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Abstract

One-bit matrix completion is an important class of positive-
unlabeled (PU) learning problems where the observations
consist of only positive examples, e.g., in top-N recommender
systems. For the first time, we show that 1-bit matrix comple-
tion can be formulated as the problem of recovering clean
graph signals from noise-corrupted signals in hypergraphs.
This makes it possible to enjoy recent advances in graph sig-
nal learning. Then, we propose the spectral graph matrix com-
pletion (SGMC) method, which can recover the underlying
matrix in distributed systems by filtering the noisy data in the
graph frequency domain. Meanwhile, it can provide micro-
and macro-level explanations by following vertex-frequency
analysis. To tackle the computational and memory issue of
performing graph signal operations on large graphs, we con-
struct a scalable Nyström algorithm which can efficiently
compute orthonormal eigenvectors. Furthermore, we also de-
velop polynomial and sparse frequency filters to remedy the
accuracy loss caused by the approximations. We demonstrate
the effectiveness of our algorithms on top-N recommendation
tasks, and the results on three large-scale real-world datasets
show that SGMC can outperform state-of-the-art top-N rec-
ommendation algorithms in accuracy while only requiring a
small fraction of training time compared to the baselines.

Introduction
This paper considers the problem of recovering a 0-1 matrix
M ∈ {0, 1}N×M only from positive and unlabeled data,
which is also referred to as 1-bit matrix completion (Cai
and Zhou 2013; Davenport et al. 2014; Hsieh, Natarajan,
and Dhillon 2015). We assume that the positive samples are
randomly drawn from {(i, u)|Mi,u = 1} with probability
p(Mi,u = 1), and more precisely, we observe a subset Ω
used for training in the presence of class-conditional random
label noise which flips a 1 to 0 with probability ρ. Therefore,
the unlabeled data is a mixture of unobserved positive exam-
ples and true negative examples, which raises challenges for
formulating the underlying optimization problems.

Recent works (Jahrer and Töscher 2012; Park et al. 2015;
He et al. 2016; Li et al. 2016; Wu, Hsieh, and Sharpnack
2017, 2018) have showed that treating all unlabeled exam-
ples as negative examples in supervised learning can obtain
∗Corresponding author is Junchi Yan.
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decent performances in practice although the learned mod-
els can be biased (Kiryo et al. 2017). However, treating all
unlabeled examples as negative examples will exhibit high
computational overhead because all N × M examples in
M should be considered in training (Hu, Koren, and Volin-
sky 2008; Mackey, Jordan, and Talwalkar 2011; Lee et al.
2013; Chen et al. 2015), which is prohibitive for many ap-
plications with large-scale matrices, e.g., recommendation
on millions of songs (Bertin-Mahieux et al. 2011). The other
issue of existing 1-bit matrix completion methods is the lack
of explainability (Abdollahi and Nasraoui 2016; Zhang and
Chen 2018), either due to the blackbox nature of neural net-
works (Wang, Wang, and Yeung 2015; Lian et al. 2018;
Liang et al. 2018; Zhou et al. 2018) or to the broken con-
nection between the past actions and the future prediction
due to the introduction of latent variables or other transfor-
mations (Cao et al. 2007; Rendle et al. 2009; Rendle 2010;
Zheng et al. 2018).

To this end, in this paper we propose a scalable and ex-
plainable 1-bit matrix completion algorithm, namely spec-
tral graph matrix completion (SGMC), in which the under-
lying matrix M is recovered by performing parallel signal
processing on hypergraphs to improve the system scalabil-
ity. The signals learned from the hypergraphs can be used
to explain the models. To better illustrate the idea, let us
consider the problem of top-N recommendation, in which
we model a user’s historical records as a signal ru in a pre-
specified item-item hypergraph G where the value ru(i) at
the ith vertex represents whether the uth user likes the ith
item. Then, we can pose the problem as recovering the un-
derlying clean graph signal mu from a noisy signal ru that
facilitates in flexible signal processing techniques such as
graph Fourier transform and vertex-frequency analysis (Shu-
man et al. 2013; Shuman, Ricaud, and Vandergheynst 2016).

Motivation. The graph signal processing perspective to 1-
bit matrix completion has been rarely studied yet appealing
for several reasons. First, we are no longer limited to the ge-
ometrical proximity on the graph vertex domain, but are able
to identify and exploit the structure in the graph frequency
domain for potential performance improvement. Second, it
enables us to take advantage of the well-developed vertex-
frequency analysis to provide the explanations behind the
predictions at both micro-level and macro-level.

The main contributions of this paper are as follows:



• To our best knowledge, this is the first work for develop-
ing a graph signal processing formulation to the 1-bit matrix
completion problem, and quantitatively as well as qualita-
tively justify why a graph signal processing perspective is
effective in this problem.
• We propose a scalable and explainable algorithm, named
spectral graph matrix completion, which minimizes unbi-
ased risk estimators. With the benefit of spectral signals
on graphs, our approach is enabled to provide micro- and
macro-level explanations. This is one of the key differences
to conventional solutions.
• We construct a scalable Nyström algorithm to compute or-
thonormal eigenvectors. In general, our SGMC model con-
sumesO(N(K2+Lη)+L2K) time andO(ηN(L+M)) memory
where N�L>K and N� η.
• Top-N recommendation results on large datasets show
that SGMC achieves state-of-the-art ranking accuracy, pro-
vides reasonable explanations, and requires a small fraction
of training time compared to the best-performing baseline.

