
AdaError: An Adaptive Learning Rate Method for Matrix
Approximation-based Collaborative Filtering

Dongsheng Li
IBM Research - China

Shanghai, China
ldsli@cn.ibm.com

Chao Chen
IBM Research - China

Shanghai, China
cchao@cn.ibm.com

Qin Lv
University of Colorado

Boulder
Boulder, CO, USA
qin.lv@colorado.edu

Hansu Gu
Seagate Technology

Longmont, CO, USA
guhansu@gmail.com

Tun Lu
Fudan University
Shanghai, China

lutun@fudan.edu.cn

Li Shang
University of Colorado

Boulder
Boulder, CO, USA

li.shang@colorado.edu

Ning Gu
Fudan University
Shanghai, China

ninggu@fudan.edu.cn

Stephen M. Chu
IBM Research - China

Shanghai, China
schu@cn.ibm.com

ABSTRACT
Gradient-based learning methods such as stochastic gradient
descent are widely used in matrix approximation-based collab-
orative filtering algorithms to train recommendation models
based on observed user-item ratings. One major difficulty
in existing gradient-based learning methods is determining
proper learning rates, since model convergence would be in-
accurate or very slow if the learning rate is too large or too
small, respectively. This paper proposes AdaError, an adap-
tive learning rate method for matrix approximation-based
collaborative filtering. AdaError eliminates the need of man-
ually tuning the learning rates by adaptively adjusting the
learning rates based on the noisiness level of user-item ratings,
using smaller learning rates for noisy ratings so as to reduce
their impact on the learned models. Our theoretical and
empirical analysis shows that AdaError can improve the gen-
eralization performance of the learned models. Experimental
studies on the MovieLens and Netflix datasets also demon-
strate that AdaError outperforms state-of-the-art adaptive
learning rate methods in matrix approximation-based col-
laborative filtering. Furthermore, by applying AdaError to
the standard matrix approximation method, we can achieve
statistically significant improvements over state-of-the-art
collaborative filtering methods in both rating prediction ac-
curacy and top-N recommendation accuracy.

CCS CONCEPTS
• Information systems → Collaborative filtering; Rec-
ommender systems;

KEYWORDS
collaborative filtering, matrix approximation

This paper is published under the Creative Commons Attribution 4.0
International (CC BY 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with
the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee),
published under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186155

ACM Reference Format:
Dongsheng Li, Chao Chen, Qin Lv, Hansu Gu, Tun Lu, Li Shang,
Ning Gu, and Stephen M. Chu. 2018. AdaError: An Adaptive
Learning Rate Method for Matrix Approximation-based Collabo-
rative Filtering. In WWW 2018: The 2018 Web Conference, April
23–27, 2018, Lyon, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3178876.3186155

1 INTRODUCTION
Matrix approximation (MA) methods have become increas-
ingly popular among existing collaborative filtering (CF)-
based solutions due to their superior accuracy [3, 4, 8, 9, 15,
16, 22, 44, 46]. In MA-based CF algorithms, gradient-based
learning methods such as stochastic gradient descent (SGD)
are widely adopted to learn MA models based on observed
user-item ratings [8, 16, 22, 43, 44]. The learned MA models
are then used to predict user ratings on unseen items. One
major difficulty in existing gradient-based learning methods
is determining proper learning rates for gradient descent [17],
since the model would diverge if the learning rate is too large
and the model convergence would be very slow if the learning
rate is too small.

Recently, several adaptive learning rate methods, such
as Adagrad [12], AdaDelta [45], and Adam [20], have been
proposed to address the learning rate issue, and have achieved
good performance in several algorithms, especially neural
networks [11, 20, 45]. In general, existing adaptive learning
rate methods aim to improve model convergence on sparse
data by increasing gradient updates for infrequent parameters
and decreasing gradient updates for frequent parameters.
However, in real-world recommender systems, the observed
user-item ratings are not only very sparse but also very
noisy [7, 10, 26, 43]. A recent study [10] showed that only
60% of user ratings are unchanged when users are asked to
re-rate the same items, and such rating noises can lead to
40% variation in recommendation RMSE [1]. Therefore, it
is important to consider rating noises when choosing the
learning rates in MA-based CF solutions, i.e., performing
small gradient updates for noisy ratings to prevent the learned
models from overreacting to rating noises.

https://doi.org/10.1145/3178876.3186155
https://doi.org/10.1145/3178876.3186155

To this end, this paper proposes AdaError — an adaptive
learning rate method for matrix approximation-based col-
laborative filtering. AdaError reduces the learning rates for
noisy training examples so that the learned models are less
prone to the noisy ratings in the training data. AdaError also
adaptively shrinks the learning rates as the number of epochs
increases, thus eliminating the need of manually tuning the
learning rates. Our theoretical and empirical analysis shows
that AdaError can improve the generalization performance
of learned MA models and are less sensitive to 𝐿2 regulariza-
tion coefficients. Experimental studies using the MovieLens
and Netflix datasets demonstrate that AdaError outperforms
state-of-the-art adaptive learning rate methods in matrix
approximation-based collaborative filtering. Furthermore, by
applying AdaError to the standard matrix approximation
method, we can statistically significantly improve recommen-
dation accuracy for both the rating prediction task and the
top-N recommendation task, compared with state-of-the-art
collaborative filtering methods.

2 PROBLEM FORMULATION
In this section, we first introduce the basic concepts of matrix
approximation-based collaborative filtering. Then, we analyze
the noisy rating problem in real-world recommender systems.
At last, we motivate the targeted problem through a case
study.

2.1 Matrix Approximation-based
Collaborative Filtering

Given a user-item rating matrix 𝑅 ∈ R𝑚×𝑛, where 𝑚 is
the number of users and 𝑛 is the number of items, matrix
approximation methods aim to determine a user feature
matrix 𝑈 ∈ R𝑚×𝑘 and an item feature matrix 𝑉 ∈ R𝑛×𝑘,
such that

𝑅 ≈ 𝑅̂ = 𝑈𝑉 𝑇 . (1)
𝑘, the rank of 𝑅, is typically much smaller than 𝑚 and 𝑛 in
real-world recommender systems. After obtaining 𝑈 and 𝑉 ,
the predicted rating of the 𝑖-th user on the 𝑗-th item can be
computed by the dot product of their corresponding feature
vectors, i.e., 𝑟𝑖,𝑗 = 𝑈𝑖𝑉

𝑇
𝑗 .

To obtain optimal 𝑈 and 𝑉 in Equation 1, gradient-based
learning methods such as stochastic gradient descent (SGD)
can be adopted to minimize the following regularized least
square error problem [8, 22, 34, 44]:

𝐿 =
∑︁

𝑖,𝑗∈Ω

(𝑅𝑖,𝑗 − 𝑈𝑖𝑉
𝑇

𝑗)2 + 𝜇||𝑈 ||2𝐹 + 𝜇||𝑉 ||2𝐹 , (2)

where Ω is the set of observed entries in the rating matrix 𝑅
and || · ||𝐹 is the Frobenius norm. When using SGD to solve
the minimization problem above at entry 𝑅𝑖,𝑗 , the gradient
update rules can be described as follows:

𝑈𝑖 ← 𝑈𝑖 − 𝜆
𝜕𝐿

𝜕𝑈𝑖
, 𝑉𝑗 ← 𝑉𝑗 − 𝜆

𝜕𝐿

𝜕𝑉𝑗
. (3)

𝜆 is the learning rate, which controls the convergence of the
model learning process.

