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ABSTRACT
Graph neural networks (GNN) recently achieved huge success in
collaborative filtering (CF) due to the useful graph structure infor-
mation. However, users will continuously interact with items, which
causes the user-item interaction graphs to change over time and
well-trained GNN models to be out-of-date soon. Naive solutions
such as periodic retraining lose important temporal information and
are computationally expensive. Recent works that leverage recur-
rent neural networks to keep GNN up-to-date may suffer from the
“catastrophic forgetting” issue, and experience a cold start with new
users and items. To this end, we propose the incremental graph con-
volutional network (IGCN) — a pure graph convolutional network
(GCN) based method to update GNN models when new user-item
interactions are available. IGCN consists of two main components:
1) a historical feature generation layer, which generates the ini-
tial user/item embedding via model agnostic meta-learning and
ensures good initial states and fast model adaptation; 2) a temporal
feature learning layer, which first aggregates the features from local
neighborhood to update the embedding of each user/item within
each subgraph via graph convolutional network and then fuses the
user/item embeddings from last subgraph and current subgraph via
incremental temporal convolutional network. Experimental studies
on real-world datasets show that IGCN can outperform state-of-
the-art CF algorithms in sequential recommendation tasks.
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1 INTRODUCTION
Collaborative filtering (CF) algorithms are playing a vital role in
today’s recommender systems due to high accuracy and broad ap-
plicability [1, 8]. During recent years, graph neural network (GNN)
based CF algorithms have achieved state-of-the-art performance in
many kinds of recommendation tasks, e.g., home/news feed [36],
social network [10, 35], e-commerce [40], etc. The main advantages
of GNNs are: 1) the ability to leverage local neighborhood infor-
mation among users and/or items [36], in which the behaviors of
neighbouring users/items within several hops on the graph can help
to facilitate representation learning; and 2) the flexibility to incorpo-
rate auxiliary information, e.g., social information [10], knowledge
graphs [29], etc., which can help to alleviate the well-known data
sparsity issue in collaborative filtering.

In real-world recommender systems, users will continuously
interact with items, which makes the user-item interaction graphs
to be continuously changing over time, so the well-trained GNN
models will soon become out-of-date. One trivial way to solve this
issue is to retrain the GNN models after obtaining new interactions.
However, retraining is computationally expensive, and more im-
portantly useful temporal information may lose during retraining
because recent interactions are often treated as equally important
as old interactions. Recent works, such as DeepCoevolvo [7] and
JODIE [19], tried to update the user/item embedding vectors with
new interactions using recurrent neural networks (RNNs). How-
ever, these RNN-based methods may suffer from the “catastrophic
forgetting” issue [12], which may achieve inferior performance on
users/items with long interaction sequences as demonstrated in
our empirical studies.

To this end, this paper proposes an incremental graph convolu-
tion network (IGCN), which enables incremental model learning
via graph convolutional networks on the user-item interaction
graphs. IGCN consists of two key components to learn temporal-
aware user/item embedding: one is a historical feature generation
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layer, which generates the initial user/item embedding via model
agnostic meta-learning to solve the new users/items issue and the
data sparsity issue in each subgraph and ensure fast model adap-
tation, the other one is a temporal feature learning layer, which
first aggregates the features from local neighborhood to update the
embedding of each user/item within each subgraph via graph con-
volutional network (GCN) and then fuses the user/item embeddings
from last subgraph and current subgraph via incremental temporal
convolutional network (iTCN) . After learning user/item embed-
ding, a preference decoder layer is employed to recommend items
to users based on the learned embedding. Experimental studies on
several real-world datasets demonstrate that IGCN can outperform
state-of-the-art CF algorithms in sequential recommendation tasks,
including GNN-based sequential recommendation methods and
other incremental recommendation methods.

The key contributions of this work are summarized as follows:

• We propose a novel incremental temporal convolutional
network (iTCN) which fuses temporal information from last
period and current period incrementally and can achieve
efficient and accurate temporal-aware feature learning.

• We propose IGCN, which is a novel GNN based incremen-
tal recommendation algorithm that uses 1) GCN to extract
higher level interaction features on user-item interaction
graph, 2) iTCN to learn user and item temporal-aware fea-
tures and 3) model agnostic meta-learning (MAML) to ini-
tialize user and item historical embeddings to alleviate cold
start issue and ensure fast model adaptation.

• We conduct extensive experiments on five real-world datasets,
and the results show that IGCN can outperform state-of-the-
art recommendation methods, including GNN-based sequen-
tial methods and other incremental methods.