Related Work
One-bit matrix completion approaches either regard unla-
beled data as negative data with smaller weights (Pan et al.
2008; Hsieh, Natarajan, and Dhillon 2015; Li et al. 2016; He
et al. 2016), or treat unlabeled data as weighted positive and
negative simultaneously (Natarajan et al. 2013; Du Plessis,
Niu, and Sugiyama 2014, 2015; Kiryo et al. 2017).

The former (Hu, Koren, and Volinsky 2008; Jahrer and
Töscher 2012; He et al. 2016) heavily relies on good choices
of weights of unlabeled data, which is computationally ex-
pensive to tune. In practice, because the unlabeled dataset
consists of both positive and negative data, this family of
algorithms (Cao et al. 2007; Rendle et al. 2009; Park et al.
2015; Wu, Hsieh, and Sharpnack 2017, 2018) has a system-
atic estimation bias (Du Plessis, Niu, and Sugiyama 2014,
2015); By contrast, the latter focuses on unbiased risk esti-
mators to avoid tuning the weights. However, most of exist-
ing works exhibit poor scalability due to high computation
complexity on the very large matrix (Mackey, Jordan, and
Talwalkar 2011; Lee et al. 2013; Chen et al. 2015).

We propose a composite loss (Eq. (5)) that can cancel
the bias, and by applying sparsity and orthonormality con-
straints (Eq. (14)) our approach can offer different levels of
explanations behind the predictions. To scale to very large
datasets, we also devise a parallel matrix approximation
method which guarantees the orthogonality of the outputs.
This makes a difference from prior research. More related
works are provided in supplementary materials.

The Model
Throughout this paper, we denote scalars by either lowercase
or uppercase letters, vectors by boldface lowercase letters,
and matrices by boldface uppercase letters. Unless otherwise
specified, all vectors are considered as columns vectors. In
addition, we define the following definitions in this paper as:
Definition 1. (Hypergraph). A undirected and connected
hypergraph which consists of a finite set of vertices (items)

I with |I| = N and a set of hyperedges (users) U with |U| =
M , is defined as G = {I,U}. Each hyperedge is defined as
a subset of I such that ∪u∈U = I, and a hyperedge u ∈ U
containing only two vertices is a simple graph edge.
Definition 2. (Incidence Matrix). Given any hypergraph
G = {I,U}, we say a hyperedge u is incident with a vertex
iwhen i ∈ u. Then, this hypergraph G can be represented by
an N -by-M incidence matrix (item-user implicit feedback
matrix) R defined as following:

Ri,u =
{

1 if i ∈ u
0 otherwise.

(1)

Definition 3. (Hypergraph Laplacian Matrix). Given any
hypergraph G = {I,U}, we denote the degree of a vertex
i by d(i) =

∑
u∈U Ri,u and the degree of a hyperedge u

by δ(u) =
∑
i∈I Ri,u. Dv and De denote the diagonal

matrices containing the vertex and hyperedge degrees, re-
spectively. Then the hypergraph Laplacian matrix Ł can be
defined as follows:

Ł = I−D−1/2
v RD−1

e R>D−1/2
v . (2)

Definition 4. (Graph Signal). For a hypergraph G =
{I,U}, the data at each vertex in the graph is referred to as
a graph signal that can be represented as a vector r ∈ RN .
The implicit data of the uth user can be viewed as a signal
ru on G, where the ith entry of the vector ru is equal to Ri,u,
namely ru(i) = Ri,u.

Graph Fourier Transform
The classical Fourier transform is defined as an expansion
of a function f w.r.t. complex exponentials:

f̂(ξ) =

∫
R
f(t)e−2πiξt dt, (3)

and analogously the graph Fourier transform is defined as
an expansion of a graph signal ru

1 in terms of the eigenvec-
tors of the (hyper)graph Laplacian matrix Ł (Shuman et al.
2013). To be specific, let {vl}N−1l=0 and {λl}N−1l=0 denote the
eigenvectors and eigenvalues of the hypergraph Laplacian Ł
respectively and ru ∈ RN be a graph signal on G, then the
graph Fourier transform and its inverse can be defined as:

r̂u(λl) =

N−1∑
i=0

ru(i)Φ>l,i and ru(i) =

N−1∑
l=0

r̂u(λl)Φi,l (4)

where r̂u(λl) represents the signal in the graph frequency
domain, the eigenvalue λl carries a notion of frequency,
and the complete set of orthonormal eigenvectors Φ =
[v0, . . . ,vN−1] serves as a basis in the forward and inverse
graph Fourier transforms.

The Proposed SGMC Method
In practice, it is beneficial to assign different weights to dif-
ferent data examples. For instance, in recommender systems,
we can punish popular items/users to achieve more accu-
rate long-tail recommendations (Steck 2011, 2019). Sim-
ilarly, we also set lower weights to the graph signals at

1In general, the graph signal can also be viewed as a function
ru : I → R where I is the vertex set.



the vertices with higher degrees, namely Yi,u = (1 −
ρ)Mi,u/(d(i)δ(u))β where ρ is the rate of flipping a 1 to
0. Empirically, β = 1/2 can achieve decent performance.
Then we recover the underlying matrix by minimizing the
unbiased estimator defined on each entry (Natarajan et al.
2013), which leads to the following composite problem:

min
rank(X)=K

1

MN

∑
i,u

ˆ̀
(

(1− ρ)Ri,u/
√
d(i)δ(u),Xi,u

)
(5)

where ˆ̀(t, x) = [(t − x)2 − ρx2]/(1 − ρ) if t > 0 and
ˆ̀(t, x) = x2 otherwise.
Theorem 1. (Unbiased Risk Estimator). Let ` be the
squared loss. For any X ∈ RN×M and Yi,u = (1 −
ρ)Mi,u/

√
d(i)δ(u), Ei,u`(Yi,u,Xi,u) = Ei,u ˆ̀((1 −

ρ)Ri,u/
√
d(i)δ(u),Xi,u).