0.845

0.850

0.855

 10 20 30 40 50

R
M

S
E

Rank

Adaptive learning rate
Fixed learning rate

Figure 1: Case study: Recommendation accuracy
comparison between RSVD [34] with adaptive /
fixed learning rate when varying rank values on the
MovieLens 1M dataset. We use 0.01 as the fixed
learning rate. For adaptive learning rate, we use
0.011 for entries with small training error and 0.009
for entries with large training error.

2.2 Noisy Ratings in Recommender
Systems

User-item ratings in real-world recommender systems are typ-
ically noisy [2, 28, 33]. A recent work [33] pointed out that
natural noise, which arises when recommender systems collect
or infer user preferences, commonly exist in today’s recom-
mender system databases. The natural noises are caused
by various reasons, including difficulty for users to quantify
their preferences [18], inappropriate granularity of rating s-
cales [10], memory loss due to the long time between seeing
and rating items [30], bad mood [2], etc. These natural noises
in user-item ratings are inevitable due to so many complex
reasons. As such, matrix approximation-based CF methods
should consider rating noises in their algorithm design.

The fraction of noisy ratings in recommender systems is
large according to recent studies [10, 18]. Cosley et al. [10]
found that about 40% of user ratings are different from their
previous ratings when users are asked to re-rate the same
movies they rated before. Similarly, Jones et al. [18] found
that user stability on rating items is around 63% in their
study. These noisy ratings can significantly influence the
accuracy of matrix approximation-based CF methods [1, 10].
Cosley et al. [10] observed significant MAE differences when
using collaborative filtering algorithms on users’ original
ratings and new ratings. Amatriain et al. [1] found that the
recommendation RMSE variations can be as high as 40%
when noises exist in the user-item rating matrix. Therefore,
if we can properly address the noisy ratings issue, it is very
promising for us to improve the recommendation accuracy of
collaborative filtering methods.

2.3 Case Study: Noise vs. Learning Rate
Here, we conduct a case study to empirically investigate the
potential improvement in recommendation accuracy when
considering rating noises in the model learning process. The
study is carried out on the MovieLens 1M dataset, which

contains ∼ 106 ratings from 6k users on 4k items. The basic
idea is to use larger learning rates for robust ratings and
smaller learning rates for noisy ratings, thus reducing the
impact of noisy ratings on the learned model. However, rating
noises are difficult to quantify. So we rely on the learned MA
models to identify noisy ratings. Specifically, we assume that
a rating is noisy if the learned MA model cannot fit the rating
accurately, i.e., a rating is noisy if the learned MA model has
a large training error on this rating.

Based on the idea above, given a predefined learning rate 𝜆
and a training example 𝑅𝑖,𝑗 , we adopt the following adaptive
learning rate: 1) if the training example’s prediction error
(𝑅𝑖,𝑗 − 𝑅̂𝑖,𝑗)2 is larger than the average square error of all
training examples, then its learning rate is decreased by 10%,
i.e., 0.9𝜆; 2) otherwise, its learning rate is increased by 10%,
i.e., 1.1𝜆. As shown in Figure 1, RSVD [34] with adaptive
learning rate outperforms RSVD with fixed learning rate in
recommendation accuracy, i.e., achieving lower Root Mean
Square Error (RMSE). And this is true for rank variations
from 10 to 50. The only difference between the two methods
is that RSVD with adaptive learning rate can use smaller
updates for entries with large training error (noisy ratings)
and larger updates for entries with small training error (robust
ratings). As a result, the learned MA models are less prone
to noises in the ratings.

This case study confirms that we can improve the recom-
mendation accuracy of MA-based CF methods by considering
rating noises in the model learning process. The key ques-
tion is – how to design an intelligent adaptive learning rate
method which can address the different levels of noises across
different ratings for MA-based CF solutions.

3 ALGORITHM DESIGN
In this section, we first propose the AdaError method, which
can adaptively adjust the learning rates for entries with
different noise levels. Then, we present how to apply the
proposed AdaError method in matrix approximation for
two collaborative filtering tasks: rating prediction and top-N
recommendation.

3.1 The Proposed AdaError Method
AdaError is designed based on the following idea: Entries with
larger training errors should be given smaller learning rates
and entries with smaller training errors should be given larger
learning rates. This idea may be implemented in different
ways. Here, we propose an adaptive method which is similar
to AdaGrad [12]. Given a predefined learning rate 𝜆 and an
observed entry 𝑅𝑖,𝑗 ∈ Ω, its learning rate at the 𝑡-th iteration
is defined as follows:

𝜆
(𝑡)
𝑖,𝑗 = 𝜆√︁

𝐸
(𝑡−1)
𝑖,𝑗 + 𝜖

+ 𝛽. (4)

𝐸
(𝑡−1)
𝑖,𝑗 =

∑︀𝑡−1
𝑥=0(𝑅𝑖,𝑗 − 𝑅̂

(𝑥)
𝑖,𝑗)2 is the sum of squared training

error w.r.t. 𝑅𝑖,𝑗 up to the (𝑡 − 1)-th iteration. 𝜖 is a small
constant to prevent 0 in the denominator, which is set to 1𝑒-8
in this paper. 𝛽 is a constant to prevent 𝜆

(𝑡)
𝑖,𝑗 from becoming

infinitely small after a large number of iterations, which is
set to 1𝑒-4 in this paper.

The advantages of the proposed AdaError method are
summarized as follows:
• Addressing different levels of noises: The learning rates of
different entries will vary according to their training errors,
so that entries with different cumulative training errors will
have varying learning rates;
• Adaptive tuning of the learning rates: The learning rates
will shrink as the number of iterations increases, so that it
is unnecessary to manually tune the learning rates. Mean-
while, the adoption of 𝛽 can prevent the learning rates from
becoming infinitely small, so that the learning process will
stop within an acceptable number of iterations; and
• Efficiency: The proposed AdaError method is entry-wise,
i.e., different entries will have different learning rates. This is
different from many existing parameter-wise adaptive learn-
ing rate methods, e.g., AdaGrad [12], AdaDelta [45] and
Adam [20], in which the learning rates are different across
different parameters. For matrix approximation, the computa-
tion complexity of AdaError, which is 𝑂(|Ω|) per iteration, is
smaller than that of those parameter-wise adaptive learning
rate methods, which is 𝑂(𝑘|Ω|) per iteration.

3.2 AdaError for Rating Prediction
Here, we present the algorithm design of applying the pro-
posed AdaError method for matrix approximation in the
rating prediction task, in which we solve the minimization
problem defined by Equation 2. We first initialize the pa-
rameters and 𝐸 ∈ R𝑚×𝑛. Then, we iteratively update the
parameters and 𝐸(𝑡) (𝑡 > 0) until convergence using stochas-
tic gradient descent. The details are presented in Algorithm 1.

Algorithm 1 AdaError for Rating Prediction
Require: User-item rating matrix 𝑅, observed entry set

Ω, rank 𝑘, learning rate 𝜆, regularization coefficient 𝜇,
𝜖 = 1𝑒− 8, 𝛽 = 1𝑒− 4.

Ensure: Approximated user-item rating matrix 𝑅̂.
1: Initialize 𝑈, 𝑉 randomly, 𝑡 = 1, and 𝐸(0) = 0𝑚,𝑛.
2: while not converged do
3: for each (𝑖, 𝑗) ∈ Ω do
4: 𝐸

(𝑡)
𝑖,𝑗 ← 𝐸

(𝑡−1)
𝑖,𝑗 + (𝑅𝑖,𝑗 − 𝑈𝑖𝑉

𝑇
𝑗)2.

5: 𝜆
(𝑡)
𝑖,𝑗 ← 𝜆/

√︁
𝐸

(𝑡)
𝑖,𝑗 + 𝜖 + 𝛽.

