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ABSTRACT
Visual Question Answering (VQA) is a challenging multi-
modal task to answer questions about an image. Many works
concentrate on how to reduce language bias which makes
models answer questions ignoring visual content and lan-
guage context. However, reducing language bias also weak-
ens the ability of VQA models to learn context prior. To ad-
dress this issue, we propose a novel learning strategy named
CCB, which forces VQA models to answer questions rely-
ing on Content and Context with language Bias. Specifically,
CCB establishes Content and Context branches on top of a
base VQA model and forces them to focus on local key con-
tent and global effective context respectively. Moreover, a
joint loss function is proposed to reduce the importance of bi-
ased samples and retain their beneficial influence on answer-
ing questions. Experiments show that CCB outperforms the
state-of-the-art methods in terms of accuracy on VQA-CP v2.

Index Terms— VQA, language bias, content, context

1. INTRODUCTION

Visual Question Answering (VQA) [1] is an attractive task
spanning computer vision and natural language processing.
Given an image and a textual question, the task aims to
generate an answer in natural language. Ideally, a VQA
model requires a deep understanding of semantic information
from visual and textual modalities. However, many recent
works [2,3] have pointed out that most existing VQA models
answer questions strongly relying on language bias, which is
the superficial statistical correlation between question and an-
swer.

Specifically, the VQA language bias [4] is generally di-
vided into the “visual priming bias” [1, 2] and the “language
prior” [3, 5]. As shown in Figure 1, models usually tend to
focus on visual salient content and ignore language context.
For questions like “Do you see a...”, as long as models simply
answer “yes”, they can achieve a high accuracy in VQA v1
datasets [1]. Even if models have a correct visual grounding,
they may directly generate the most common answers (e.g.,

Fig. 1. Example of the VQA language bias. When asked “Do
you see a ...?”, the model tends to simply answer “yes” based
on the salient object in the picture. For questions like “What
color ...?”, even if the model pays attention to the region of
“the bananas”, it will give the most common answer “yellow”.

“yellow” bananas are more common than “green” ones in the
training set). This shortcut severely limits the application of
VQA in the real world, where the statistical distribution of
questions and answers may be significantly different from the
VQA dataset. In addition, the tendency to capture language
bias seriously affects the estimation of model capability.

To alleviate language bias, VQA-CP [3] dataset is estab-
lished with different question-answer distributions between
the training and test splits. Many VQA models [6, 7] are
found relying overly on language bias to answer questions
and have a significant decrease in accuracy on VQA-CP
dataset. Existing approaches can be categorized as extra-
based methods and non-extra-based methods. Extra-based
methods are often intuitive: they introduce extra human su-
pervision [8, 9] and auxiliary tasks (visual grounding, image
caption, etc.) [8–11] to increase the image dependency. In
non-extra-based methods, the prevailing solutions to language
bias are ensemble-based methods [5, 12, 13], which adopt an
auxiliary QA branch and specific learning strategies. How-
ever, the above-mentioned methods all explore how to weaken
the influence of language bias on the model, ignoring that
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language bias can also help models learn context prior (e.g.,
“what color”) [4, 14].

To effectively utilize language bias in VQA task, we pro-
pose a novel CCB learning strategy to learn Content and Con-
text with language Bias. Firstly, we build our Content and
Context branches on top of Up-Down [7] model, which con-
sists of three components: extracting multimodal features,
fusing these features to generate a joint vector and predict-
ing the answer. The Content and Context branches share the
same inputs but have different fusion methods. The Content
branch concentrates on the local key information and the Con-
text branch focuses on the global effective information in the
image and question. Secondly, we design two different opti-
mization objectives with language bias, to reduce the “bad”
statistical prior in the Content branch and keep the “good”
context prior in the Context branch. The two objectives can
make the predictions of two branches be more sensitive to
visual content and language context separately. Finally, the
model produces an answer distribution under the joint influ-
ence of the two branches, avoiding that the model only rely
on one-sided information to answer questions. Moreover,
by constructing a joint loss function to optimize the Content
branch, the Context branch and the joint prediction simulta-
neously, we achieve a trade-off between eliminating language
bias and acquiring prior knowledge to better facilitate VQA
task.