Minimizing the above optimization problem is equivalent
to minimizing the following problem:

min
V,U
‖ D−1/2

v RD−1/2
e −VU> ‖22 (6)

where V ∈ RN×K ,U ∈ RM×K .
It is expensive to solve Eq. (6) due to its non-convexity.

However, Theorem 2 provides a clue to obtain a closed-form
solution: when the hypergraph G is fully observed without
noise, the optimal orthonormal V can be learned by solving
the spectral clustering problem (Shi and Malik 2000).
Theorem 2. Suppose that a hypergraph G = {I,U} is
fully observed without noise and its incidence matrix R ∈
RN×M is of rank K, then the matrix whose columns are
the eigenvectors with the K lowest eigenvalues of the (hy-
per)graph Laplacian Ł of G is the optimal solution of

min
rank(V)=K

‖ D−1/2
v RD−1/2

e −VU> ‖22 s.t., V>V = IK

where Dv and De denote the diagonal degree matrices of
the vertex and hyperedge respectively, and U is an optimal
M -by-K matrix.

However, the actual hypergraph in the targeted problem
is partially observed in the presence of noise. To relax this
challenge, we pose an assumption that the partially observed
hypergraph retains a few principal components in its clean
version. This allows us to construct an accurate low-rank
approximation. Then we define SGMC which consists of the
following three steps:
Step 1: We first follow Theorem 2 to learn V, where the
eigenvectors of Ł correspond to the optimal result. Notably,
V preserves many properties of the graph, different from
(Hu, Koren, and Volinsky 2008; Jahrer and Töscher 2012).
Step 2: We then optimize U by minimizing the following
least-squared empirical risk given V:

min
rank(U)=K

‖ D−1/2
v RD−1/2

e −VU> ‖22, (7)

where Dv and De denote the diagonal degree matrices of
the vertex and hyperedge, respectively.
Step 3: We finally calculate the estimated matrix S of the
underlying matrix M as follows:

S = D1/2
v VU>D1/2

e = D1/2
v VV>D−1/2

v R, (8)

where the observation R is scaled prior to model training
and the predicted value is rescaled back to the original space.
This makes a lot of sense in practice, as it helps the predic-
tions reflect the full popularity bias in the training data.

Remark. We next view our method from a perspective of
graph signal processing. Denote by r̄u = D

−1/2
v ru a nor-

malized graph signal where ru is the uth column of R, and
by s̄u = D

−1/2
v su the output signal as defined:

s̄u = Φĥ(Ł)Φ>r̄u =

N−1∑
l=0

vlĥ(λl)v
>
l r̄u

=

K−1∑
l=0

vlv
>
l r̄u = VV>r̄u, (9)

where ĥ(Ł)Φ>r̄u acts as graph frequency filtering with
signal Φ>r̄u in the graph frequency domain and trans-
fer function ĥ(Ł) = diag(ĥ(λ0), . . . , ĥ(λN−1)) with a
low-pass kernel ĥ(λl) = 1l<K . This filter only passes
the graph signal r̄u within K lowest frequencies, namely
low-pass filter. In effect, we can rewrite Eq. (9) as su =

D
1/2
v VV>D

−1/2
v ru which resembles Eq. (8), indicating

that the learning of SGMC is equivalent to filtering the graph
signals with a low-pass kernel. Perhaps more importantly,
this filter paraphrases our assumption in the graph frequency
domain — the partially observed hypergraph preserves the
signal within low frequencies.

Scalable Approximations for SGMC
The Laplacian Ł of a hypergraph G with N vertices and
M hyperedges requires O(N2M) computational time and
O(N2) memory use. The time complexity of standard eigen-
decomposition is O(N3). Thus, SGMC with a standard
eigendecomposition on Ł is prohibitive on large datasets.

One of the solutions is to zero out some elements in
the hypergraph Laplacian Ł or to sparsify Ł (Chen et al.
2010; Lehoucq, Sorensen, and Yang 1998). Nonetheless, the
time reduction is significant only when Ł is sparse or very
few eigenvectors are extracted (Williams and Seeger 2001).
The other method is based on the Nyström method (Kumar,
Mohri, and Talwalkar 2009; Williams and Seeger 2001),
which solves the eigendecomposition problem for a small
random subset of the vertices, then extrapolates this solution
to the full set of vertices in the hypergraph (Fowlkes et al.
2004). However, a sufficiently large amount of columns of Ł
have to be sampled to yield an accurate approximation. This
makes this class of algorithms impractical on very large-
scale datasets, because the eigendecomposition on the resul-
tant column-based submatrix will soon dominate the com-
putation and become prohibitive (Li, Kwok, and Lü 2010).

To address above issues, we propose efficient and scalable
approximations for SGMC, which combines merits of the
Nyström method (Williams and Seeger 2001) and the ran-
domized algorithm (Halko, Martinsson, and Tropp 2011).

