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ABSTRACT
Recently, a new form of online shopping becomes more and more

popular, which combines live streaming with E-Commerce activity.

The streamers introduce products and interact with their audiences,

and hence greatly improve the performance of selling products.

Despite of the successful applications in industries, the live stream E-

commerce has not been well studied in the data science community.

To fill this gap, we investigate this brand-new scenario and collect

a real-world Live Stream E-Commerce (LSEC) dataset. Different

from conventional E-commerce activities, the streamers play a

pivotal role in the LSEC events. Hence, the key is to make full

use of rich interaction information among streamers, users, and

products. We first conduct data analysis on the tripartite interaction

data and quantify the streamer’s influence on users’ purchase

behavior. Based on the analysis results, we model the tripartite

information as a heterogeneous graph, which can be decomposed to

multiple bipartite graphs in order to better capture the influence.We

propose a novel Live Stream E-Commerce Graph Neural Network

framework (LSEC-GNN) to learn the node representations of each

bipartite graph, and further design a multi-task learning approach

to improve product recommendation. Extensive experiments on

two real-world datasets with different scales show that our method

can significantly outperform various baseline approaches.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Learning latent representations.

KEYWORDS
graph representation learning; multi-task learning; live streaming

E-Commence; product recommendation

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467151

ACM Reference Format:
Sanshi Yu

1
[1], Zhuoxuan Jiang

2
[1], Dong-Dong Chen

3
, Shanshan Feng

4
,,

Dongsheng Li
5
, Qi Liu

1
, Jinfeng Yi

3
. 2021. Leveraging Tripartite Inter-

action Information from Live Stream E-Commerce for Improving Prod-

uct Recommendation. In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (KDD ’21), August 14–18,
2021, Virtual Event, Singapore. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3447548.3467151

1 INTRODUCTION
Recent years witness the prosperity of online live streaming. With

the development of mobile phones, cameras, and high-speed inter-

net, more and more users are able to broadcast their experiences in

live streams on various social platforms, such as Facebook Live and

YouTube Live. There are a variety of live streaming applications [19],

including knowledge share, video-gaming, and outdoor traveling.

One of the most important scenarios is live streaming commerce,

where streamers broadcast themselves online and promote products

to their audiences, as shown in Figure 1.

This new form of sales can greatly shorten the decision-making

time of consumers and provoke the sales volume [1, 10]. For ex-

ample, according to a report from Alibaba’s Taobao Live platform,

there are several numbers worthy of attention in last year’s 11.11

Global Shopping Festival: (1) the total GMV driven by live streaming

achieved $6 Billion USD, (2) approximately 300 million Taobao users

watched live streams, and (3) 33 live streaming channels achieved

over $15million USD in sales and nearly 500 live streaming channels

reached $1.5 million USD [4]. Some quantitative research results

show that adopting live streaming in sales can achieve a 21.8%

increase in online sales volume [1].

This new kind of shopping experience is significantly different

from conventional online shopping, where only static informa-

tion, e.g., images and texts, are available for customers. The expert

streamers introduce and promote the products in a live streaming

manner, which makes the shopping process more interesting and

convincing. In addition, another feature of live streaming is the rich

and real-time interactions between streamers and their audiences,

which makes live streaming a new medium and a powerful market-

ing tool for E-Commerce. Compared with the traditional TV live
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Figure 1: Example of the live stream E-Commerce scenario
with the interactions among users, streamers and products.

shopping, viewers not only can watch the showing for product’s

looks and functions, but also can ask the streamers to show different

or individual perspectives of the products in real-time.

Fortunately, all the interaction information is recorded, such as

watching behavior, thumbs-up, sending a message, and placing an

order. Some studies by data analysis have found that some viewers

are directly influenced by the streamers andmay trust the streamers’

recommendations. The viewers could also indirectly influence other

viewers due to their similar purchase preference [19].

Despite the above finding that the streamers have the influence

to stimulate consumers’ purchase behavior, some more detailed and

quantitative questions are still less-studied. For example, a pivotal

question is that how and to what degree do the streamers influence

the users’ purchase behavior? In this paper, we investigate the

question through data analysis, and find three patterns that the

streamers can make an impact on users. We name it as streamer’s
influence and summarize the three patterns in the following:

1. The streamer can connect users with items: We model the

probability of purchase for the users in two experiment settings and

find that, the users are 4.9 times more probable to buy the products

that are promoted by their followed streamers than those who buy

the products that are not promoted by their followed streamers.

2. The streamer can connect similar users: We introduce a

similarity metric to calculate the similarity of purchased products

among users in two experiment settings and find that, the average

similarity of purchased products for two users who follow the same

streamer is 4.6 times larger than that for two users who do not

follow the same streamer.

3. The streamer can connect similar products: Similar to the

previous experiment, we introduce a similarity metric to calculate

the similarity of user groups on products in two experiment settings

and find that, on average, the user groups who purchase products

recommended by the same streamer is 4.5 times more similar than

user groups who purchase products which are not recommended

by the same streamer.

The analysis results suggest that the streamer’s influence can
be captured through the interaction information to model the users’

purchase behavior. More detailed data analysis can be referred to

Section 4.