To summarize, our contricutions are as follows:

• We propose CCB, a novel learning strategy to disen-
tangle language bias by building the Content and the
Context branches. To our best knowledge, this is the
first attempt to utilize language bias correctly instead of
simply reducing, which makes the model more depen-
dent on visual content and language context to answer
questions.

• We design a joint loss function to optimize the Content
branch, the Context branch and the final answer predic-
tion. It effectively helps the model overcome the statis-
tical prior and retain the context prior simultaneously.

• The experimental results show that our approach in-
creases the overall accuracy from 52.05% to 57.99%
on VQA-CP v2. Particularly, CCB achieves the state-
of-the-art performance of 59.12% with the CSS [14]
training scheme.

2. RELATED WORK

In recent years, VQA task has attracted widespread atten-
tion [1,6,7], with the increasing demand for multimodal infor-
mation understanding. Meanwhile, many studies [2–4] have
found that language bias in VQA, the strong statistical corre-
lation between question and answer severely limits the gener-
alization and understanding capabilities of VQA models for

multimodal information. In response to the situation, VQA
v2 dataset [2] and VQA-CP dataset [3] are proposed. Most
existing models [6, 7] have a significant decline in accuracy
on the VQA-CP dataset, which has different distributions of
QA pairs between the training set and the test set. Many meth-
ods have been proposed to solve this problem, and they can
be roughly divided into two categories: extra-based methods
and non-extra-based methods.

2.1. Extra-based methods

In extra-based methods, depending on extra human supervi-
sion is the most straightforward solution to increase the image
dependency. HINT [8] optimizes the alignment between hu-
man attention maps [15] and gradient-based network impor-
tance to reduce reliance on language bias. By human textual
explanations [16], SCR [9] criticizes the sensitivity of incor-
rect answers to the influential object for the same purpose.
In order to better guide models to get answers, some extra
auxiliary tasks are added to the existing VQA models. To
some extends, SCR and HINT also are seen as adding extra
visual grounding task to guide VQA models. RankVQA [10]
adds a image caption generator for reranking candidate an-
swers from typical VQA model [7]. SSL-VQA [11] in-
troduces Question-Image correlation estimation as auxiliary
task to overcome language prior in a self-supervised learn-
ing framework. In addition, as causal inference has gradu-
ally attracted attention [4, 17], [14] proposes a Counterfac-
tual Samples Synthesizing training scheme to generate extra
samples. Typically, extra-based methods can achieve better
performance than non-extra methods, since they allow mod-
els to receive extra supervision, understand the task from an
extra angle, or “see” extra samples.

2.2. Non-extra-based methods

Different from extra-based methods, non-extra-based meth-
ods does not introduce information outside VQA datasets.
Currently, the mainstream methods to alleviate language bias
are ensemble-based methods: they introduce a branch model
and conduct joint training with the target VQA model by
specific learning strategies. In adversarial training scheme,
AReg [5] trains the VQA model and the question-only model
which captures language bias by sharing the same question
encoder. But this training scheme also affects the representa-
tions of questions and the stability of training [18]. Rubi [12]
block the back propagation from the question-only model to
the question encoder, and fuse the predicted answer distribu-
tions of the two branches to construct the loss function. In-
stead of the question-only model, LMH [13] introduces a pre-
trained bias-only model to enhance the robustness of VQA
model in a more targeted manner. In general, the current
ensemble-based methods try to add an auxiliary branch to
capture language bias so as to weaken its effect. However, this



Fig. 2. The overview of CCB learning strategy. It contains the Content branch, the Context branch and a joint loss function
Lccb. Firstly, the two branches predict answers respectively through the local crucial content and global non-crucial context
captured from multimodal features. Secondly, The final prediction is obtained under the joint influence of the two branches.
Finally, we construct a joint loss function with language bias to jointly optimize the two branches and the final prediction.

also impairs part of models’ ability in learning context prior.
For achieving a balance, we propose CCB learning strategy.