Randomized Algorithm for Partial Decompositions
Recall that we assume the partially observed hypergraph re-
tains a few principal components in its clean version. This



means, we are only interested in the first K components of
the eigendecomposition of the N -by-N hypergraph Lapla-
cian Ł where K � N . Among the solutions for partial ma-
trix decompositions, randomized algorithms (Halko, Mar-
tinsson, and Tropp 2011) are simple and can deliver an ac-
curate approximation with very high probability.

There are two main stages in this class of algo-
rithms (Halko, Martinsson, and Tropp 2011): 1) we first
draw a Gaussian random matrix Ω ∈ RN×(K+p) with an
over-sampling parameter p (e.g., 5) and form Y = ŁqΩ
where q (e.g., 1) is used to accelerate the decay of eigen-
values of Ł, then find an orthonormal matrix Q (e.g., by
QR decomposition) such that Y = QQ>Y; and 2) we
reduce Ł to a small matrix B = Q>ŁQ, then by per-
forming standard eigendecomposition on the reduced ma-
trix we can obtain B = ΦBΣBΦ>B . Finally, the K princi-
pal eigenvectors and eigenvalues of the hypergraph Lapla-
cian Ł can be approximated by VB = Q(ΦB):,0:K−1 and
ΛB = (ΣB)0:K−1,0:K−1, respectively.

Remark. It takes O(N2K) time for Y, O(NK) time
for QR decomposition, O(NK2) time for B and O(K3)
for the eigendecomposition (Halko, Martinsson, and Tropp
2011; Li, Kwok, and Lü 2010). Since the total complexity is
quadratic to N and one pass over Ł is needed, a direct use
of randomized algorithms on Ł is still highly expensive.

Approximate SGMC
Inspired by (Li, Kwok, and Lü 2010), we speed up the in-
ner eigendecomposition in the Nyström method by using the
randomized algorithm, such that we are allowed to sample a
large subset of columns of the hypergraph Laplacian Ł for
accurate approximation. To be more specific, we present the
three key steps of the proposed efficient and scalable approx-
imations for SGMC as follows:
Step 1: We randomly sample a subset of high-degree ver-
tices IA with |IA| = L and let IB = I − IA denote the set
of the remaining vertices. We then rearrange the rows and
columns of the hypergraph Laplacian Ł such that

Ł =

[
A B
B> C

]
and W = A + A−1/2BB>A−1/2,

where A represents the L × L matrix of affinities between
the sample vertices in IA, and B represents the L×(N − L)
matrix of affinities between the sample vertices and the
remaining vertices. Notably, we construct a rank-K ap-
proximation of A−1/2 by first approximating A with a
rank-K matrix VAΛAV>A using the above randomized
techniques (Halko, Martinsson, and Tropp 2011), then
computing A−1/2 ' VAΛ

−1/2
A V>A .

Step 2: We likewise use the randomized method (Halko,
Martinsson, and Tropp 2011) to obtain the rank-K approx-
imation of the matrix W ' VWΛWV>W , then by using
Nyström method (Fowlkes et al. 2004) we have the approx-
imate K orthonormal eigenvectors and eigenvalues of the
hypergraph Laplacian Ł as follows:

Ṽ =

[
A
B>

]
A−1/2VWΛ

−1/2
W and Λ̃ = ΛW (10)

Step 3: We finally derive the approximate SGMC as S =

D
1/2
v ṼṼ>D

−1/2
v R.

Remark. Recall that R has M columns and N rows
with Ω observations and N � η = Ω/M , and we sam-
ple L columns to approximate K eigenvectors of the Lapla-
cian Ł. Then, it takes totally O(ηNL) time for A and B
which is significantly lower than O(ηN2) cost for Ł, and
O(L2K + K2(N − L)) time for W, O(L2K + K3) for
the randomized matrix decomposition on A and W. Since
N � L ≥ K, the approximate SGMC scales linearly
with N . Note that our method for partial matrix decomposi-
tions has the same time complexity with (Li, Kwok, and Lü
2010), but the approximate eigenvectors in (Li, Kwok, and
Lü 2010) are not orthogonal which has been proved inferior
regarding performance (Chen et al. 2010).

Polynomial and Sparse Extensions for SGMC
The approximate SGMC trades accuracy for scalability. This
section considers how to improve the model performance by
means of extending the SGMC to the polynomial and sparse
frequency filters. Let us define a P -order polynomial filter
kernel as ĥθ(λl) =

∑P
k=0 θkλ

k
l parameterized by θ, then

the estimate in Eq. (9) can be extended as follows:

s(θ)
u = D1/2

v Vĥθ(Ł)V>D−1/2
v ru =

P∑
k=0

θkD
1/2
v Ł̃

k
D−1/2
v ru

Ł̃
k

= VΛkV>, (11)

where θk controls the contribution of the kth order estimate
s
(k)
u = D

1/2
v Ł̃

k
D
−1/2
v ru. The parameter θ can be optimized

by minimizing the empirical risk defined on set Ωθ:

min
θ

1

|Ωθ|
∑

(i,u)∈Ωθ

ˆ̀((1− ρ)Ri,u/
√
d(i)δ(u), s(θ)

u (i))

+
1

2
αγ ‖ θ ‖22 +α(1− γ) ‖ θ ‖1, (12)

where s
(θ)
u is defined in Eq.(11), and ρ, ˆ̀ are defined in Eq.