6: 𝑈𝑖 ← 𝑈𝑖 − 2𝜆
(𝑡)
𝑖,𝑗 ((𝑈𝑖𝑉

𝑇
𝑗 −𝑅𝑖,𝑗)𝑉𝑗 + 𝜇𝑈𝑖).

7: 𝑉𝑗 ← 𝑉𝑗 − 2𝜆
(𝑡)
𝑖,𝑗 ((𝑈𝑖𝑉

𝑇
𝑗 −𝑅𝑖,𝑗)𝑈𝑖 + 𝜇𝑉𝑗).

8: 𝑡← 𝑡 + 1.
9: end for

10: end while
11: return 𝑅̂

3.3 AdaError for Top-N Recommendation
Here, we present the algorithm design of applying the pro-
posed AdaError method for matrix approximation in the

top-N recommendation task. In many top-N recommendation
tasks, the user-item ratings are binary, i.e., 𝑅𝑖,𝑗 ∈ {−1, 1}.
The mean square loss as defined in Equation 2 will not be
appropriate in such setting [42]. Therefore, we adopt the “0-1”
loss with exponential surrogate function. Note that other
surrogate loss functions [42], such as square loss, log loss, and
hinge loss, can also be adopted in Equation 5. However, many
real-world datasets only provide positive feedbacks, e.g., click
through data, which is also known as implicit feedback data.
To address the implicit feedback issue, we give a larger weight
to positive ratings and a smaller weight to negative ratings
following the WRMF method [16]. We set 𝑤𝑖,𝑗 = 1 if 𝑅𝑖,𝑗 = 1
and 𝑤𝑖,𝑗 = 0.04 if 𝑅𝑖,𝑗 = −1 based on our empirical study.
Finally, the loss function for top-N recommendation can be
defined as follows:

𝐿′ =
∑︁

(𝑖,𝑗)∈Ω

𝑤𝑖,𝑗 exp{−𝑅𝑖,𝑗𝑅̂𝑖,𝑗}+ 𝜇||𝑈 ||2𝐹 + 𝜇||𝑉 ||2𝐹 . (5)

Then, we can similarly solve the above minimization prob-
lem as in the rating prediction problem. The details are
presented in Algorithm 2.

Algorithm 2 AdaError for Top-N Recommendation
Require: User-item rating matrix 𝑅, observed entry set

Ω, rank 𝑘, learning rate 𝜆, regularization coefficient 𝜇,
𝜖 = 1𝑒− 8, 𝛽 = 1𝑒− 4.

Ensure: Approximated user-item rating matrix 𝑅̂.
1: Initialize 𝑈, 𝑉 randomly, 𝑡 = 1, and 𝐸(0) = 0𝑚,𝑛.
2: while not converged do
3: for each (𝑖, 𝑗) ∈ Ω do
4: 𝐸

(𝑡)
𝑖,𝑗 ← 𝐸

(𝑡−1)
𝑖,𝑗 + 𝑤𝑖,𝑗 exp{−𝑅𝑖,𝑗𝑈𝑖𝑉

𝑇
𝑗 }.

5: 𝜆
(𝑡)
𝑖,𝑗 ← 𝜆/

√︁
𝐸

(𝑡)
𝑖,𝑗 + 𝜖 + 𝛽.

6: 𝑈𝑖 ← 𝑈𝑖 + 𝜆
(𝑡)
𝑖,𝑗 (𝑤𝑖,𝑗𝑅𝑖,𝑗𝑉𝑗 exp{−𝑅𝑖,𝑗𝑈𝑖𝑉

𝑇
𝑗 }− 2𝜇𝑈𝑖).

7: 𝑉𝑗 ← 𝑉𝑗 + 𝜆
(𝑡)
𝑖,𝑗 (𝑤𝑖,𝑗𝑅𝑖,𝑗𝑈𝑖 exp{−𝑅𝑖,𝑗𝑈𝑖𝑉

𝑇
𝑗 }− 2𝜇𝑉𝑗).

8: 𝑡← 𝑡 + 1.
9: end for

10: end while
11: return 𝑅̂

4 THEORETICAL ANALYSIS
In this section, we first analyze the convergence rate of apply-
ing AdaError in SGD for solving strongly convex problems.
Then, we analyze the generalization error bound of AdaError-
based SGD, and compare it with standard SGD.

4.1 Convergence Rate
The convergence rate of SGD has been extensively studied
in the literature and a recent result showed that the SGD
algorithm can return a solution which is 𝑂(1/𝑇)-close to the
optimum after 𝑇 iterations [14]. More formally, the conver-
gence rate of SGD can be analyzed as follows [14]:

Theorem 4.1. Assuming that the loss function 𝐿 is 𝑙-
strongly convex and its gradients satisfy that E(||𝑔||2) ≤ 𝐺2

for all model 𝑤 ∈ Φ, where E(𝑔) = ∇𝐿(𝑤). Then, there
exists a deterministic algorithm that can return a 𝑤 after at
most 𝑇 iterations such that, for optimal 𝑤* ∈ Φ, we have
E[𝐿(𝑤)]− 𝐿(𝑤*) ≤ 𝑂(𝐺2

𝑙𝑇
).

Following the above results, we can similarly derive the
convergence rate of AdaError-based SGD in the following
Theorem 4.2.

Theorem 4.2. Assuming that the loss function 𝐿 is 𝑙-
strongly convex and its gradients satisfy that E(||𝑔||2) ≤ 𝐺2

for all model 𝑤 ∈ Φ, where E(𝑔) = ∇𝐿(𝑤). Then, by properly
choosing 𝜆 and 𝛽 in Equation 4 for each iteration, AdaError-
based SGD can return a 𝑤 after at most 𝑇 iterations such
that, for optimal 𝑤* ∈ Φ, we have E[𝐿(𝑤)]−𝐿(𝑤*) ≤ 𝑂(𝐺2

𝑙𝑇
).

Theorem 4.2 proves that solving a strongly convex loss
using AdaError-based SGD can achieve a convergence rate of
𝑂(1/𝑇). It is easy to verify that mean square loss (Equation 2)
is strongly convex, because its second order derivative is a
constant 2. The exponential loss (Equation 5) is not always
strongly convex, because its second order derivative 𝑒𝑥 → 0
when 𝑥→ −∞. However, −𝑅𝑖,𝑗𝑅̂𝑖,𝑗 will not diverge to −∞
in matrix approximation if the learning rate is properly set in
SGD, so we can assume that −𝑅𝑖,𝑗𝑅̂𝑖,𝑗 ≥ 𝐶 for all (𝑖, 𝑗) ∈ Ω
with some properly chosen learning rate. Then, Equation 5
will satisfy the strongly convex assumption.

4.2 Generalization Error Bound
The generalization performance of matrix approximation
would be poor if the learned MA models are prone to the
noisy training data. Since AdaError can prevent the learned
MA models from overreacting to the noises in the training
data, AdaError can naturally improve the generalization
performance. Here, we theoretically analyze the generalization
error bound of AdaError-based SGD.