3. METHODS

3.1. The Paradigm of VQA

The common formulation of VQA task is often considered
as a multi-class classification problem. Specifically, given
a VQA dataset D consisting of N triplets (vi, qi, ai)i∈[1,N ],
where vi ∈ V , qi ∈ Q and ai ∈ A represent the image, the
question and the answer for the ith instance, the VQA model
aims to implement a function F : V ×Q → R‖A‖ to produce
a distribution over the candidate answer space A. Generally,
the entire process can be formulated as follow:

F(A|vi, qi) = C(M(fq(qi), fv(vi))) (1)

where the function F consists of an image encoder fv : V →
Rdv to output visual features of dimension dv , a question en-
coder fq : Q → Rdq to output textual features of dimension
dq , a multimodal fusion method M : Rdv × Rdq → Rdm

to output fusion features of dimension dm and a classifier C :
Rdm → R‖A‖ to output the answer prediction F(A|vi, qi)
for the ith image and question pair.

3.2. Classical learning strategy

Correspondingly, the classical learning strategy of VQA mod-
els is to conduct a multi-label lossLml, minimizing the binary
cross-entropy criterion over a dataset of size N .

Lml = − 1

N

N∑
i

yi log(σ(F(A|vi, qi)))

+(1− yi) log(1− σ(F(A|vi, qi))) (2)

where σ(·) denotes the sigmoid function, and yi is the label
of ai, denoted as yi ∈ {0, 1}‖A‖.

3.3. CCB learning strategy

Our method is motivated by an intuitive cognition: for both
VQA models and humans, we need to get enough content and
context from multimodal information to make a decision [17].
Figure 2 shows the overview of our approach, consisting of
the Content branch Fcn, the Context branch Fcx and a joint
loss function Lccb with language bias. We directly calculate
the correlation between the question type qtype and A to ob-
tain language bias bi for the ith instance:

bi = P (A|qtype) (3)

where qtype ∈ {1, 2, ..., 64} and VQA datasets divide Q into
64 question types.

As common in the state-of-the-art, our base Up-Down [7]
model encodes the image vi as visual features fv(vi) using
the pretrained Faster RCNN network, encodes the question qi
as question features fq(qi) by Glove embeddings and GRU.
Ideally, we hope a VQA model captures content from visual
features and context from textual features. However, due to
the current shortcoming of visual-language representation ca-
pability and the semantic complementarity of multimodal in-
formation, we construct the two branches with the same in-
puts.

Content branch. We build the Content branch on top
of a base VQA model Up-Down [7] and a typically ensem-
ble method LMH [13]. Following the paradigm of VQA,
fv(vi) and fq(qi) are first fed into the VQA model to capture
the local key information and generate an answer distribution
F(A|vi, qi). Then we adopt ensemble method to reduce the
effect of language bias and generate a new answer distribution
as the output of our Content branch, which is denoted as:

Fcn(A|vi, qi, bi) = E(F(A|vi, qi), bi) (4)

Moreover, We try to further reduce the statistical prior caused



Table 1. Performance on VQA-CP v2 test and VQA v2 val

Model Expl. VQA-CP v2 test↑ VQA v2 val↑ Gap∆ ↓
Overall Yes/No Number Other Overall Yes/No Number Other Overall

UpDn [7] 39.84 41.96 12.36 46.26 63.48 81.18 42.14 55.66 23.64
+SCR [9] 48.47 70.41 10.42 47.29 62.30 77.40 40.50 56.50 13.83

+DLR [19] 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54 9.09
+AReg [5] 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16 21.58
+Rubi [12] 44.23 67.05 17.48 39.61 61.16 - - - 21.93
+LMH [13] 52.05 - - - - - - - -