(5), and α, γ are regularization parameters. Empirically, the
cost of learning θ is very low since its size is typically up
to 3, such that a small Ωθ is good enough to derive accurate
results. We highlight the empirical results in Table 1.

Micro-level Explanation. We next show how Eq. (11)
provides a way to explain the estimate su(i) in terms of the
positive data examples. In effect, su(i) can be reformulated
as a linear combination of the data at vertices within the P -
hop local neighborhood N (i, P ):

su(i) =

N−1∑
j=0

ru(j)

(√
d(i)

d(j)

P∑
k=0

θkŁ̃
k

i,j

)
=

∑
j∈N (i,P )

ru(j)Bi,j

Bi,j =

√
d(i)

d(j)

P∑
k=0

θkŁ̃
k

i,j , (13)

where ru(j) is the (j, u)-th entry of the observation matrix
R, d(i) is the degree of the ith vertex, and Bi,j is nonzero
i.i.f the jth vertex is connected to the ith vertex in P -steps
on G. Hence, the positive data examples {(j, u)|Rj,u = 1}



with the highest coefficients Bi,j can be identified as the
major explanations behind the estimate su(i).

Macro-level Explanation. The Fourier bases Φ are the
eigenvectors of the Laplacian matrix Ł, which account for
the intrinsic geometric structure of the underlying graph G.
As any graph signal ru can be represented as linear combi-
nations of the Fourier bases, the signal r̂u in the frequency
domain measures the contribution of each component.

For example, in the context of recommender systems, the
graph signal ru(i) represent whether the uth user likes the
ith item. In the sense that the eigenvectors Φ can partition
the items into the clusters (Shi and Malik 2000), r̂u(k) mea-
sures how much the uth user likes the kth item cluster. In
practice, due to the fact that each user mainly focuses on
a few categories of items, it is desirable to assume that r̂u
is sparse. We hence add the sparsity constraint to Eq. (7),
which leads to the following optimization problem:

min
r̂u
‖ sign(r̄u) ◦ (r̄u −Vĥθ(Ł)r̂u) ‖22

+
1

2
αγ ‖ r̂u ‖22 +α(1− γ) ‖ r̂u ‖1, (14)

where sign(r̄u) returns the sign of the normalized graph sig-
nal r̄u = D

−1/2
v ru and ◦ denotes the element-wise product.

The regularization parameters α, γ mitigate overfitting.
However, in the majority of cases, the user preferences

vary along the time. To address this issue, we propose to use
a sliding window over r̄u and study user preferences in each
fragments: (1) we use the first w (e.g., 10) purchased items
to form r̄u,1:w and optimize r̂u,1:w by minimizing:

min
r̂u,1:w

‖ sign(r̄u,1:w) ◦ (r̄u,1:w −Vĥθ(Ł)r̂u,1:w) ‖22

+
1

2
αγ ‖ r̂u,1:w ‖22 +α(1− γ) ‖ r̂u,1:w ‖1, (15)

then (2) the second fragment r̄u,1+s:1+s+w is formed from
the first one with step size s (e.g., 5) and so on. Essentially,
the outputs {r̂u,t:t+w} describe how the user preferences
vary along a path graph of the items.

Remark. Note the problem defined in Eq. (14) has the
same order of complexity as that in Eq. (7). There are two
reasons: first, Eq. (14) only measures the reconstruction er-
rors of the observations with positive labels whereN � η =
Ω/M ; Second, learning r̂u in Eq. (14) for different u can be
easily parallelized, and for each one it takes O(l3 + Kl2)
time by using LARS-EN (Zou and Hastie 2005) where l is
the number of iterations of parameter updates.

Experiment
This section studies the performance of the proposed SGMC
algorithm in top-N recommendation tasks. We demonstrate
that SGMC can not only make scalable and accurate rec-
ommendations on large datasets, but also is able to explain
the recommendations in micro- and macro-level. All experi-
ments are conducted on a server with an Intel Xeon(R) CPU
E5-2678 2.50GHz CPU and 128G RAM.

Experimental Setup
Datasets We use three large-scale real-world datasets – (1)
MovieLens 20M data (ML20M) (Harper and Konstan 2015)

(2×107 ratings of 138,493 users and 26,611 items); (2) Net-
flix prize data (Netflix) (Bennett, Lanning et al. 2007) (108

ratings of 480,189 users and 17,770 items); and (3) Million
Song data (MSD) (Bertin-Mahieux et al. 2011) (5 × 107

ratings of 1,019,318 users and 384,546 items). Note that
the data here is binarized, and for each dataset we split it
into train and test sets randomly with the ratio of 9:1. We
adopt the ranking metrics of normalized discounted cumula-
tive gain (NDCG) and F1 score, and all reported results are
averaged over five different random train-test splits.

We implement our SGMC algorithm and its extensions
using Apache Spark, where the matrix multiplications are
parallelized. In the following experiments, we use the fac-
tor size K = 1000 for all SGMC models and the elastic-net
parameters α = 0.007 and γ = 0.01 in Eq. (14). Mean-
while, we sample L = 6000 columns of Ł for approximate
SGMC. In addition, we compare the large-scale algorithms
with publicly available codes provided by the authors:
• CollRank (Park et al. 2015) is the large-scale collabo-
rative ranking algorithm which uses alternating minimiza-
tion to optimize the pair-wise loss as in BPR (Rendle et al.
2009). The author parallelized their algorithm using the par-
allel computing techniques in OpenMP. Grid search of reg-
ularization parameter over λ ∈ {10, 100, 1000} and factor
size over K ∈ {50, 100, . . . , 300} is performed. We limit
the number of ranking pairs to 3000 per user on the full Net-
flix and MSD datasets.