Based on our above findings, we propose a novel Live Stream

E-Commerce Graph Neural Network (LSEC-GNN) framework to

improve the classical product recommendation task. The tripartite

interaction information is modeled as a heterogeneous graph, which

is composed of multiple bipartite graphs in order to better capture

the mutual influence. Then the LSEC-GNN learns and aggregates

the node representations of each bipartite graph to predict product

purchase behaviors by multi-task learning. Note that there may be

diverse kinds of interactions between two nodes and our frame-

work is flexible enough. To the best of our knowledge, there are

no public live stream datasets. We collect two novel datasets from

an E-Commerce website with different scales. The experimental

results show that our LSEC-GNN is effective to improve the prod-

uct recommendation task by thorough ablation and visualization

studies.

To summarize, we make the following contributions:

• We conduct thorough data analysis for quantifying how and

to what degree the streamers make an impact on users’ purchase

behavior.

• We identify the problem of product recommendation under the

new scenario of live stream E-Commerce by leveraging tripartite

interaction information. And the streamers’ influence is first pro-
posed. To the best of our knowledge, we are the first to study the

recommendation for live streaming shopping.

• We propose a Live Stream E-Commerce Graph Neural Network

(LSEC-GNN) framework for modeling the tripartite interaction

information as a heterogeneous graph and improving product rec-

ommendation by multi-task learning.

• We collect two new real-world datasets of tripartite interactions

from an E-Commerce website. The experiment results can support

our findings and our method can significantly outperform various

baseline approaches.

• We publish the real-world live stream datasets and code of our

models to facilitate the community for future research works in

this emerging area (https://github.com/yusanshi/LSEC-GNN).

2 RELATEDWORK
Online live streaming has drawn increasing attention recently in

social science [9, 19, 22], marketing science [10, 27], and computer

science [25], etc. User activities in online live streaming platforms

have been extensively studied including motivation [19], social and

community interaction [9], information production behavior [22],

channel selection [25], etc. Besides, studies have shown that user

online shopping behaviors may be different in online live stream-

ing platforms. Chen et al. [1] reported a 21.8% increase in online

sales volume after adopting the live streaming strategy. Sun et

al. [27] found that visibility affordance, metavoicing affordance,

and guidance shopping affordance are the most influential factors

on customer purchase intentions. Hu et al. [10] found that social

and structural bonds positively affect consumer engagement, while

financial bonds have only an indirect effect. However, to the best of

our knowledge, there is no existing work to study the recommen-

dation problem in live stream E-Commerce.

Our work is mainly related to product recommendation with

user-item interaction information. Traditionally, matrix factoriza-

tion (MF) methods achieved huge success in both rating predic-

tion tasks [14, 15, 17, 21] and top-N recommendation tasks [11,

20]. Recently, neural network based methods [7, 8, 18, 23, 39] fur-

ther improved the performance of product recommendation, es-

pecially in the top-N recommendation setting. For instance, the

https://github.com/yusanshi/LSEC-GNN


NCF method [7] improved the traditional MF methods by intro-

ducing MLPs to model the non-linear interactions between users

and items. Similarly, many advanced neural network methods were

applied in recommendation tasks to further enhance the state-of-

the-art performance, e.g., autoencoders [18, 23], recurrent neural

networks [8, 39], etc. More recently, graph neural networks were

introduced to the many recommendation tasks, which can improve

the performance by combining both user rating information and

the user-item interaction graph information [2, 6, 16, 28, 30, 37,

38, 43, 44]. However, these GNN based methods were focused on

bipartite graphs, which may not be optimal for tripartite graphs in

product recommendation problem of live stream E-Commerce.

Similar to this work, many existing works incorporated addi-

tional graphs beside the user-item interaction graphs in recom-

mendation tasks, e.g., knowledge graphs [24, 33, 34, 36] and social

graphs [3, 26, 40–42]. For instance, Wang et al. [33] proposed the

knowledge-aware graph neural network with label smoothness

regularization, which first applies a trainable function to identify

important KG relationships and then applies a GNN to compute

personalized item embeddings. Wang et al. [36] proposed the KGAT

method, which can capture the high-order relations from the hybrid

structure of KG and user-item graph via attention mechanism. Wu

et al. [41] proposed a dual graph attention network to collabora-

tively learn user/item representations via a user-specific attention

weight and a context-aware attention weight for a more accurate so-

cial recommendation. Fan et al. [3] proposed the GraphRec method,

which can jointly capture interactions and opinions in the user-

item interaction graph and consider heterogeneous strengths of

social relations. Our work is orthogonal to the above works, i.e.,

the proposed method can be adopted to improve their performance

if they are applied in the product recommendation problem of live

stream E-Commerce.

3 PROBLEM DEFINITION
In this section, we define the problem of product recommendation

in live streaming E-Commerce by modeling tripartite interaction

information. Different from the conventional E-Commerce recom-

mendation methods that only leverage the bipartite interactions

between users and items, we have the tripartite relationship in the

targeted problem. The basic idea is to incorporate all the three kinds

of bipartite interaction information, model the message propaga-

tion process and jointly learn the three tasks. To achieve this, it

is desirable to first model the different kinds of interaction infor-

mation as bipartite graphs and learn the unified representation to

encode the tripartite entities. In this paper, we propose three bipar-

tite graphs to model different interaction information, including

user-item interaction graph, streamer-item interaction graph, and

streamer-user interaction graph.

Definition 1. (User-Item Graph) User-item graph, denoted

as G(𝑢,𝑖) = (U ∪ I, E (𝑢,𝑖 ), captures the interaction information

between users and items, and the interaction means users buy the

corresponding items. U is a set of users and I is a set of items.

E (𝑢,𝑖) is the set of edges between users and items. We set the edge

weight𝑤 (𝑢,𝑖) 𝑗𝑘
as 1 if user 𝑢 𝑗 buys item 𝑖𝑘 , otherwise 0. The user-

item graph directly captures the interaction relationship between

users and products, which is the essential information used by

existing product recommendation approaches such as NGCF [37].