+CCB 57.99 86.41 45.63 48.76 60.73 78.37 36.88 53.17 2.74
+HINT HAT 47.70 70.04 10.68 46.31 62.35 80.49 41.75 54.01 14.65
+SCR HAT 49.17 71.55 10.72 47.49 62.20 78.90 41.40 54.30 13.03
+SCR VQA-X 49.45 72.36 10.93 48.02 62.20 78.80 41.60 54.40 12.75
+SSL QICE 57.59 86.53 29.87 50.03 63.73 - - - 6.24
+CSS VQ-CSS 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11 0.96
+CCB VQ-CSS 59.12 89.12 51.04 45.62 59.17 77.28 33.71 52.14 0.05

by biased samples with reweighting method:

Lcn = − 1

N

N∑
i

(1− bi)r[yi log(σ(Fcn(A|vi, qi, bi)))

+(1− yi) log(1− σ(Fcn(A|vi, qi, bi)))] (5)

where r is a hyperparameter and we utilize (1− bi)r to adjust
the contribution of different biased samples on the Content
loss Lcn.

Context branch. We build an additional Context branch,
in which we try to use global information to produce a evenly
predicted distribution Fcx(A|vi, qi), helping the model learn
a good context prior to filter out unnecessary answer candi-
dates. Different from the Content branch that emphasizes on
obtaining the most relevant information, the Context branch
obtains all information that may affect Fcx(A|vi, qi).

Fcx(A|vi, qi) = Ccx(nnq(fq(qi))� nnv(fv(vi))) (6)

where� denotes element-wise product. Concretely, Fcx uses
two neural networks nnq : Rdq → Rdm , nnv : Rdv → Rdm

to project multimodal features into a common space Rdm ,
then their element-wise product is fed into a classifier Ccx :
Rdm → R‖A‖. To learn context priors with language bias,
we convert bi into a binary vector B(bi) as the label of com-
puting Lcx, denoted as follow:

Lcx = − 1

N

N∑
i

B(bi) log(σ(Fcx(A|vi, qi)))

+(1−B(bi)) log(1− σ(Fcx(A|vi, qi))) (7)

whereB(·) is the function to convert bi into the label, denoted
as:

B(bij) =

{
1 bij > 0

0 others
(8)

where bij is the predicted probability of aij , j ∈ {1, ‖A‖}.
Predicting by Content and Context. To obtain the final

prediction Fp(A|vi, qi, bi) based on visual content and lan-
guage context, we simply conduct an element-wise product
between Fcn(A|vi, qi, bi) and Fcx(A|vi, qi).

Fp(A|vi, qi, bi) = Fcn(A|vi, qi, bi)�Fcx(A|vi, qi) (9)

Follow the classical learning strategy, we conduct the Predict
loss LP to optimize Fp(A|vi, qi, bi) as follow:

Lp = − 1

N

N∑
i

yi log(σ(Fp(A|vi, qi, bi)))

+(1− yi) log(1− σ(Fp(A|vi, qi, bi))) (10)

At last, we obtain our final loss Lccb by summing Lcn,
Lcx and Lp together.

Lccb = Lcn + Lcx + Lp (11)

4. EXPERIMENTS

4.1. Setup

We evaluate our model on the VQA v2 dataset [2] and VQA-
CP v2 dataset [3], following the standard VQA evaluation
metric [1]. For fair comparisons, we use the same method as
the Up-Down [7] model to extract multi-modal features and
build on top of the publicly available model LMH [13] with
the same settings.

4.2. Performance on VQA-CP v2 and VQA v2 datasets

We first compare CCB with other non-extra-based methods,
which are proposed to reduce language bias. Table 1 shows
that our approach significantly outperforms other methods



Fig. 3. Qualitative comparison among the outputs of our baseline Up-Down model, typical ensemble method LMH and our
method CCB on VQA-CP v2 test set. The bounding boxes indicate the top-3 important regions with attention values “Att”.
“Top-3” under “Answer” represents the probability of the top-3 candidate answers.