Uniform stability [6] is adopted to analyze the generaliza-
tion error of SGD. The expected generalization error of SGD
with fixed learning rate can be bounded as follows [13]:

Theorem 4.3. Given a loss function 𝐿 : Φ → R, as-
suming 𝐿(·; 𝑥) is convex, ||∇𝐿(·; 𝑥)|| ≤ 𝑃 and ||∇𝐿(𝑤; 𝑥)−
∇𝐿(𝑤′; 𝑥)|| ≤ 𝑏||𝑤−𝑤′|| for all training example 𝑥 ∈ 𝑋 and
any two models 𝑤, 𝑤′ ∈ Φ. Suppose that we run SGD with
the 𝑡-th step size 𝜆 ≤ 2/𝑏 for totally 𝑇 steps. Then, SGD
satisfies uniform stability on samples with 𝑛 examples by
𝜖𝑠𝑡𝑎𝑏 ≤ 2𝑃 2

𝑛

∑︀𝑇

𝑡=1 𝜆.
Following the above results, we can similarly derive the

generalization error bound of AdaError-based SGD in the
following Theorem 4.4.

Theorem 4.4. Given a loss function 𝐿 : Φ → R, as-
suming 𝐿(·; 𝑥) is convex, ||∇𝐿(·; 𝑥)|| ≤ 𝑃 and ||∇𝐿(𝑤; 𝑥)−
∇𝐿(𝑤′; 𝑥)|| ≤ 𝑏||𝑤−𝑤′|| for all training example 𝑥 ∈ 𝑋 and
any two models 𝑤, 𝑤′ ∈ Φ. Suppose that we run AdaError-
based SGD with the 𝑡-th step size as defined in Equation 4 sat-
isfying 𝜆(𝑡) ≤ 2/𝑏 for totally 𝑇 steps. Then, AdaError-based
SGD satisfies uniform stability on samples with 𝑛 examples
by 𝜖𝑠𝑡𝑎𝑏 ≤ 2𝑃 2

𝑛

∑︀𝑇

𝑡=1 𝜆(𝑡).

Proof. The proof can be derived from Theorem 4.3. �

Next, we can compare the generalization error bound of
SGD with fixed learning rate and AdaError-based SGD in
the following Theorem 4.5.

Theorem 4.5. The uniform stability bound of Theorem 4.4
will be sharper than that of Theorem 4.3 if

∑︀
𝑡

1
𝑇
√

𝐸(𝑡)+𝜖
≤

1− 𝛽/𝜆.

Proof. The sharper uniform stability bound of Theo-
rem 4.4 indicates that 2𝑃 2

𝑛

∑︀𝑇

𝑡=1 𝜆(𝑡) ≤ 2𝑃 2

𝑛

∑︀𝑇

𝑡=1 𝜆, i.e.,∑︀𝑇

𝑡=1 𝜆(𝑡) ≤
∑︀𝑇

𝑡=1 𝜆. Based on Equation 4, we know that∑︀𝑇

𝑡=1 (𝜆/
√

𝐸(𝑡) + 𝜖 + 𝛽) ≤
∑︀𝑇

𝑡=1 𝜆. Then, by simple algebra,
we can complete the proof. �

In AdaError, 𝐸(𝑡) will accumulate as the number of iter-
ations increases, so the above condition can be easily met
when 𝑇 is large enough, e.g., 𝑇 > 100 will be fair enough in
our empirical studies.

5 EXPERIMENTS
This section first presents the experimental setup. Then, we
analyze the sensitivity of AdaError and compare it with oth-
er adaptive learning rate methods. At last, we compare the
recommendation accuracy of AdaError-based matrix approx-
imation method with state-of-the-art CF methods in both
rating prediction and top-N recommendation tasks.

5.1 Experimental Setup
Dataset Description. The following real-world datasets are

used in the experiments: 1) MovieLens 100K dataset (∼ 105

ratings from 1,000 users on 1,700 movies); 2) MovieLens 1M
dataset (∼ 106 ratings from 6,000 users on 4,000 movies); 3)
MovieLens 10M dataset (∼ 107 ratings from 72,000 users on
10,000 movies); and 4) Netflix Prize dataset (∼ 108 ratings
from 480,000 users on 17,770 movies). In each experiment,
we randomly split the dataset into training and test sets and
keep the ratio as 90% : 10%. All reported results are averaged
over five different rounds of random splits. Note that, for
top-N recommendation, we predict whether a user will rate
an item [19], i.e., the user rating on an item will be 1 if the
user rated the item and -1 otherwise.

Parameter Setting. We set 𝜆 = 0.01 and 𝛽 = 1𝑒-4 in
Equation 4 if not explicitly specified. The regularization
coefficient 𝜇 is set to 0.02 for rating prediction and 0.001
for top-N recommendation. The convergence threshold is set
to 1𝑒-5 and the maximum number of epochs is set to 1000.
The optimal parameters of the compared methods are chosen
from their original papers.

Compared Methods. For the rating prediction task, we
compare the proposed method with the following state-of-
the-art MA-based CF methods: 1) BPMF [38] is a Bayesian
extension of the PMF [39] method, which can automatically
control model capacity by integrating over all model param-
eters and hyperparameters; 2) DFC [27] can improve the

scalability and accuracy of matrix factorization by a divide
and conquer-based ensemble strategy; 3) LLORMA [24] is an
ensemble MA method, which integrates a set of localized MA
models through kernel smoothing; 4) GSMF [44] can model
multiple user behaviors through group sparsity regulariza-
tion in matrix factorization; 5) WEMAREC [8] is also an
ensemble method, which integrates biased co-clustering-based
MA models by weighted average; 6) SMA [26] can improve
the stability of matrix approximation by introducing hard-
predictable terms in the loss function; and 7) ERMMA [25]
can minimize the expected risk in learning MA models.

For the top-N recommendation task, we compare the pro-
posed method with the following methods: 1) WRMF [16]
assigns point-wise confidences to individual ratings in the
user-item rating matrix to address the implicit feedback is-
sue; 2) BPR [36] learns a pair-wise loss to optimize ranking
measures for top-N setting. They proposed different versions
of BPR methods, and this paper compares with the BPR-
MF; 3) AOBPR [35] improves the original BPR method by
oversampling informative pairs to speed up convergence and
accuracy; and 4) SLIM [31] generates top-N recommenda-
tions by aggregating weighted user ratings learned by solving
an 𝐿1 and 𝐿2 regularized optimization problem.

In addition, we compare AdaError with the following pop-
ular adaptive learning rate methods: 1) AdaGrad [12] can
adjust the learning rates so that frequently updated param-
eters will be given smaller learning rates and infrequently
updated parameters will be given larger learning rates; 2)
RMSprop1 divides the learning rate with a running average
of the magnitudes of recent gradients to prevent the learning
rates from becoming infinitely small; and 3) Adam [20] adjust-
s the learning rates of individual parameters by considering
the first moment and the second moment of the gradients.

Evaluation Metrics. For the rating prediction task, root
mean square error (RMSE) is adopted to measure recommen-
dation accuracy: RMSE(𝑅̂) =

√︁
1/|Ω′|

∑︀
(𝑖,𝑗)∈Ω′ (𝑅𝑖,𝑗 − 𝑅̂𝑖,𝑗)2,

where Ω′ is the set of entries in the test set. Lower RMSE
indicates higher rating prediction accuracy. For the top-N
recommendation task, two popular measures are adopted:
1) Precision@N = |𝐼𝑟 ∩ 𝐼𝑢|/|𝐼𝑟|, where 𝐼𝑟 is the list of top-
N recommendations and 𝐼𝑢 is the list of items that 𝑢 has
rated; 2) NDCG@N = DCG@N/IDCG@N, where DCG@N
=

∑︀𝑛

𝑖=1 (2𝑟𝑒𝑙𝑖 − 1)/𝑙𝑜𝑔2(𝑖 + 1) and IDCG@N is the value of
DCG@N with perfect ranking (𝑟𝑒𝑙𝑖 = 1 if 𝑢 rated the 𝑖-th rec-
ommended item and 𝑟𝑒𝑙𝑖 = 0 otherwise). Higher Precision@N
and NDCG@N indicate higher recommendation accuracy.