Beyond this kind of interaction information, streamers bring

another two kinds of interactions which can benefit the product rec-

ommendation. The streamer-item graph and streamer-user graph

are defined as below:

Definition 2. (Streamer-Item Graph) Streamer-item graph,

denoted as G(𝑠,𝑖) = (S ∪ I, E (𝑠,𝑖 ), is a bipartite graph where S is

a set of streamers and I is a set of items. E (𝑠,𝑖 ) is the set of edges
between streamers and items. The edge weight𝑤

(𝑠,𝑖)
𝑗𝑘

is set as 1 if

the streamer 𝑠 𝑗 sells item 𝑖𝑘 , otherwise 0.

The user-item graph and streamer-item graph capture the inter-

action information between humans and products from different

perspectives. The user-item graph encodes the buying relation,

while the stream-item graph encodes the selling relation. To en-

code the following relation between streamers and users, we in-

troduce the streamer-user graph, which captures the interaction

between humans.

Definition 3. (Streamer-User Graph) Streamer-user graph,

denoted as G(𝑠,𝑢) = (S ∪U, E (𝑠,𝑢 ), is a bipartite graph where S is

a set of streamers and U is a set of users. E (𝑠,𝑢 ) is the set of edges
between streamers and users. The edge weight𝑤

(𝑠,𝑢)
𝑗𝑘

is set as 1 if

the streamer 𝑠 𝑗 is followed by user 𝑢𝑘 , otherwise 0.

These three types of graphs can be further integrated into one

heterogeneous interaction graph.

Definition 4. (Heterogeneous Tripartite Interaction Graph)
The heterogeneous tripartite interaction graph is the combination

of user-item, streamer-item, and streamer-user graphs constructed

from three kinds of entities (user, item, and streamer) with their

multi-view historical interaction data. It captures tripartite per-

spectives of interaction relationship between humans and products

specifically in live stream E-Commerce.

Note that the definition of a heterogeneous tripartite interaction

graph can be generalized to integrate other types of interaction

graphs such as adding to cart relation between users and items, and

watching relation between streamers and users. In this work we

are using the three types of interaction graphs (buying, selling and

following) as an illustrative example, which are much related to

the product recommendation task.

Finally, we formally define the problem of product recommenda-

tion by modeling tripartite interaction information as follows:

Definition 5. Product Recommendation with Tripartite In-
teraction Information Given a large collection of interaction data

between users, products, and streamers in live stream E-Commerce

scenarios, the problem of product recommendation with tripartite

interaction information aims to learn and aggregate low-dimensional

representations of tripartite nodes by embedding the heterogeneous

interaction graph and then make recommendations based on the

learned representations by multi-task prediction.

4 DATA ANALYSIS
Before proposing the solution for product recommendation in live

stream E-Commerce, in this section, we show the correlation be-

tween streamers and users’ purchase by data analysis. As shown

in Figure 2, there are three patterns among users and items by



Figure 2: Examples of three different patterns that streamers
couldmake an impact onusers’ purchase behavior. The solid
lines mean the observed interaction behaviors and the dash
lines mean the potential purchase behaviors.

introducing streamers as mediums: (a) The streamer can connect

users with items, (b) The streamer can connect similar users, (c) The

streamer can connect similar products. We put forward three ques-

tions corresponding to the three patterns respectively and present

the detailed analysis to answer these questions.

4.1 Relation Pattern between Users and Items
This pattern means that the streamer acts as a bridge to connect

the user and the item. In this relationship, we aim to answer:

• Whether there is a higher probability of purchase for the users
facing the items sold by their following streamers?
We conduct a simulation experiment by theMonte Carlomethod [29]

to calculate the probability of purchase for the users in two settings.

The first setting 𝑆1 is that the users are presented with items sold

by their following streamers, while the second setting 𝑆2 is that the

users are presented with items which are not sold by their following

streamers. We utilize set 𝑃 to denote the result in the first setting

and set𝑄 to denote the result in the second setting. The simulation

process is described as :

1. Initialize 𝑃 = ∅ and 𝑄 = ∅.
2. Sample a user and an item randomly.

3. Set 𝑡 = 1 if the user purchases the item, otherwise set 𝑡 = 0.

4. Put 𝑡 into 𝑃 for the first setting or 𝑄 for the second setting.

5. Repeat (2)-(4) for 𝑁𝑀𝐶 times.

Here, 𝑁𝑀𝐶 is a large number of Monte Carlo simulations to ensure

both |𝑃 | and |𝑄 | are comparable to the total number of the interac-

tions between users and items. The probability of user purchasing

items in the first setting 𝑆1 can be calculated as follows:

𝑃𝑟𝑜𝑏1 =
𝑃𝑠𝑢𝑚

|𝑃 | , (1)

where 𝑃𝑠𝑢𝑚 denotes the sum of occurred purchases in set 𝑃 . Sim-

ilarly, We can also get the probability of user purchase items in

the second setting 𝑆2 by replacing 𝑃 with 𝑄 in the Equation 1. We

run the experiments for 5 times and report the average results in

Table 1. We observe that the user purchasing probability of items

sold by his/her following streamers is approximately 5 times of

those not sold by the streamers. The analysis result indicates that

the User-Streamer-Item pattern can help to enhance the purchase

probability between users and items, as shown in Figure 2(a).