• Primal-CR (Wu, Hsieh, and Sharpnack 2017) reduces
the total complexity of CollRank (Park et al. 2015) to near-
linear by rearranging the computations of the gradients and
Hessian vector product. The authors implemented the al-
gorithm using the parallel computing techniques in Julia.
Similarly, regularization parameter and factor size are se-
lected by grid search over λ ∈ {1000, 2000, . . . , 10000} and
K ∈ {100, 200, . . . , 500}. We limit the number of ranking
pairs per user to 5000 on the full MSD dataset.

• B̂(sparse) (Steck 2019) resembles SLIM (Ning and
Karypis 2011) with a closed-form solution and leverages
the sparse inverse co-variance estimate for the reduction of
training time. We adopt the source code provided by the
authors and rewrite part of it in Spark to improve its ef-
ficiency. We use grid search over the optimal regulariza-
tion over λ ∈ {1, 3, 6, 9} and hyper-parameter over r ∈
{1/8, 2/8, . . . , 5/8}.

We do not compare to neural models (e.g., NeuCF (He
et al. 2017) and MULT-VAE (Liang et al. 2018)) and other
graph models (e.g., SpectralCF (Zheng et al. 2018) and
NGCF (Wang et al. 2019)), because the full MSD is too large
for these models to finish in a reasonable amount of time or
to store in the memory of our GTX 1080Ti GPU.

Ablation Analysis
To assess the effects of different components, we first per-
form an ablation study on the full ML20M data, with re-
sults in Table 1. SGMC takes the longest training time, while
the approximate SGMC (i.e., approx SGMC) trades the ac-
curacy for speed: the training time has been reduced from
about 10 minutes for the exact solution to under 3 minutes



F1 Score NDCG

Models Training Time @5 @50 @100 @5 @50 @100

M
L

20
M SGMC 9 min 54 sec 0.1167 0.1023 0.0764 0.2257 0.2538 0.2767

apprx SGMC 2 min 41 sec 0.1170 0.1016 0.0755 0.2254 0.2528 0.2749
apprx SGMC(sp) 3 min 25 sec 0.1187 0.1012 0.0762 0.2278 0.2550 0.2775
apprx SGMC(sp+poly) 3 min 27 sec 0.1188 0.1035 0.0776 0.2290 0.2568 0.2801

Table 1: Ablation study on full ML20M (138,493 users & 26,611 items). The approximate SGMC (i.e., apprx SGMC) reduces
training time with lower accuracy. Sparsifying spectral signals (sp) and 2nd-order polynomial filter (poly) improve accuracy.

F1 Score NDCG

Models Training Time @5 @50 @100 @5 @50 @100

M
L

20
M Collrank 2 hour 21 min 0.0740 0.0742 0.0584 0.1421 0.1771 0.2012

Primal-CR 1 hour 24 min 0.0825 0.0796 0.0620 0.1493 0.1912 0.2156
B̂(sparse) 7 min 18 sec 0.1183 0.1012 0.0760 0.2219 0.2519 0.2758
apprx SGMC(sp+poly) 3 min 31 sec 0.1188 0.1035 0.0776 0.2290 0.2568 0.2801

N
et

fli
x Collrank 1 hour 43 min 0.0081 0.0107 0.0101 0.0179 0.0225 0.0257

Primal-CR 1 hour 42 min 0.0082 0.0115 0.0107 0.0197 0.0226 0.0265
B̂(sparse) 12 min 50 sec 0.0146 0.0171 0.0143 0.0347 0.0366 0.0407
apprx SGMC(sp+poly) 3 min 46 sec 0.0146 0.0174 0.0145 0.0359 0.0372 0.0411

M
SD

Collrank 1 hour 26 min 0.0384 0.0246 0.0181 0.0524 0.0813 0.0935
Primal-CR 1 hour 1 min 0.0402 0.0296 0.0205 0.0532 0.0870 0.0996
B̂(sparse) — out of memory error —
apprx SGMC(sp+poly) 4 min 40 sec 0.1006 0.0534 0.0354 0.1462 0.1869 0.2042

Table 2: Performance comparison on the full ML20M (138,493 users and 26,611 items), Netflix (480,189 users and 17,770
items) and MSD (1,019,318 users and 384,546 items) datasets. Unless otherwise specified, apprx SGMC(sp+poly) stands for
the approximate SGMC with using the sparse and 2nd-order polynomial frequency filter. apprx SGMC(sp+poly) obtains com-
petitive ranking accuracy while requiring only a small fraction of the training time.

with small accuracy loss. On the other hand, such a loss is
remedied by apprx SGMC(sp) which sparsified the signal
in the graph frequency domain, as well as its enhanced ver-
sion apprx SGMC(sp+poly) using the 2nd-order polynomial
low-pass filter. This shows the effectiveness of the sparse
and polynomial frequency filters.

Another interesting observation is that the third-order or
higher-order polynomial filter does not contribute to further
improvement of the accuracy. This is because most items
(vertices) can be reached from each other in a small number
of steps (e.g., 3 steps here), such that the high-order poly-
nomial filters actually extend the neighborhood to the whole
item set. Prior works (Deshpande and Karypis 2004; Ning
and Karypis 2011) have shown that extremely large size of
neighborhood is not helpful for performance.