5.2 Generalization Error Analysis
Figure 2 compares the gap between training and test errors of
RSVD [34] using standard SGD and RSVD with AdaError on
the MovieLens 10M dataset. As we can see from the results,
RSVD with standard SGD has a much larger gap between
training and test errors than that of RSVD with AdaError,
1http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture slides
lec6.pdf

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 20 40 60 80 100 120 140 160 180

R
M

S
E

Epochs

RSVD w/ SGD (train)
RSVD w/ SGD (test)
RSVD w/ AdaError (train)
RSVD w/ AdaError (test)

Figure 2: Training and test errors vs. epochs of
RSVD [34] using standard SGD and AdaError on the
MovieLens 10M dataset. We set rank 𝑘 = 100 and 𝐿2
regularization coefficient 𝜇 = 0.02 for both methods.

0.75

0.80

0.85

0.90

0.95

0.05 0.03 0.01 0.005 0.003 0.001

R
M
S
E

λ

AdaError
Adagrad
RMSprop
Adam

Figure 3: Sensitivity analysis with initial learning step
𝜆 on the MovieLens 10M dataset. We set rank 𝑘 =
100 and 𝐿2 regularization coefficient 𝜇 = 0.02 for all
methods, and set 𝛽 = 1𝑒− 4 for AdaError.

0.770

0.775

0.780

0.785

1E-4 2E-4 3E-4 4E-4 5E-4 6E-4 7E-4 8E-4 9E-4 1E-3

R
M
S
E

β

AdaError
Adagrad
RMSprop
Adam

Figure 4: Sensitivity analysis of AdaError with hyper-
parameter 𝛽 on the MovieLens 10M dataset. We set
rank 𝑘 = 100 and 𝐿2 regularization coefficient 𝜇 = 0.02
for all methods.

0.77

0.78

0.79

0.80

0.81

0.01 0.02 0.03 0.04 0.05

R
M
S
E

μ

AdaError
Adagrad

RMSprop
Adam

Figure 5: Sensitivity analysis with 𝐿2 regularization
coefficient 𝜇 on the MovieLens 10M dataset. We set
𝑘 = 100 and 𝜆 = 0.01 for all methods, and set 𝛽 = 1𝑒− 4
for AdaError.

i.e., RSVD with AdaError can achieve better generalization
performance, which confirms the theoretical analysis in Theo-
rem 4.4 and Theorem 4.5 that AdaError can achieve sharper
uniform stability bound when the number of epochs is large
enough.

5.3 Sensitivity Analysis
Here, we analyze the sensitivity of AdaError with different
hyperparameters, and compare AdaError with three popular
adaptive learning rate methods: AdaGrad [12], RMSProp and
Adam [20]. To ensure fair comparison, all methods are applied
on RSVD with the same hyperparameters if not explicitly
specified.

5.3.1 Sensitivity vs. 𝜆. Figure 3 compares the recommen-
dation accuracy of AdaError and the three other methods
with different initial learning rates. We can see from the re-
sults that AdaError achieves the lowest RMSE values among
all the compared methods with 𝜆 values varying from 0.05 to

0.001. Meanwhile, the test RMSE of AdaError only changes
slightly when 𝜆 changes, while the test RMSEs of the other
methods change significantly. This is because AdaError can
always converge to local minimum due to its insensitivity to
rating noises.

Note that the test RMSE of AdaGrad dramatically in-
creases when 𝜆 is too small, which is because the learning
rates in AdaGrad will quickly become very small when 𝜆 is
not large enough and the training process will terminate due
to too small gains in optimization accuracy. Meanwhile, the
test RMSEs of RMSProp and Adam are very high when the
learning rates are too large, which is because too large learn-
ing rates may affect the convergence of these two methods.
In comparison, AdaError can overcome this issue, because
the smallest learning steps of AdaError is bounded by 𝛽.

5.3.2 Sensitivity vs. 𝛽. As defined in Equation 4, 𝛽 can
prevent the learning steps of AdaError from becoming infin-
itely small. As shown in Figure 4, smaller 𝛽 value can achieve

0.77

0.78

0.79

 50 100 150 200 250

R
M

S
E

Rank

AdaError
Adagrad

RMSprop
Adam

Figure 6: Sensitivity analysis with rank on the Movie-
Lens 10M dataset. The hyperparameters of all the
methods are chosen as the optimal ones based on the
previous sensitivity analysis.

0.78

0.80

0.82

0.84

0.86

0.88

20% 40% 60% 80%

R
M

S
E

Ratio of training data

AdaError
Adagrad
RMSprop
Adam

Figure 7: Sensitivity analysis with data sparsity on the
MovieLens 10M dataset. We set rank 𝑘 = 100 and 𝐿2
regularization coefficient 𝜇 = 0.02 for all methods, and
set 𝛽 = 1𝑒− 4 for AdaError.

slightly lower test RMSE, because smaller 𝛽 can reduce the
overall learning steps of AdaError and smaller learning steps
can ensure better convergence around local minimum. How-
ever, the test RMSE only increases by approximately 0.001
when 𝛽 increases from 1𝑒− 4 to 1𝑒− 3, which indicates that
AdaError is very stable with different 𝛽 values.

5.3.3 Sensitivity vs. Regularization Coefficient. Figure 5
compares the recommendation accuracy of AdaError and
three other methods with different 𝐿2 regularization coeffi-
cients. As we can see from the results, AdaError achieves
smaller test RMSE than all the compared methods when
𝜇 increases from 0.01 to 0.05. It is known that proper 𝐿2
regularization coefficient can prevent the learned models from
overfitting [29]. However, AdaError can naturally prevent the
learned models from overfitting the training data, so that
AdaError is less sensitive to 𝜇 than other methods.

5.3.4 Sensitivity vs. Rank. Figure 6 compares the recom-
mendation accuracy of AdaError and the three other methods
with different rank values. Note that, for all the methods,
we use the optimal hyperparameters based on the previous
sensitivity analysis. As we can see from the results, the test
RMSE of AdaError consistently decreases when rank increas-
es from 50 to 250, which indicates that AdaError will not
overfit even with very large ranks. This further confirms
that AdaError can achieve better generalization performance.
Moreover, AdaError outperforms all the other three methods
with all ranks, which further confirms that AdaError is more
desirable in collaborative filtering.

5.3.5 Sensitivity vs. Data Sparsity. Figure 7 compares the
recommendation accuracy of AdaError and three other meth-
ods with different training / test split ratios, i.e., different
sparsity of training data. As shown in the results, the test
accuracy of AdaError consistently outperforms all the three
compared methods when the training set ratio increases from
20% to 80%. This indicates that AdaError can achieve supe-
rior performance even when the training data is very sparse.

Table 1: RMSE comparison between the proposed
method (𝑘 = 500) and seven state-of-the-art matrix
approximation-based CF methods — BPMF [38], D-
FC [27], LLORMA [24], GSMF [44], WEMAREC [8],
SMA [26], ERMMA [25]. Note that the proposed
method statistically significantly outperforms the
other methods with at least 95% confidence level.

Method MovieLens (10M) Netflix
BPMF 0.8197 ± 0.0006 0.8421 ± 0.0003
DFC 0.8067 ± 0.0002 0.8453 ± 0.0003

LLORMA 0.7855 ± 0.0002 0.8275 ± 0.0004
GSMF 0.8012 ± 0.0011 0.8420 ± 0.0006

WEMAREC 0.7775 ± 0.0007 0.8143 ± 0.0001
SMA 0.7682 ± 0.0003 0.8036 ± 0.0004

ERMMA 0.7670 ± 0.0007 0.8018 ± 0.0001
Proposed 0.7644 ± 0.0003 0.7980 ± 0.0002

In summary, the sensitivity analysis experiments demon-
strate that the proposed AdaError method is less sensitive to
hyperparameters compared with the three popular adaptive
learning rate methods in MA-based collaborative filtering.
Therefore, we can conclude that AdaError is more desirable
than the other three adaptive learning rate methods in matrix
approximation-based collaborative filtering.