4.2 Relation Pattern between Users
This pattern indicates that the streamer acts as a bridge to connect

two users. In this pattern, we aim to answer:

Table 1: The results of the simulation experiments.

Setting Probability of purchase (avg ± std)
𝑆1 3.35e-4 ± 3.74e-7
𝑆2 7.04e-5 ± 1.77e-7

Table 2: The quantiles and mean value of 𝐶𝑜𝑠 𝑗𝑘 and 𝐽𝑎𝑐 𝑗𝑘 in
U𝑝𝑎𝑖𝑟

𝑦 andU𝑝𝑎𝑖𝑟
𝑛 .

Quantile Level 50% 75% 90% 99% Average
𝐶𝑜𝑠 𝑗𝑘 in U𝑝𝑎𝑖𝑟

𝑛 0.0 0.0 0.035 0.22 0.012

𝐶𝑜𝑠 𝑗𝑘 in U𝑝𝑎𝑖𝑟
𝑦 0.0 0.088 0.177 0.447 0.055

𝐽 𝑎𝑐 𝑗𝑘 in U𝑝𝑎𝑖𝑟
𝑛 0.0 0.0 0.0156 0.10 0.0055

𝐽 𝑎𝑐 𝑗𝑘 in U𝑝𝑎𝑖𝑟
𝑦 0.0 0.0385 0.0769 0.25 0.0259

Table 3: The quantiles and mean value of 𝐶𝑜𝑠 𝑗𝑘 and 𝐽𝑎𝑐 𝑗𝑘 in
I𝑝𝑎𝑖𝑟
𝑦 and I𝑝𝑎𝑖𝑟

𝑛 .

Quantile Level 98% 99% 99.9% 99.99% Average
𝐶𝑜𝑠 𝑗𝑘 in I𝑝𝑎𝑖𝑟

𝑛 0.0 0.0 0.031 0.10 8.7e-5

𝐶𝑜𝑠 𝑗𝑘 in I𝑝𝑎𝑖𝑟
𝑦 0.0 0.01 0.072 0.18 3.9e-4

𝐽 𝑎𝑐 𝑗𝑘 in I𝑝𝑎𝑖𝑟
𝑛 0.0 0.0 0.011 0.044 3.5e-5

𝐽 𝑎𝑐 𝑗𝑘 in I𝑝𝑎𝑖𝑟
𝑦 0.0 0.003 0.029 0.098 1.59e-4

• When two users follow the same streamer, will their purchased
items be more similar?
Here, we utilize Cosine similarity and Jaccard similarity coeffi-

cient [12] to measure the similarity between two item sets pur-

chased by two users. For calculating the Cosine similarity 𝐶𝑜𝑠 𝑗𝑘
between user 𝑢 𝑗 and 𝑢𝑘 , we represent 𝑢 𝑗 with a 𝑁 -dimensional

vector 𝑣𝑢
𝑗
, in which the 𝑛-th dimension is 1 if 𝑢 𝑗 purchases the 𝑛-th

item and 0 otherwise. The Cosine similarity𝐶𝑜𝑠 𝑗𝑘 can be calculated:

𝐶𝑜𝑠 𝑗𝑘 =

〈
𝑣𝑢
𝑗
, 𝑣𝑢
𝑘

〉
|𝑣𝑢
𝑗
| ∗ |𝑣𝑢

𝑘
| . (2)

The Jaccard similarity coefficient 𝐽𝑎𝑐 𝑗𝑘 between user 𝑢 𝑗 and 𝑢𝑘 can

be calculated as follows:

𝐽𝑎𝑐 𝑗𝑘 =
|I𝑗 ∩ I𝑘 |
|I𝑗 ∪ I𝑘 |

, (3)

where I𝑗 denotes the item set purchased by user 𝑢 𝑗 and I𝑘 denotes

the item set purchased by user 𝑢𝑘 . We use U𝑝𝑎𝑖𝑟
𝑦 to denote the

set of user pairs where two users follow the same streamer, and

useU𝑝𝑎𝑖𝑟
𝑛 to denote the set of user pairs where two users do not

follow the same streamer. In order to study the distribution of the

𝐶𝑜𝑠 𝑗𝑘 and 𝐽𝑎𝑐 𝑗𝑘 inU𝑝𝑎𝑖𝑟
𝑦 andU𝑝𝑎𝑖𝑟

𝑛 , we randomly sample multiple

pairs from the set U𝑝𝑎𝑖𝑟
𝑦 and U𝑝𝑎𝑖𝑟

𝑛 respectively and calculate

𝐶𝑜𝑠 𝑗𝑘 and 𝐽𝑎𝑐 𝑗𝑘 for them. The statistical information (quantiles

and mean value) of the𝐶𝑜𝑠 𝑗𝑘 and 𝐽𝑎𝑐 𝑗𝑘 for two sets are reported in

Table 2.We can learn that𝐶𝑜𝑠 𝑗𝑘 and 𝐽𝑎𝑐 𝑗𝑘 inU
𝑝𝑎𝑖𝑟
𝑦 are significantly

greater than those in U𝑝𝑎𝑖𝑟
𝑛 on the quantiles and mean value. The

result demonstrates that when two users follow the same streamer,

they are more likely to purchase similar items. This experimental

analysis indicates that the User-Streamer-User relationship can

help to learn user similarities, which is beneficial to recommend

items to similar users as illustrated in Figure 2(b).