Quantitative Analysis
Table 2 summarizes the experimental results of the baselines
and our apprx SGMC(sp+poly) model on the full ML20M,
Netflix and MSD datasets. We note that all sparse users and
items are kept in our study to better study the model scala-
bility and recommendation accuracy. It shows that B̂(sparse)

achieves the best results among baselines, and our model
outperforms all three competitive algorithms in recommen-

dation accuracy across all three datasets. This demonstrates
that the informative feature in the graph frequency domain is
important for making better recommendations. In addition,
we can see that the Collrank and Primal-CR models perform
poorly on the very large Netflix and MSD datasets. This is
due to the insufficient ranking pairs used in the model train-
ing. However, the fact is that when we try to apply greater
than 3000 and 5000 ranking pairs per user for the Collrank
and Primal-CR models respectively, these algorithms run
very slowly and report memory error. This memory error
also happens to B̂(sparse) on the MSD dataset when com-
puting the sparse inverse covariance estimation.

Besides the difference in accuracy, Table 2 shows that the
training time of SGMC is at least two times less than that of
B̂(sparse), and the margin grows with the increasing scale of
the data. This can be attributed to two factors: 1) the random-
ized algorithm (Halko, Martinsson, and Tropp 2011) that de-
livers accurate approximations for the eigendecomposition
on the column-based submatrix of the hypergraph Laplacian
Ł; 2) the Nyström method (Kumar, Mohri, and Talwalkar
2009; Williams and Seeger 2001) which extrapolates this
approximation to the full Ł. Also note that Primal-CR has
larger factor size and more pairwise comparisons than Coll-
rank. That is why Primal-CR seems to have the comparable
training time with the Collrank on Netflix and MSD.



Braveheart (1995) The Sword in the Stone Lord of the Rings I
Jurassic Park (1993) Snow White and the Seven Dwarfs Pirates of the Caribbean I
Forrest Gump (1994) Peter Pan Lord of the Rings II

The Shawshank Redemption (1994) Alice in Wonderland Lord of the Rings III

Table 3: Three recommendations (bold-faced) with micro-level explanations for an ML20M user. Each recommended movie is
recommended due to a unique set of already-watched movies, while the three movies used as explanations contribute the most.

Tarzan the Fearless Rocketship X-M Mummy's Hand, The Mummy's Tomb, The Quatermass 2 Mummy's Curse, The Destination Moon Giant Gila Monster, The Ghost of Frankenstein, The Mole People, The Son of Dracula Son of Frankenstein House of Frankenstein Brain That Wouldn't Die, The Tarantula Communion 

Super High Me 

Quatermass and the Pit Crimson Pirate, The Bride of the Monster It Came from Beneath the Sea Earth vs. the Flying Saucers Return of the Fly Curse of Frankenstein, The Godzilla Omega Man, The Meteor War of the Worlds, The It Came from Outer Space Thing from Another World, The Dreamscape 
Freejack Voyage to the Bottom of the Sea Abbott and Costello Meet Frankenstein Invisible Man, The Runaway Them! 

Lords of Dogtown 

Godzilla 1985: The Legend Is Reborn Escape from the Planet of the Apes Conquest of the Planet of the Apes Battle for the Planet of the Apes Beneath the Planet of the Apes Logan's Run Westworld King Kong vs. Godzilla Saturn 3 20,000 Leagues Under the Sea Fistful of Dollars, A 

Matrix, The 

7th Voyage of Sinbad, The 

Across the Universe Bad News Bears 
Aqua Teen Hunger Force Colon Movie Film for Theaters 

Partly Cloudy 
Secret of Kells, The Secret World of Arrietty, The 

It's the Great Pumpkin, Charlie Brown 
101 Dalmatians Finding Nemo 

Many Adventures of Winnie the Pooh, The 

Big Sleep, The 
Dial M for Murder Broadway Melody, The 

King Creole Unsinkable Molly Brown, The Gypsy 

Gigi Meet Me in St. Louis 

Oliver! 

Man Who Knew Too Much, The Key Largo Rope 
39 Steps, The Cape Fear 

All About Eve 

Strangers on a Train 

Daddy Long Legs 

G. I. Blues 

Love Is a Many-Splendored Thing 
Glass Bottom Boat, The 

Pal Joey 

Blue Hawaii 

Pajama Game, The March of the Wooden Soldiers 

Anchors Aweigh 

Irma la Douce 
Taming of the Shrew, The On the Town Bell, Book and Candle 

Born Yesterday 

Barefoot in the Park 
Tom Jones 

Auntie Mame 

Funny Face 

Guys and Dolls 
Holiday Inn South Pacific 

Affair to Remember, An 
American in Paris, An Thin Man, The 

King and I, The 

His Girl Friday Charade It Happened One Night Bringing Up Baby 
Rebecca 

To Catch a Thief 

Notorious 

Sabrina 
Apartment, The Duck Soup 

Sunset Blvd. 