5.4 Rating Prediction Accuracy
Table 1 compares the recommendation accuracy of the pro-
posed method (AdaError for rating prediction) with seven
state-of-the-art matrix approximation-based collaborative fil-
tering methods on the MovieLens 10M and Netflix datasets.
As we can see from the results, the proposed method out-
performs all the seven compared methods with at least 95%
confidence level on both MovieLens 10M and Netflix datasets.
The main reasons are: 1) AdaError can prevent the learned
MA models from overreacting to noises, so that the learned

Table 2: Precision comparison between the proposed method and one rating-based MA method (RSVD [34])
and four top-N recommendation methods (WRMF [16], BPR [36], SLIM [31], AOBRP [35]) on the MovieLens
100K and MovieLens 1M datasets.

Metric Precision@N
Data | Method N=1 N=5 N=10 N=20

M
L-

10
0K

RSVD 0.3155 ± 0.0038 0.2179 ± 0.0007 0.1403 ± 0.0035 0.1300 ± 0.0057
WRMF 0.3851 ± 0.0116 0.2752 ± 0.0053 0.2202 ± 0.0056 0.1679 ± 0.0035

BPR 0.3439 ± 0.0168 0.2533 ± 0.0082 0.2061 ± 0.0040 0.1581 ± 0.0028
SLIM 0.3951 ± 0.0056 0.2625 ± 0.0090 0.2055 ± 0.0031 0.1539 ± 0.0015

AOBPR 0.3395 ± 0.0099 0.2591 ± 0.0057 0.2119 ± 0.0031 0.1632 ± 0.0025
Proposed 0.4078 ± 0.0021 0.2934 ± 0.0049 0.2331 ± 0.0029 0.1779 ± 0.0018

M
L-

1M

RSVD 0.1659 ± 0.0017 0.1263 ± 0.0005 0.1037 ± 0.0009 0.0766 ± 0.0020
WRMF 0.2761 ± 0.0074 0.2155 ± 0.0009 0.1816 ± 0.0007 0.1459 ± 0.0004

BPR 0.3062 ± 0.0030 0.2277 ± 0.0074 0.1896 ± 0.0048 0.1516 ± 0.0007
SLIM 0.3053 ± 0.0097 0.2208 ± 0.0039 0.1836 ± 0.0006 0.1419 ± 0.0029

AOBPR 0.3098 ± 0.0076 0.2315 ± 0.0002 0.1926 ± 0.0022 0.1540 ± 0.0016
Proposed 0.3692 ± 0.0018 0.2878 ± 0.0011 0.2385 ± 0.0014 0.1891 ± 0.0007

Table 3: NDCG comparison between the proposed method and one rating-based MA method (RSVD [34])
and four top-N recommendation methods (WRMF [16], BPR [36], SLIM [31], AOBRP [35]) on the MovieLens
100K and MovieLens 1M datasets.

Metric NDCG@N
Data | Method N=1 N=5 N=10 N=20

M
L-

10
0K

RSVD 0.0389 ± 0.0028 0.1047 ± 0.0032 0.0996 ± 0.0059 0.1393 ± 0.0071
WRMF 0.0913 ± 0.0034 0.1989 ± 0.0030 0.2535 ± 0.0045 0.3131 ± 0.0043

BPR 0.0783 ± 0.0036 0.1803 ± 0.0056 0.2351 ± 0.0056 0.2929 ± 0.0065
SLIM 0.0922 ± 0.0021 0.1967 ± 0.0036 0.2476 ± 0.0050 0.3017 ± 0.0091

AOBPR 0.0770 ± 0.0043 0.1801 ± 0.0044 0.2343 ± 0.0051 0.2930 ± 0.0058
Proposed 0.0998 ± 0.0014 0.2143 ± 0.0036 0.2719 ± 0.0048 0.3333 ± 0.0053

M
L-

1M

RSVD 0.0324 ± 0.0020 0.0700 ± 0.0006 0.0864 ± 0.0002 0.1006 ± 0.0001
WRMF 0.0510 ± 0.0013 0.1202 ± 0.0002 0.1563 ± 0.0013 0.2012 ± 0.0010

BPR 0.0568 ± 0.0006 0.1235 ± 0.0003 0.1601 ± 0.0035 0.2070 ± 0.0011
SLIM 0.0551 ± 0.0015 0.1201 ± 0.0023 0.1586 ± 0.0028 0.1948 ± 0.0043

AOBPR 0.0582 ± 0.0018 0.1200 ± 0.0006 0.1567 ± 0.0009 0.2021 ± 0.0009
Proposed 0.0722 ± 0.0010 0.1653 ± 0.0006 0.2155 ± 0.0002 0.2703 ± 0.0003

MA models can achieve better generalization performance
when the hyperparameters of AdaError, i.e., 𝜆 and 𝛽, are
properly chosen and 2) AdaError can shrink the learning
rates as the number of iterations increases which can ensure
better convergence, because smaller learning steps can reduce
oscillation near local minimum.

5.5 Top-N Recommendation Accuracy
Table 2 and Table 3 compare the recommendation accu-
racy (Precision@N and NDCG@N) between the proposed
method and five other methods on the MovieLens 100K and
MovieLens 1M datasets, respectively. Among the five com-
pared methods, RSVD [34] is a rating-based MA method
and WRMF [16], BPR [36], SLIM [31] and AOBRP [35] are
top-N recommendation algorithms. As shown in the results,
the proposed method (AdaError for top-N recommendation)
outperforms all the compared methods on both Precision@N

and NDCG@N when 𝑁 increases from 1 to 20 with at least
95% confidence level. The main reasons of the superior per-
formance of the proposed method are 1) better generalization
performance; 2) stronger capability of reducing oscillation
near local minimum; 3) a weighting strategy which gives
lower weights to unobserved ratings to address the positive-
unlabeled data issue in the top-N recommendation task.

The main difference between RSVD and WRMF is that
WRMF can give unobserved ratings lower weights in the
training process whereas RSVD treats all ratings equally.
This indicates that setting smaller weights for unobserved
ratings can significantly improve recommendation accuracy
in top-N recommendation on implicit feedback data. The pro-
posed method adopts the same weighting strategy as WRMF,
and the superior performance of the proposed method indi-
cates that the proposed AdaError method can improve the
performance of weighted matrix approximation in the top-N
recommendation task.

6 RELATED WORK
Collaborative filtering is an important class of methods in
today’s recommender systems and matrix approximation
methods are popular among existing CF methods for both
rating prediction [8, 22, 25, 26, 38, 44] and top-N recommen-
dation [16, 25, 36]. The earliest matrix approximation-based
CF method tried to discover the latent structures within the
user-item rating matrix [5], in which they claimed that SVD
can eliminate the need for users to rate all similar items.
In other words, discovering the latent structures can help
alleviate the data sparsity issue in real-world recommender
systems [22, 40, 41]. Meanwhile, the scalability of recom-
mender systems can be improved because recommendation
scores can be computed by simple dot products of feature
vectors [40, 41]. Later, several works have demonstrated that
MA methods can achieve superior accuracy than memory-
based methods in the Netflix Prize Competition [22, 34],
after which MA methods have been the focus of collabo-
rative filtering methods [24]. Salakhutdinov and Mnih first
proposed the probabilistic matrix factorization method [39],
and they proposed the BPMF method by extending the PMF
method using a Bayesian treatment [38]. Koren [21] combined
the SVD and neighbor-based CF method and proposed the
SVD++ method. Recently, Li et al. [26] proposed a stable
matrix approximation method, which can improve the gener-
alization performance of matrix approximation by improving
the algorithm stability. Later, they proposed the ERMMA
method [25] to reduce the expected risk of MA models. How-
ever, the above methods did not consider the noisy rating
issue in real-world recommender systems, and the learned
MA models in their methods may overfit the noises in the
ratings and thus achieve non-optimal accuracy.