4.3 Relation Pattern between Items
This pattern means that the streamer acts as a bridge to connect

two items. In this relationship, we aim to answer:

• When two items are sold by the same streamer, will the purchasers
between them be more similar?
We also adopt the Cosine similarity and the Jaccard similarity coef-

ficient to represent the similarity between two user sets. For the

Cosine similarity, we represent 𝑖 𝑗 with a 𝑀-dimensional vector 𝑣𝑖
𝑗

in which the 𝑚-th dimension is 1 if 𝑖 𝑗 is purchased by the 𝑚-th

user and 0 otherwise. We use U𝑘 to denote the set of users who

purchased the item 𝑖𝑘 and use U𝑗 to denote the set of users who

purchased the item 𝑖 𝑗 . The Jaccard similarity coefficient 𝐽𝑎𝑐𝑘 𝑗 be-

tweenU𝑘 andU𝑗 can also be calculated by Equation 3. Similarly,

we use I𝑝𝑎𝑖𝑟
𝑦 to denote the set of item pairs, where each pair rep-

resents that two items are sold by the same streamer. We utilize

I𝑝𝑎𝑖𝑟
𝑛 to denote the set of item pairs where two items are not sold

by the same streamer.

The statistical information (quantiles and mean value) of the

𝐶𝑜𝑠 𝑗𝑘 and 𝐽𝑎𝑐 𝑗𝑘 for I𝑝𝑎𝑖𝑟
𝑦 and I𝑝𝑎𝑖𝑟

𝑛 are shown in Table 3. Note

that the quantity of an item being purchased by users is much

larger than the quantity of a user purchasing items. Hence, the

similarities in I𝑝𝑎𝑖𝑟
𝑦 and I𝑝𝑎𝑖𝑟

𝑛 are much smaller than those in

U𝑝𝑎𝑖𝑟
𝑦 andU𝑝𝑎𝑖𝑟

𝑛 . Therefore, we set a larger quantile level in this

analysis. The results in Table 3 show that the Jaccard similarity

coefficient and Cosine similarity in I𝑝𝑎𝑖𝑟
𝑦 are greater than those in

I𝑝𝑎𝑖𝑟
𝑛 on both the quantiles and mean value, which indicates that

two items sold by the same streamer are more similar. As shown

in Figure 2(c), the analysis in this experiment indicates that the

Item-Streamer-Item pattern can help to identify similar items for

recommendation.

5 METHODOLOGY
Based on the previous analysis results, we introduce the details of

the proposed LSEC-GNN framework, in which we perform graph

representation learning by modeling tripartite interaction informa-

tion from live stream E-Commerce to improve product recommen-

dation. Our method first learns vector representations of tripartite

nodes (users, items and streamers) by embedding the heteroge-

neous interaction graphs constructed from interaction data into a

low dimensional space, and then the final node representations are

concatenated from different bipartite graphs. At last, the final node

representations are used to make predictions for multiple tasks.

The overall architecture of LSEC-GNN is illustrated in figure 3.

5.1 Bipartite Graph Embedding
Since the heterogeneous tripartite interaction graph is composed

of different bipartite graphs with the same node structure, here

we do not distinguish them and introduce the consistent method.

We first build the embedding lookup table for each node in the

heterogeneous interaction graph as follows:

E𝑈 = [𝑒 (0)𝑢1
, 𝑒

(0)
𝑢2
, · · · , 𝑒 (0)𝑢 |U| ] .

E𝐼 = [𝑒 (0)
𝑖1
, 𝑒

(0)
𝑖2
, · · · , 𝑒 (0)

𝑖 |I |
] .

E𝑆 = [𝑒 (0)𝑠1 , 𝑒
(0)
𝑠2 , · · · , 𝑒

(0)
𝑠 |S| ] .

(4)

The lookup table is shared among bipartite graphs. Then in each

bipartite graph, multiple embedding propagation layers are op-

erated, which refines a node’s representation by aggregating the

embeddings of the interacted nodes. We do not limit the choice of

propagation layers here and one can select any message-passing

aggregator, such as GCN [13], GAT [32], NGCF [37], etc. Take GCN

as the example, the 𝑙-th layer is updated as follows:

𝐻 (𝑙+1) = 𝜎
(
�̃�− 1

2 �̃��̃�− 1

2𝐻 (𝑙)𝑊 (𝑙)
)

(5)

where �̃� = 𝐴 + 𝐼𝑁 is the adjacency matrix of a bipartite graph

G with added self-connections. 𝐼𝑁 denotes the identity matrix,

�̃�𝑖𝑖 =
∑

𝑗 �̃�𝑖 𝑗 , and𝑊
(𝑙)

is a layer-specific trainable weight matrix.

𝜎 (·) denotes the activation function. 𝐻 (𝑙)
is the input embeddings

in 𝑙-th layer.

Take the user-item bipartite graph of Figure 3 as an example,

𝑒𝑙−1
1,𝑢1

means the 𝑢1’s embedding of the (𝑙 − 1)-th layer in the 1-st

bipartite graph,𝑊
(𝑙)
1,2

means the 2-nd𝑊 in the 1-st bipartite graph.

Note that ideally our framework could model unlimited number of

bipartite graphs. The input embedding 𝐻 (0)
and adjacency matrix

𝐴 can be formulated as follows

𝐻 (0) = [E𝑈 , E𝐼 ] .

𝐴 =

[
0 𝐴𝑢𝑖
𝐴
⊺
𝑢𝑖

0

]
.

(6)

Here 𝐴𝑢𝑖 is the user-item interaction matrix. At last after the graph

operations, we can obtain the final representations of each node

from corresponding bitpartite graphs.

