high residual may not suggest
a fault, while a long-lasting high residual may mean a fault.
Based on such thinking, Equation (9) shows the definition of
fault seriousness.

Fault Seriousness =
1

n
|
∫ n−1

t=0

(x̂(j)t,i − x(j)
t,i )|dt, (9)

D. Fault Detection

Theoretically, the higher the fault seriousness, the higher
the possibility of the PV string being faulty. Here, we need
a threshold to help identify the higher fault seriousness from
daily fault detection at different PV sites.

The auto-thresholding method, proposed in [1], is capable
of adjusting itself from day-to-day fault detection at different
PV sites. The intuition behind the auto-thresholding method
is based on the observation that most PV strings are fault-
free and the total number of faulty strings is far fewer than
that of normal ones. The authors in [1] used their proposed
metric to measure the anomaly degree of PV strings. The
metric has such characteristics: faulty PV strings’ anomaly
degree are significantly greater than the normal ones’. Thus,
the auto-thresholding method designed for capturing a signif-
icant “divergence” from the second-order difference for daily
ascending fault degrees of PV strings.

This work follows the idea. Fault seriousness measures the
daily-accumulated difference between the measured current
value and the predicted current value (under normal operation)
of each PV string. Since the majority of PV strings are fault
free with similar fault seriousness value (close to zero), we
can then detect the faulty ones as their fault seriousness values
deviate significantly from the majority of fault-free ones.

Since the auto-thresholding method is not the key contribu-
tion of this work, we refer readers to [1] for details.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Data Description. This study makes use of SCADA data
collected from two real-word solar farms (site A and site B)
located in China. Site A is located in a flat terrain. It has
a DC nominal capacity of 39.36 MW, generated by 131,184
300 W PV panels connected to 8,199 PV strings, and 553
combiner boxes. Site B is located in a mountainous area.
The DC nominal capacity, 51.04 MW, of site B is generated
by 170,118 300 W PV panels connected to 9,451 PV strings,
and 790 combiner boxes. Measurements are recorded every
minute.

Compared Method. The proposed method is compared
against the HD method [1], which has shown the best per-
formance among the data-driven methods currently avail-
able in the literature. This work also compares the pro-

posed Euclidean-based method with the Cosine-based and the
Pearson-based method.

Data Preprocessing. Before fault detection, data prepro-
cessing is used in all methods. The details of data pre-
processing can be referred to [1]. Since the fault detection
method with a 10-minute interval has been widely adopted
and recommended [1], [8], we implement the fault detection
under a 10-minute downsampling interval.

Evaluation Metric. Both methods are scored in terms of
top-K detection accuracy [1], which is defined as follows:

Detection Accuracy =
Kcorrect

K
, (10)

where Kcorrect represents the number of correctly-detected
faults in the top-K detected faults. For the proposed method,
the top-K detected faults are the K PV strings with the highest
fault seriousness from a daily report.

B. Effectiveness Evaluation

1) Overall Performance: Figures 3a and 3b exhibit the top-
K detection accuracy of different methods at site A and site B,
respectively. Here, K ranges from 10 to 100. Compared with
the HD method, the proposed Euclidean-based method consis-
tently outperforms the HD method and the proposed method
using Cosine-based or Pearson-based similarity. Furthermore,
the detection accuracy of the proposed method decays more
slowly as K increases. More specifically, the top-100 detection
accuracy of the proposed method is 96.3% at site A and 97.1%
at site B, compared with 90.3% and 72.1% for the HD method
at site A and B, respectively.

2) Case Studies:
a) Comparison against the HD method: The lower per-

formance of the HD method is mainly caused by noise, which
we explain in details below. The HD method identified faulty
PV strings from a set of fault candidates whose current values
are lower than that of their normal neighbors at most of time
during a detected period. However, noise and faults are both
likely to cause a PV string’s current values to be lower than
its normal neighbors most of the time. The proposed method
identifies faults if their current values are dissimilar currently
while similar in the past. Also, the specific similarity measure
is designed to calculate the similarities among neighboring PV
strings, which is robust to noise.

Figures 4, 5, and 6 further help to illustrate why the
proposed method outperforms the HD method. Figure 4 shows
16 normal PV strings’ current values on Jun 2nd. The 16
PV strings are connected to the same combiner box. For
the HD method, 3 PV strings (named I10, I11, and I9 )
are misidentified as faults. As shown in Figure 5, the 3 PV
strings’ fault seriousness are higher than the threshold, and the
rankings of the 3 incorrectly detected PV strings are 64 (I10),
61 (I11), and 62 (I9), respectively. While the proposed method
correctly detects the 16 PV strings as normal PV strings, and
their fault seriousness are lower than the threshold, as shown
in Figure 6.

b) Comparison against other similarity-based methods:
The following study helps to better understand why the
proposed Euclidean-based similarity measure outperforms the
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Fig. 3: Detection accuracy with top-K faults at two PV sites.
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Fig. 6: Fault seriousness of 16 normal PV
strings for the proposed method.

Cosine-based method and the Pearson-based method. Figure 7
shows the comparison of three similarity measures among
16 PV strings connected to the same combiner box during
continuous 4 days. A PV string (I13) had a fault from day
2 to day 4. As shown in Figure 7, the incipient fault (I13)
can be observed to be different from other PV strings using
the Euclidean-based method from the second day, and this
difference is becoming more apparent on the third and fourth
days. In contrast, the faulty PV string cannot be clearly
distinguished from other PV strings from day 2 to day 4 using
the Cosine-based method and the Pearson-based method.

C. Sensitivity Analysis

Here, we further compare the proposed method with the HD
method to better understand the sensitivity of the two methods
under various weather conditions. The following experimental
results show that the proposed method is more robust against
irradiance and cloud cover than the HD method. It is necessary
to note that there are no irradiance sensors at site B, this paper
only compares the detection accuracy vs. cloud cover at site
B.