The noisy rating issue has been investigated in the litera-
ture, and two main categories of works have been proposed
to address this issue. The first category of methods tries to
alleviate the rating noises by designing new user interfaces or
interaction methods [2, 18, 30]. Amatriain et al. [2] proposed
to denoise the recommender system databases by asking users
to re-rate some of their previously rated items. Nguyen et
al. [30] proposed to use exemplars to relate user rating de-
cisions to their prior rating decisions, and they found that
presenting exemplars can help users generate more consistent
ratings. Jones et al. [18] found that users comparing items are
more reliable and stable than rating items as much as 20%,
so that they claimed that comparisons could yield better user
modeling. However, the above methods require additional
efforts for users and thus may not be practical in real-world
recommender systems. The other category of methods tries
to address the noisy rating issue by designing robust col-
laborative filtering algorithms [28, 32, 37]. Mehta et al. [28]
proposed a robust matrix factorization method based on M-
estimator, which can achieve higher accuracy with noisy user
profiles. However, their method aimed to make CF more ro-
bust when attack profiles are inserted in the databases, which
shares the same assumptions with several other approach-
es [32, 37]. In contrast, our work assumes that rating noises

generally exist in the data and users may or may not inten-
tionally insert these noises when rating items, which is more
general than the above works. Lakshminarayanan et al. [23]
proposed a robust Bayesian matrix factorization method, in
which the rating noises are claimed to be non-Gaussian and
heteroscedastic. However, their method is not easy to train
when the number of parameters is large.

Adaptive learning rate methods have also been proposed to
achieve more informative gradient updates than fixed learning
rates [12, 20, 45]. Duchi et al. [12] first proposed the AdaGrad
method, which can perform larger updates for infrequent pa-
rameters and smaller updates for frequent parameters to
achieve better convergence. However, their method suffers
from the issue that the learning rate will shrink and become
infinitely small when the number of iterations is large. To
address the above issue, Zeiler [45] proposed the AdaDelta
method, in which a running average of the squared gradients
is adopted in the learning rate rather than the accumulated
squared gradients in AdaGrad. Similarly, RMSProp proposed
by Hinton’s group adopts the same idea to prevent the learn-
ing rates from becoming infinitely small. Recently, Kingma et
al. [20] proposed the Adam method, in which the learning
rates are adjusted by keeping an exponentially decaying aver-
age of both the first moment and the second moment of the
gradients. However, the above methods are not intentionally
designed for noisy training data, so they are not suitable for
learning MA models with noisy ratings. In comparison, our
experimental studies show that AdaError is less sensitive to
hyperparameters than the above methods, which means that
AdaError is more desirable in practice.

7 CONCLUSION
Noisy ratings in real-world recommender systems pose chal-
lenges to matrix approximation-based collaborative filtering
algorithms, in which the learned MA models will easily be
prone to noises in the ratings. This paper proposes AdaError

— an adaptive learning rate method for matrix approximation-
based collaborative filtering methods. AdaError gives smaller
learning rates to ratings with larger noises so as to prevent
the learned MA models from overreacting to the noises. Our
theoretical analysis shows that AdaError can achieve better
generalization performance than fixed learning rate method
when the hyperparameters in AdaError are properly chosen.
Experimental studies on real-world datasets demonstrate
that (1) AdaError can achieve better performance than ex-
isting adaptive learning rate methods and (2) our proposed
AdaError-based recommendation methods can achieve sta-
tistically significant higher recommendation accuracy than
state-of-the-art collaborative filtering algorithms in both the
rating prediction task and the top-N recommendation task.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural
Science Foundation of China under Grant Nos. 61332008
and U1630115, and the National Science Foundation of USA
under Grant Nos. 1334351, 1442971, and 1528138.

REFERENCES
[1] Xavier Amatriain, Josep M. Pujol, and Nuria Oliver. 2009. I Like

It... I Like It Not: Evaluating User Ratings Noise in Recommender
Systems. In Proceedings of the 17th International Conference on
User Modeling, Adaptation, and Personalization (UMAP ’09).
Springer, 247–258.

[2] Xavier Amatriain, Josep M. Pujol, Nava Tintarev, and Nuria
Oliver. 2009. Rate It Again: Increasing Recommendation Accuracy
by User Re-rating. In Proceedings of the Third ACM Conference
on Recommender Systems (RecSys ’09). ACM, 173–180.

[3] Alex Beutel, Amr Ahmed, and Alexander J. Smola. 2015. ACCAM-
S: Additive Co-Clustering to Approximate Matrices Succinctly.
In Proceedings of the 24th International Conference on World
Wide Web (WWW ’15). 119–129.

[4] Alex Beutel, Ed H. Chi, Zhiyuan Cheng, Hubert Pham, and John
Anderson. 2017. Beyond Globally Optimal: Focused Learning for
Improved Recommendations. In Proceedings of the 26th Interna-
tional Conference on World Wide Web (WWW ’17). 203–212.

[5] Daniel Billsus and Michael J Pazzani. 1998. Learning Collabora-
tive Information Filters.. In Proceedings of the Fifteenth Inter-
national Conference on Machine Learning (ICML ’98), Vol. 98.
46–54.

[6] Olivier Bousquet and André Elisseeff. 2001. Algorithmic Sta-
bility and Generalization Performance. In Advances in Neural
Information Processing Systems. 196–202.

[7] Emmanuel J. Candès and Yaniv Plan. 2010. Matrix Completion
With Noise. Proc. IEEE 98, 6 (2010), 925–936.

[8] Chao Chen, Dongsheng Li, Yingying Zhao, Qin Lv, and Li Shang.
2015. WEMAREC: Accurate and Scalable Recommendation
through Weighted and Ensemble Matrix Approximation. In Pro-
ceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 303–312.

[9] Peizhe Cheng, Shuaiqiang Wang, Jun Ma, Jiankai Sun, and Hui
Xiong. 2017. Learning to Recommend Accurate and Diverse Items.
In Proceedings of the 26th International Conference on World
Wide Web (WWW ’17). 183–192.

[10] Dan Cosley, Shyong K. Lam, Istvan Albert, Joseph A. Konstan,
and John Riedl. 2003. Is Seeing Believing?: How Recommender
System Interfaces Affect Users’ Opinions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(CHI ’03). ACM, 585–592.

[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V
Le, et al. 2012. Large scale distributed deep networks. In Advances
in neural information processing systems. 1223–1231.

[12] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive
subgradient methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research 12, Jul (2011),
2121–2159.

[13] Moritz Hardt, Benjamin Recht, and Yoram Singer. 2016. Train
Faster, Generalize Better: Stability of Stochastic Gradient Descent.
In Proceedings of the 33rd International Conference on Interna-
tional Conference on Machine Learning (ICML’16). JMLR.org,
1225–1234.