5.2 Interaction Graph Embedding
In the heterogeneous tripartite interaction graph, where there are

three bipartite graphs, each node of any type will have two embed-

dings from its belonging two bipartite graphs. After GNN opera-

tions, we can concatenate the outputs from each bipartite graph to

generate the final representations of the tripartite nodes as follows:

𝑒∗𝑖 = [𝑒 (𝑁 )
1,𝑖

, 𝑒
(𝑁 )
2,𝑖

]

𝑒∗𝑢 = [𝑒 (𝑁 )
1,𝑢

, 𝑒
(𝑁 )
3,𝑢

]

𝑒∗𝑠 = [𝑒 (𝑁 )
2,𝑠

, 𝑒
(𝑁 )
3,𝑠

]

(7)

Then the final node representations are used for the following

multiple predict tasks.

5.3 Model Prediction
After generating the unified embedding for each node from the

heterogeneous tripartite interaction graph, we use the embeddings

to make predictions about the existence of edges. Take a user𝑢 as an

example, we denote its embedding learned from user-item-buying
bipartite graph as 𝑣𝑢,buy and the embedding from user-streamer-
following as 𝑣𝑢,follow. As the model training, the two embedding

spaces should be close but the distance does exist. For item 𝑖 , we

denote its embedding learned from user-item-buying bipartite graph
as 𝑣𝑖,buy and the embedding from streamer-item-selling as 𝑣𝑖,sell.

Now making a prediction based on the unified embedding of 𝑢 and

𝑖 will involve the interaction between totally three vector space,

i.e., the vector spaces of three bipartite graphs. If we take the inner



Figure 3: Overall architecture of LSEC-GNN framework (with GCN as the example aggregator).

product of the unified embedding of 𝑢 and 𝑖 , we will suffer from

the issue that the inner product will be performed on two vectors

from different vector spaces. Clearly, this cannot achieve optimal

performance, because a simple inner product cannot capture the

complex nonlinear relationships between different vector spaces.

To this end, we propose to concatenate the unified embedding

of two nodes, and then use an MLP to learn the complex implicit

interactions. For instance, with a two-layer MLP predictor, the

score between a user 𝑢 and an item 𝑖 for recommendation task is

computed as follows:

𝑦𝑢𝑖 = 𝜎2 (W𝑇
2
(𝜎1 (W𝑇

1
( [𝑣𝑢 ∥𝑣𝑖 ]) + b1)) + b2), (8)

where W𝑥 , b𝑥 and 𝜎𝑥 denote the weight matrix, bias vector and

activation function for the 𝑥-th layer of MLP, respectively. 𝑣𝑢 and

𝑣𝑖 is the unified vector for user 𝑢 and item 𝑖 , respectively.

As we have chosen to use MLP as the final predictor, we pro-

pose to apply another concatenating operation when combining

embeddings from different bipartite graphs into a unified embed-

ding for a node. In this way, both the interaction between a node’s

different embeddings and the interaction between different node’s

embeddings, can be learned in the final MLP predictor.

Empirically, such two-level concatenation and MLP predictor

is the best combination strategy among all the methods we have

tested. Therefore, in our experiments, we adopt this strategy.

5.4 Multi-Task Optimization
For model optimization, motivated by [7], we apply the simple but

effective binary cross-entropy loss, also known as log loss. As our
goal is product recommendation in E-Commerce scenarios, we first

optimize upon the user-item-buying task and the objective function

is formulated as follows:

𝐿
buy

= −
∑︁

(𝑢,𝑖) ∈Y∪Y−
𝑦𝑢𝑖 log𝑦𝑢𝑖 + (1 − 𝑦𝑢𝑖 ) log(1 − 𝑦𝑢𝑖 ) . (9)

Here 𝑦𝑢𝑖 denotes the ground truth, in which the observed interac-

tions are labelled as 1 and the unobserved interactions are labelled

as 0. 𝑦𝑢𝑖 is the predicted score of 𝑦𝑢𝑖 . For each positive item that a

user has interacted with, we randomly sample a fixed number of

unobserved items as the negative instances.

However, with this single loss, the generated embeddings for

streamers are not fully used and optimized. In live streamE-Commerce

situations, the following behavior between a user and a live streamer

often implies a kind of streamer’s influence. To better optimize the

embeddings for the streamers, we exploit an auxiliary task, which

is to predict whether a user will follow a streamer. The loss function

of this task is defined as follows:

𝐿
follow

= −
∑︁

(𝑢,𝑠) ∈Y∪Y−
𝑦𝑢𝑠 log𝑦𝑢𝑠 + (1 − 𝑦𝑢𝑠 ) log(1 − 𝑦𝑢𝑠 ) . (10)

The notation is similar to that of Equation 9. Meanwhile, the nega-

tive sampling strategy is also the same as the main task.

Finally, we take a linear combination of the above two loss func-

tions as the final loss function as follows:

𝐿 = 𝛼 · 𝐿
buy

+ (1 − 𝛼) · 𝐿
follow

, (11)

where 𝛼 is a hyper-parameter to be tuned.

6 EXPERIMENTS
Since our target is to improve the product recommendation, two

tasks (user-item prediction and user-streamer prediction) are in-

volved and three kinds of interaction information are leveraged.

6.1 Dataset Description
As best as we know, there is no available open dataset for recom-

mendation featuring E-Commerce streamers. we collect such data

from the log of an E-Commerce website. The dataset ranges from

December 1, 2020 to January 19, 2021. We randomly sample users,

items, and streamers from the dataset, and further extract all the

relevant mutual interactions as edges. We remove those who have

less than 10 records from the dataset. Based on different sampling

settings, we construct two datasets, i.e., LSEC-Small and LSEC-
Large, for our experiments. The statistics of the two datasets is



Table 4: Statistics of the datasets.