over all question categories. Particularly, without using any
extra data, we improve the performance of LMH from 52.05%
to 57.99%, which is competitive even in extra-based meth-
ods. Then, compared with some extra-based methods, CCB
achieves the state-of-the-art performance with CSS training
scheme, which further proves the effectiveness of our method.
For some simple “Yes/No” and direct “number” questions,
our method achieves higher accuracy (89.12% and 51.04%),
while answering these two types of questions is most suscep-
tible to statistical prior. Finally, we evaluate CCB on the bi-
ased VQA v2 dataset. As can be seen from Table 1, there is
an obvious gap in the performance of most methods between
these two datasets. Notably, our method effectively reduces
the performance gap of the model on the two datasets and im-
proves the robustness of the model. The reason is that our
learning strategy can decrease most statistical prior on VQA-
CP v2, while retaining most context prior on VQA v2 so as to
avoid a huge drop in performance.

4.3. Ablation Studies

Ablation studies on the VQA-CP v2 dataset are conducted
to investigate factors that affect the performance of our ap-
proach. The results are listed in Table 2. Firstly we investigate
the effectiveness of building Content and Context branches.
To this end, we set “r = 0, w/o”, in which the Content branch
uses a multi-label loss Lml and the Context branch calculates
Lcx by setting an all-one constant vector as the label. The
“r = 0, w/o” performs better than the LMH model, which
indicates that the two branches can jointly affect the gener-
ation of answers avoiding only depending on one-sided in-
formation. Then we set r = 1 and add the context label

Table 2. Ablation Studies on VQA-CP v2 test
Up-Down (1− bias)r context label Accuracy

+None - - 39.68
+LMH [13] - - 52.05

+CCB r = 0 w/o 55.06
+CCB r = 1 w/o 55.70
+CCB r = 0 w 56.76
+CCB r = 1 w 57.99
+CCB r = 0.5 w 57.39
+CCB r = 2 w 57.56

to investigate the influence of using bias for reweighting in
Lcn and labeling in Lcx respectively. The overall accuracy
of 55.70% and 56.76% demonstrate that our loss functions
are effective to reduce the effect of biased samples as well
as retain their beneficial influence on learning prior knowl-
edge. Finally, we investigate the influence of different hyper-
parameter r, which are applied to adjust the importance of
biased samples. The results show that the best performance
can be achieved when r = 1. For further analysis, a large
r may affect the model’s learning ability to biased samples,
while a small r may make the model get no complete rid of
the excessive dependence on language bias.

4.4. Qualitative analysis

We make qualitative evaluation of the effectiveness of our
method by visualizing the top-3 important regions of three
models and outputting the corresponding attention weights.
In addition, we apply the softmax function to calculate the



probability of top-3 candidate answers predicted by the mod-
els, which reflects the models’ confidence in the answer. As
shown in Figure 3, for the question like “What color is the
counter ?”, although both LMH and our model give the cor-
rect answer, our method makes the model pay more attention
to “the counter” and ignore other regions that are not related
to the question. This allows our model to give a more accu-
rate color of “the counter”. Even for the question that requires
more understanding of visual content like “How many feet do
the women have on the ground ?”, our model can still give
the correct answer. It can be seen that, the model correctly
applies more weights to the corresponding regions in the im-
age, including “the feet of the woman” on the ground and
“other parts of the body” that are in contact with “the ele-
phant”. In both cases, our method can avoid the model from
being directly affected by the statistical prior and giving com-
mon answers (e.g., “white”, “2”). Moreover, our method can
guide the model to understand the whole question and apply
the correct attention weights , instead of just focusing on the
n-gram “How many feet ...”.

5. CONCLUSION

We propose CCB learning strategy to cope with language bias
for Visual Question Answering (VQA) task. Based on the
Content and the Context branches, CCB guides the model to
answer questions with the combination of decisive content in-
formation and necessary context information. Furthermore,
we construct an additional loss function to jointly optimize
the two branches and the final prediction by disentangling the
influence of language bias on the model. Experimental results
show that our approach makes a balance between reducing
statistical prior and preserving context prior, and the state-of-
the-art performance is achieved on VQA-CP v2 dataset.
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