Philadelphia Story, The Arsenic and Old Lace 

West Side Story 
Breakfast at Tiffany's My Fair Lady Singin' in the Rain 

Some Like It Hot Roman Holiday 

Hitcher, The 

Ju-on: The Grudge Slither Devil's Rejects, The House of 1000 Corpses 

Suspiria 
Return of the Living Dead, The 

Dog Soldiers Ghost Ship 

Drag Me to Hell 

Jeepers Creepers 
Hostel Hard Candy 

Texas Chainsaw Massacre, The 

Mist, The 

Frailty 

Planet Terror 

Dead Alive 

Village, The 

Dawn of the Dead 

Let the Right One In 

Bubba Ho-tep 

Secret Window Jeepers Creepers 2 
Hannibal Rising 

White Noise House of Wax 
Wrong Turn 

Final Destination 3 Hills Have Eyes, The 
Ginger Snaps 

Amityville Horror, The 
Host, The 

Freddy vs. Jason Grudge, The 
Saw IV 

Audition 

Orphanage, The 

Ring Two, The 
Final Destination 2 Cabin Fever 

Hide and Seek 

Day of the Dead 

[REC] 

Land of the Dead 
Skeleton Key, The 

Resident Evil: Extinction 

Session 9 
Descent, The 

Videodrome 

Paranormal Activity 

Ichi the Killer 

Wicker Man, The 

Silent Hill Saw III 

Devil's Backbone, The 

Exorcism of Emily Rose, The 
Gothika 

Saw II 
Ring, The Others, The 

Death Proof 
Saw 

Ringu 
Identity 

Evil Dead, The 
Battle Royale 

Grindhouse 

Dawn of the Dead 

Man from Snowy River, The 
Chitty Chitty Bang Bang 

Enemy Mine 

Black Stallion, The All of Me 

Casualties of War 

Fame 

Sure Thing, The 

Top Secret! 

Saturday Night Fever 

Monty Python Live at the Hollywood Bowl Misery Tremors Monty Python's The Meaning of Life 

WarGames 

Accused, The 

Invasion of the Body Snatchers 

Witches of Eastwick, The 

Ten Commandments, The 

Roxanne 

Lost Boys, The Fatal Attraction 
American Ninja 

Deathtrap 

Bugsy 

Adventures of Ford Fairlane, The Cannonball Run II 
Sudden Impact 

Firefox Red Heat 

To Live and Die in L.A. 

Silverado 

Kickboxer Cobra Octopussy 
Dead Pool, The 

Never Say Never Again 

Jason and the Argonauts 

Casino Royale 

Presumed Innocent 

Warriors, The 
Navy Seals 

Smokey and the Bandit 

Hudson Hawk 
Black Rain 

Memphis Belle 

Another 48 Hrs. 

Murder by Death 

Colors 
Harley Davidson and the Marlboro Man 

Last Starfighter, The 
Darkman 

Freshman, The 

Batman Above the Law Ocean's Eleven Conan the Destroyer 

48 Hrs. 

They Live 
Boyz N the Hood 

Italian Job, The Enter the Dragon 
You Only Live Twice 

Dirty Harry 

Batman 
Enter the Dragon 

Figure 1: Static macro-level explanations for an ML20M user. We use t-SNE to visualize the top-four favorite item clusters of
this user. We can discern animation (blue), comedy romance (green), thriller (red), action comedy (yellow).
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Figure 2: Dynamic macro-level explanations. We use a slid-
ing window of size w=10 over one’s behavior sequence with
step size s=3, and the resulted frequency signals are normal-
ized for better illustration. It visualizes how user preferences
vary along the sequence (i.e., different t in {ru,t:t+w}) and
shows the dynamic nature of user preferences.

Qualitative Analysis
Table 3 provides the micro-level explanations to each of
three recommendations for a user on ML20M. As shown
in Eq. (13), we recall that the ranking score of each rec-
ommended movie is contributed by a unique set of already-
watch movies, and the top-3 ones which contribute the most
are regarded as the explanations behind the recommenda-
tion. In detail, Braveheart is pushed to the user because
she/he previously watched the Oscar winning movies, and

likewise the high ranking-scores of The Sword in the Stone
and Lord of the Rings are largely impacted by the watched
children animation movies (e.g., Snow White) as well as ad-
venture fantasy movies (e.g., Pirates of the Caribbean).

We also analyze the user’s macro-level preferences in
both static and dynamic manners. By using t-SNE (Maaten
and Hinton 2008), Figure 1 visualizes the user’s top four fa-
vorite clusters derived by the eigenvectors (frequencies) with
largest frequency signals (Shi and Malik 2000). We can see
that the movies are well classified, where we can discern ani-
mation (blue), comedy romance (green), thriller (red), action
comedy movies (yellow).

We recall that each frequency corresponds to a specific set
of items, and each frequency component reflects how much
this user likes these items. Hence, Figure 2 shows how user
preferences vary along one’s behavior sequence, where a 10-
size sliding window with step size 3 is used. In concrete, this
user has long-term interests in the items with frequencies λ0
and λ2, and the interests related to the frequency λ13 (λ4)
emerged (disappeared) since 6th position. This study con-
sists with the dynamic nature of user preferences.

Conclusion
This paper introduces a graph signal processing formulation
to 1-bit matrix completion and proposes the SGMC algo-
rithm to leverage the flexible signal operations on graphs.
SGMC can not only recover the underlying 0-1 matrix but
also provides micro- and macro-level explanations behind
the predictions. To scale to very large datasets, we also de-
velop efficient and scalable approximations for the SGMC
algorithm. Empirical results across multiple datasets vali-
date the superior accuracy, efficiency and interpretability of
the proposed method in top-N recommendation tasks.
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