Term LSEC-Small LSEC-Large
# Item 31,630 109,502

# User 29,422 202,850

# Streamer 4,633 7,395

# Buying 451,441 3,062,463

(Density) (0.0485%) (0.0138%)

# Following 1,659,943 5,439,288

(Density) (1.2178%) (0.3626%)

# Selling 1,168,165 1,953,881

(Density) (0.7972%) (0.2413%)

summarized in table 4. The interaction information includes the

user-item buying data, user-streamer following data, and streamer-

item selling data, and they are all binarized by erasing weights. We

regard our experiments as the standard top-N recommendation

problems. The proportion of training/validation/testing is set as

80/10/10% by adopting chronological partition.

6.2 Experimental Settings
6.2.1 EvaluationMetrics. To evaluate the product recommendation

task, we refer to commonly-used metrics used in top-N recommen-

dations [37], e.g. AUC, MRR, NDCG@K and Recall@K, where 𝐾 is

set to 10 and 50.

6.2.2 Baseline Models. Since our proposed LSEC-GNN framework

is general for various tripartite interaction graphs, different kinds

of GNN blocks can be integrated as the message-passing aggregator,

such as GCN and GAT. We choose one non-graph model and three

graph-based models as our baselines:

• NCF [7] includes three instantiations of neural CF: GMF, MLP,

and the fusion of the former two, called NeuMF. In this work, NeuMF

achieves the best performance, hence we choose it as the baseline.

• GCN-RS GCN [13] is a well-known graph-based model. In this

work, a node’s representation is updated by combining its original

representation and the average of the neighbors’ representations.

It is originally proposed for node classification task and we adapt it

for recommendation task. This method is denoted as GCN-RS.

• LightGCN [6] is a variant of GCN by removing feature transfor-

mation and nonlinear activation. For fair comparison, we replace

the inner product predictor with MLP predictor to keep the same

setting as our proposed methods.

• GAT-RS GAT [32] is a variant of GCN by applying an atten-

tion mechanism to learn the weights for neighbors aggregation,

instead of simply taking the average among them. We adapt it for

recommendation task and name it GAT-RS.

We select graph-basedmodels (i.e., GCN-RS, LightGCN, andGAT-

RS), and use them as the aggregators for our LSEC-GNN framework.

In this way, we propose three variants of our framework: LSEC-
GCN, LSEC-LightGCN, and LSEC-GAT.

6.2.3 Web-Scale Model Training. Graph neural networks are typ-

ically conducted in a full-batch manner. Once the data get larger,

GNN training will suffer from scalability issues. Motivated by

GraphSAGE [5], we apply the mini-batch training and neighbor-

hood sampling on the graph. More specifically, given a batch of tar-

get nodes and edges, we build a subgraph by expanding neighbors

according to the number of the GNN layers. Note that we conduct

operations on a heterogeneous tripartite graph. Hence, it would

become more complicated as we need create three subgraphs for

each mini-batch and make sure there are as many common nodes as

possible between two adjacent subgraphs. To reduce the receptive

field size, we limit the number of neighbors expanded at each layer

by a fixed threshold. Considering the different degree distributions

of directional edges, we set the sampling threshold as the quantile

𝑝 of the degrees of a directional edge type. We implemented the

aforementioned mini-batch training and neighbor sampling with

the help of DGL [35].

6.2.4 Hyper-parameters Settings. We optimize the models with

Adam optimizer and set the learning rate to 0.0005. The batch size

is set to a relatively larger value 4096 for speed as our experiments

empirically show that it makes no difference. The GNN layer num-

ber𝐾 for all graph-based models is set to 2 after testing in the range

of 1 to 4. The number of dimension for the embedding lookup table

is set to 200 and the input/output dimensions for the two GNN

layers are 200 → 128 → 64. For the neighbor sampling quantile 𝑝 ,

we search in the range of {0.2, 0.25, 0.3, · · · , 1.0 } and finally set it as
0.9. This can not only speed up the training process but also obtain

better performance compared with taking all neighbors. The nega-

tive sampling ratio is set to 4. We use a two-layer MLP predictor

for each task. The loss coefficient 𝛼 for multi-task training is set to

0.5. We adopt hyperparameter tuning and early-stop mechanism

on the validation set to choose the proper hyperparameters.

6.3 Performance Comparison
We repeat each experiment for 5 times and report the average

metrics on the test set in table 5 and 6. All experiments in this paper

are conducted in this way.

We can obtain some observations from the experiment results.

All graph-based models outperform the non-graph model NCF by a

large margin. This is mainly because the graph model can capture

the high-order connectivity between nodes. On both datasets, we

find that LSEC-GNN based models are able to achieve the best

performance on most of the metrics. This observation indicates

that the tripartite interaction information is well captured and

exploited, which is capable of improving product recommendation.

6.4 Ablation Study on LSEC-GNN
As our framework mainly consists of two parts: heterogeneous re-

lations modeling and multi-task training, we will investigate their

impacts on the performance. We use GCN as the example aggrega-

tor. We denote the three relations, user-item-buying, user-streamer-
following and streamer-item-selling, as 0, 1 and 2, respectively. For

the tasks, we denote the task of buying (Eq. 9) as 0 and the task of

follow (Eq. 10) as 1. We first add relation type one by one to demon-

strate the impact of each type of relations. Then we additionally

consider the auxiliary task 1 to show the influence of multi-task

training. For instance, a single-relation and single-task GCN model

for user-item-buying recommendation can be expressed as relation 0,
task 0, and the final LSEC-GCN is marked as relations 0,1,2, tasks 0,1.
We run the experiments upon LSEC-Small dataset and the results

are reported in table 7. We get the following observations:



Table 5: Comparison of the models on LSEC-Small dataset.