1) Impact of Irradiance: Figure 8 shows the detection
accuracy of the proposed method and the HD method at site A
under different irradiance. To ensure fair comparison, we adopt
the same experimental setup as that of [1], which estimates the

quantile regression model [9] for two quantiles (τ = .1 and
τ = .9) to investigate the relationship between top-100 detec-
tion accuracy and irradiance. We can see from Figure 8 that,
compared with the HD method, the proposed method achieves
higher detection accuracy, and this accuracy exhibits smaller
variations under the same irradiance. For instance, when the
irradiance is 4000Wh/m2/day, the detection accuracy for
the proposed method ranges approximately from 90% to 98%,
while the detection accuracy of the HD method ranges from
78% to 97%.

2) Impact of Weather: The proposed method is also more
robust to weather variations than the HD method. Figures 9
and 10 show a boxplot summarizing the distribution of top-100
detection accuracy for different weather conditions at site A
and B, respectively. These conditions correspond to different
amounts of cloud cover. As we can see in the two figures, the
proposed method achieves higher median detection accuracy
(the horizontal bar within each box) and has less variation
than the HD method under the same weather conditions at
both sites.

Also, we can see from Figure 10 that site B has more
variations of cloud cover during the evaluation period, which
introduces more noise to the collected data. The noises signifi-
cantly decrease the performance of the HD method, but shows
less impact on the proposed method.
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D. Efficiency Analysis

The proposed collaborative fault detection method is imple-
mented on a server with 3.60 GHz CPU. The computation time
of processing 30-day collected data is shown in Figure 11. At
site A, the computation time is 7.2 min (proposed Euclidean-
based method), 6.5 min (proposed Cosine-based method), 6.4
min (proposed Pearson-based method), and 395.5 min (the HD
method), respectively, and it is 8.3 min, 7.3 min, 7.4 min, and
491.6 min, respectively, at site B. We can see that: (1) the pro-
posed method achieves approximately 55X and 59X efficiency
improvement compared with the HD method at site A and site
B, respectively; and (2) the proposed Euclidean-based method
achieves almost the same computation efficiency compared
with the Cosine-based and the Pearson-based method, while
achieving superior accuracy.

V. RELATED WORK

Recent fault detection approaches in PV systems can be
categorized into two classes: model-based approaches [5] and
data-driven approaches [1].

A. Data-driven Approaches

Data-driven fault detection approaches in PV systems can
be further classed into two categories: electrical methods and
visual & thermal methods. These methods mainly rely on
the understanding of data with a limited requirement of prior
domain knowledge [15].

Power loss analysis is one of the widely used electrical
methods to detect faults occurred in PV systems. The rationale
is that faulty PV devices generate less electricity compared
with normal ones. Chouder et al. analyzed power loss to detect
faults and further identified faults’ severities by measuring
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their loss durations [16]. There are also fault detection meth-
ods based on statistical methods [17], and machine learning
techniques, such as artificial neural network [18], [19], [20],
Bayesian Neural Network [21], and decision tree [15]. Yi et al.
developed a fault detection method based on multi-resolution
signal decomposition [22]. Zhao et al. proposed a hierarchical
anomaly detection method based on unsupervised learning
methods. One common drawback of these machine learning-
based methods is that they either require a large amount of
pre-labeling to establish models or have high false alarms.
However, the proposed method solves the fault detection
problem in an unsupervised way, so that no labeled data are
required. Another drawback of the existing methods is the high
false alarms caused by noises, which can be alleviated by the
proposed method as demonstrated in the experiments.

There are also visual & thermal methods (e.g., infrared,
thermal imagining), which are capable of accurately detecting
and locating the occurrence of faults at the PV module
level. As such, these methods have become increasingly
popular in recent years [23], [24], [25]. Specifically, these
methods detect visual-related and thermal-related faults by
implementing the orthophoto infrared thermography by light
unmanned aerial vehicle and a thermal imaging system.
However, these methods are difficult to deploy in large-scale
PV systems due to some practical limitations, such as cost
and time-consuming experimental set-up [24].

B. Model-based Approaches

Model-based methods detect faults based on residuals be-
tween the actual values and the predicted values generated
from a-prior (physical or mathematical) model leveraging
domain knowledge [5].

Platon et al. used irradiance and PV module temperature to
predict the AC power production, and the residuals between
the predicted values and the actual ones are used for online
fault detection [8]. Similarly, a model-based method was
proposed leveraging temperature and irradiance to predict

the healthy PV panel’s maximum power [26]. Differently,
Dhimish et al. detected faulty PV modules and strings using
power ratio and voltage ratio [27]. The main advantage of
these model-based methods is high efficiency, and the main
drawbacks are: (1) these methods are designed for specific
faults, hence have limited scope [1]; and (2) these methods
require non-SCADA data collection, such as module temper-
atures, which increases the overall system’s O&M cost.

VI. CONCLUSIONS

This paper presents a collaborative fault detection method
for PV systems to detect faulty PV strings. The solution has
been deployed at two ground-mounted PV systems located in
China. Comprehensive theoretical analysis and experimental
results demonstrate that the proposed solution outperforms
previous methods in terms of effectiveness, efficiency, and
robustness. Preliminary on-site measure shows that the pro-
posed method is also applicable to roof/surface mount building
integrated photovoltaic systems (BIPV). Also, the similarity
metric is the key feature of the proposed method, which
is typically more effective than Cosine- and Pearson-based
methods for fault detection of PV strings. Future work includes
the investigation of applying CF-based techniques to more
fault detection scenarios.
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