[14] Elad Hazan and Satyen Kale. 2014. Beyond the regret minimiza-
tion barrier: optimal algorithms for stochastic strongly-convex
optimization. Journal of Machine Learning Research 15, 1 (2014),
2489–2512.

[15] Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu,
and Can Zhu. 2013. Personalized Recommendation via Cross-
domain Triadic Factorization. In Proceedings of the 22Nd Inter-
national Conference on World Wide Web (WWW ’13). ACM,
595–606.

[16] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative
Filtering for Implicit Feedback Datasets. In Proceedings of the
Eighth IEEE International Conference on Data Mining (ICDM
’08). 263–272.

[17] Robert A Jacobs. 1988. Increased rates of convergence through
learning rate adaptation. Neural networks 1, 4 (1988), 295–307.

[18] Nicolas Jones, Armelle Brun, and Anne Boyer. 2011. Comparisons
Instead of Ratings: Towards More Stable Preferences. In Proceed-
ings of the 2011 IEEE/WIC/ACM International Conferences
on Web Intelligence and Intelligent Agent Technology (WI-IAT
’11). IEEE, 451–456.

[19] Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM:
Factored Item Similarity Models for top-N Recommender Sys-
tems. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD

’13). ACM, 659–667.
[20] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[21] Yehuda Koren. 2008. Factorization Meets the Neighborhood: A

Multifaceted Collaborative Filtering Model. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’08). ACM, 426–434.

[22] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix
factorization techniques for recommender systems. Computer 42,
8 (2009), 30–37.

[23] Balaji Lakshminarayanan, Guillaume Bouchard, and Cedric Ar-
chambeau. 2011. Robust Bayesian matrix factorisation. In Pro-
ceedings of the International Conference on Artificial Intelli-
gence and Statistics (AISTATS). 425–433.

[24] Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer.
2013. Local low-rank matrix approximation. In Proceedings of
The 30th International Conference on Machine Learning (ICML
’13). 82–90.

[25] Dongsheng Li, Chao Chen, Qin Lv, Li Shang, Stephen M. Chu,
and Hongyuan Zha. 2017. ERMMA: Expected Risk Minimiza-
tion for Matrix Approximation-based Recommender Systems. In
Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (AAAI ’17). 1403–1409.

[26] Dongsheng Li, Chao Chen, Qin Lv, Junchi Yan, Li Shang, and
Stephen M. Chu. 2016. Low-rank matrix approximation with
stability. In Proceedings of The 33rd International Conference
on Machine Learning (ICML ’16). 295–303.

[27] Lester W Mackey, Michael I Jordan, and Ameet Talwalkar. 2011.
Divide-and-conquer matrix factorization. In Advances in Neural
Information Processing Systems. 1134–1142.

[28] Bhaskar Mehta, Thomas Hofmann, and Wolfgang Nejdl. 2007.
Robust Collaborative Filtering. In Proceedings of the 2007 ACM
Conference on Recommender Systems (RecSys ’07). ACM, 49–
56.

[29] Andrew Y. Ng. 2004. Feature Selection, L1 vs. L2 Regularization,
and Rotational Invariance. In Proceedings of the Twenty-first
International Conference on Machine Learning (ICML ’04).
78–85.

[30] Tien T. Nguyen, Daniel Kluver, Ting-Yu Wang, Pik-Mai Hui,
Michael D. Ekstrand, Martijn C. Willemsen, and John Riedl.
2013. Rating Support Interfaces to Improve User Experience
and Recommender Accuracy. In Proceedings of the 7th ACM
Conference on Recommender Systems (RecSys ’13). ACM, 149–
156.

[31] Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods
for Top-N Recommender Systems. In Proceedings of the 2011
IEEE 11th International Conference on Data Mining (ICDM
’11). 497–506.

[32] Michael O’Mahony, Neil Hurley, Nicholas Kushmerick, and
Guénolé Silvestre. 2004. Collaborative Recommendation: A Ro-
bustness Analysis. ACM Trans. Internet Technol. 4, 4 (2004),
344–377.

[33] Michael P. O’Mahony, Neil J. Hurley, and Guénolé C.M. Silvestre.
2006. Detecting Noise in Recommender System Databases. In
Proceedings of the 11th International Conference on Intelligent
User Interfaces (IUI ’06). ACM, 109–115.

[34] Arkadiusz Paterek. 2007. Improving regularized singular value
decomposition for collaborative filtering. In Proceedings of KDD
cup and workshop, Vol. 2007. 5–8.

[35] Steffen Rendle and Christoph Freudenthaler. 2014. Improving
Pairwise Learning for Item Recommendation from Implicit Feed-
back. In Proceedings of the 7th ACM International Conference
on Web Search and Data Mining (WSDM ’14). 273–282.

[36] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from
implicit feedback. In Proceedings of the twenty-fifth conference
on uncertainty in artificial intelligence. 452–461.

[37] Paul Resnick and Rahul Sami. 2007. The Influence Limiter:
Provably Manipulation-resistant Recommender Systems. In Pro-
ceedings of the 2007 ACM Conference on Recommender Systems
(RecSys ’07). ACM, 25–32.

[38] Ruslan Salakhutdinov and Andriy Mnih. 2008. Bayesian Proba-
bilistic Matrix Factorization Using Markov Chain Monte Carlo.
In Proceedings of the 25th International Conference on Machine
Learning (ICML ’08). ACM, 880–887.

[39] Ruslan Salakhutdinov and Andriy Mnih. 2008. Probabilistic ma-
trix factorization. In Advances in neural information processing
systems. 1257–1264.

[40] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.
2000. Application of Dimensionality Reduction in Recommender
System - A Case Study. In ACM WebKDD 2000 Workshop. ACM
SIGKDD.

[41] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.
2002. Incremental Singular Value Decomposition Algorithms for
Highly Scalable Recommender Systems. In Proceedings of the
5th International Conference in Computers and Information
Technology.

[42] Madeleine Udell, Corinne Horn, Reza Zadeh, and Stephen Boyd.
2016. Generalized Low Rank Models. Foundations and Trends
in Machine Learning 9, 1 (2016), 1–118.

[43] Linli Xu, Zaiyi Chen, Qi Zhou, Enhong Chen, Nicholas Jing Yuan,
and Xing Xie. 2016. Aligned Matrix Completion: Integrating

Consistency and Independency in Multiple Domains. In 2016
IEEE 16th International Conference on Data Mining (ICDM).
529–538.

[44] Ting Yuan, Jian Cheng, Xi Zhang, Shuang Qiu, and Hanqing Lu.
2014. Recommendation by Mining Multiple User Behaviors with
Group Sparsity. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI ’14). 222–228.

[45] Matthew D Zeiler. 2012. ADADELTA: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701 (2012).

[46] Yongfeng Zhang, Min Zhang, Yiqun Liu, Shaoping Ma, and Shi
Feng. 2013. Localized Matrix Factorization for Recommendation
Based on Matrix Block Diagonal Forms. In Proceedings of the
22Nd International Conference on World Wide Web (WWW
’13). ACM, 1511–1520.

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Matrix Approximation-based Collaborative Filtering
	2.2 Noisy Ratings in Recommender Systems
	2.3 Case Study: Noise vs. Learning Rate

	3 Algorithm Design
	3.1 The Proposed AdaError Method
	3.2 AdaError for Rating Prediction
	3.3 AdaError for Top-N Recommendation

	4 Theoretical Analysis
	4.1 Convergence Rate
	4.2 Generalization Error Bound

	5 Experiments
	5.1 Experimental Setup
	5.2 Generalization Error Analysis
	5.3 Sensitivity Analysis
	5.4 Rating Prediction Accuracy
	5.5 Top-N Recommendation Accuracy

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