Model AUC MRR NDCG@10 NDCG@50 Recall@10 Recall@50

NCF 0.8103 0.1588 0.2392 0.3188 0.2832 0.5405

GCN-RS 0.8440 0.1835 0.2862 0.3705 0.3363 0.6078

LightGCN 0.8483 0.1858 0.2895 0.3719 0.3374 0.6069

GAT-RS 0.8506 0.1828 0.2889 0.3742 0.3352 0.6183

LSEC-GCN 0.8581 0.1924 0.3072 0.3869 0.3537 0.6205

LSEC-LightGCN 0.8641 0.1842 0.3022 0.3854 0.3615 0.6380
LSEC-GAT 0.8611 0.1873 0.3012 0.3867 0.3525 0.6375

Table 6: Comparison of the models on LSEC-Large dataset.

Model AUC MRR NDCG@10 NDCG@50 Recall@10 Recall@50

NCF 0.8272 0.1767 0.2805 0.3608 0.3101 0.5633

GCN-RS 0.8545 0.1988 0.3219 0.4091 0.3626 0.6365

LightGCN 0.8532 0.2001 0.3346 0.4184 0.3741 0.6363

LSEC-GCN 0.8482 0.2048 0.3374 0.4153 0.3735 0.6233

LSEC-LightGCN 0.8679 0.1981 0.3333 0.4157 0.3752 0.6427

Table 7: Comparison of the LSEC-GCN model with different relations and tasks on LSEC-Small dataset.

Relations Tasks AUC MRR NDCG@10 NDCG@50 Recall@10 Recall@50

0 0 0.8440 0.1835 0.2862 0.3705 0.3363 0.6078

0, 1 0 0.8449 0.1864 0.2923 0.3731 0.3389 0.6036

0, 2 0 0.8453 0.1748 0.2749 0.3553 0.3270 0.5877

0, 1, 2 0 0.8547 0.1915 0.3057 0.3844 0.3509 0.6146

0, 1, 2 0, 1 0.8581 0.1924 0.3072 0.3869 0.3537 0.6205

Impact of heterogeneous relations. As shown in the first four

rows, adding relation 1 (user-streamer-following) can gain better

overall scores compared with relation 0 only. When both relation

1 and 2 are added, the performance can be further improved. This

is because that when all relations are available, the interaction

between different nodes can be well preserved and provide com-

plementary information for each other, which leads to better node

representations.

Impact of multi-task training The last two rows of the table

show that the auxiliary task 1 can make further improvement on

the performance. This is because in the multi-task training set-

ting, the embeddings of all three types of nodes are directly used

in the loss calculation. When only the buying task is optimized,

the embeddings for streamers can still be updated as discussed in

the Methodology section. But this kind of optimization is implicit.

By directly optimizing the main task and the auxiliary task simul-

taneously, the complex tripartite interaction relationships can be

learned in a more effective way.

6.5 Visualization of Streamer’s Influence
For further demonstrating our proposed method on the relation pat-

terns, we utilize the t-SNE algorithm [31] to visualize the streamer’s
influence. To be more specific, we attempt to visualize the user

embeddings and item embeddings learned by NCF, GCN-RS, LSEC-

GCN and use the interacted streamers (following interaction for

a user and selling interaction for an item) as labels. The users or

(c). LSEC-GCN User Embedding (d). LSEC-GCN Item Embedding

(b). GCN-RS User Embedding(a). NCF User Embedding

Figure 4: Visualization of user and item embeddings from
different models with t-SNE.

items interacted with the same streamer are drawn in the same

color. The visualization results are illustrated in figure 4.

From Figure 4(a), we observe that no clear patterns can be found

in NCF user embedding. From Figure 4(b) and Figure 4(c), we can

find that users are grouped into clusters, and the similar users

in the same cluster are following the same streamer with a high

probability. This suggests the superiority of GCN-RS and LSEC-

GCN as graph-based methods over NCF, and implies the streamer’s

influence in grouping users. Comparing Figure 4(b) and Figure 4(c),

our LSEC-GCNmodel exhibits a better clustering result in capturing

the user’s preference on streamers. As shown by Figure 4(d), the



item embedding from our LSEC-GCN model also shows a similar

clustering result upon streamer’s influence on items, although not

as obvious as that from those of user embeddings. In short, the

visualization experiment not only shows the streamer’s influence

in connecting among users and items, but also indicates our LSEC-

GCN model’s ability to model the streamer’s influence.

7 CONCLUSION
In this paper, we investigate a novel problem of how to leverage

the tripartite interaction information in live stream E-Commerce

to improve product recommendation. We conduct data analysis

on the collected real-world data. For the first time, we examine

three interaction patterns among streamers, users, and products,

and quantitatively study the streamer influence on users’ purchase

behavior. Based on the analysis results, we decompose the tripartite

interaction information into several bipartite graphs, and propose a

novel graph neural networks (LSEC-GNN) framework to aggregate

the node representations of bipartite graphs. We conduct exten-

sive experiments on two real-world live stream datasets, and the

results demonstrate that our method is effective to improve the

product recommendation performance. Moreover, we also present

the visualizations of streamer influence.
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