2 RELATEDWORK
Collaborative filtering algorithms have achieved superior perfor-
mances compared to other recommendation methods, from early
simple methods [16, 25], factorization methods [4, 18, 20, 21] to re-
cent deep learning methods [5, 6, 15, 26, 39]. Recently, graph neural
network based CF algorithms further pushed the state-of-the-art
performances by incorporating useful user-item interaction graph
structure information in representation learning [14, 19, 29]. The
GCMC method [3] introduced an AutoEncoder into the user-item
interaction graph to predict the possible ratings. On top of previous
factorization-based CF methods, such as matrix factorization [18]
and FISM [17], NGCF [32] further extracted high-level features by
building high-order connectivities through GNN, thus improved
the performance. LightGCN [14] improved over NGCF by removing
two unnecessary feature transformation and nonlinear activation to
improve both the efficiency and the accuracy of recommendations.
It is worth noting that GNN updates a node’s feature by aggregating
the information of all its neighboring nodes. With the increasing of
GNN layers, each node can obtain the information of neighboring
nodes with larger distances, which can potentially improve the
accuracy if the oversmoothing issue is properly handled [14].

However, all above GNN-based CF methods suffer from one com-
mon issue: a well-trained model may be soon out-of-date due to the
graph structure change caused by new interactions. To address this

issue, DeepCoevolve [7] and JODIE [19] adopt RNNs to update the
node features to tackle the incremental update issue of GNN-based
CF methods. However, these RNN-based methods may suffer from
the well-known “catastrophic forgetting” issue when dealing with
long sequences [12, 13], and experience a cold start with new users
and items. TGN [24] proposes a framework for learning continuous-
time dynamic graphs, which can accurately capture the changes
of nodes’ feature over time through memory module and embed-
ding module. Incremental learning is another line of works to solve
the above problem when new user-item interactions are available.
SPMF [31] is probabilistic matrix factorization (PMF) based method,
which employs a reservoir to maintain historical data and uses the
data in the reservoir plus the new observations to update the model
and make recommendations. IncCTR [33] uses a data module and
a feature module to construct training data and handle features
respectively, and uses a model module to fine-tune the model pa-
rameters with knowledge distillation. SML [38] employs a neural
network-based transfer learning component to transforms the old
model to a new model during training, and optimizes the recom-
mendation accuracy evaluated in the next time period to learn the
transfer learning component. However, none of them was proposed
for GNN-based collaborative filtering algorithms.

3 INCREMENTAL GRAPH CONVOLUTIONAL
NETWORK

This section first presents IGCN in high-level and then introduces
the details of IGCN. Finally, we show how to train IGCN model.

3.1 Overview of IGCN
In GNN-based CF algorithms, newly observed user-item interac-
tions can be regarded as a subgraph, which only contains the users
and items (as nodes) and their interactions (as edges) over a short
period of time, e.g., one week, one month. While in the industrial
recommendation, a large amount of data will be generated every
minute and IGCN can also complete real-time update when new
data arrives by adjusting the time interval to a smaller value. In
this paper, we focus on the problem of learning from the newly
observed subgraphs in an incremental fashion to make GNN-based
CF algorithms better in line with real-world recommender systems.
As shown in Figure 1, IGCN consists of three key components:

• Ahistorical feature generation layer, which generate user/item
embedding, named as historical embedding, before the first
period with model agnostic meta learning (MAML) [11] to
address two challenges: 1) Fast model adaptation. Since user
ratings are rare in each time period, MAML-based initializa-
tion will help to achieve faster convergence with few ratings
in each time period. 2) New users or items. Since there might
be users/items that only appear in the test time, initializ-
ing their embedding via MAML can achieve much better
performance than random initialization [27].

• A temporal feature learning layer, which aggregate the fea-
tures from local neighborhood to update the embedding of
each user/item within each subgraph via graph convolu-
tional network (GCN) and then fuse the features from the
user/item embedding of last and current subgraphs via in-
cremental temporal convolutional network (iTCN). iTCN
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Figure 1: The architecture of the proposed incremental graph convolution network method.

employs dilated causal convolutions to ensure: 1) large re-
ceptive field, since hierarchical dilated convolutions can yield
exponentially growing receptive field and 2) causality, since
the causal convolutions can ensure current features are only
relied on all past features [2].

• A preference decoder layer, which is used to predict the pos-
sibility of interaction between a given user and a given item.
We choose dot product as the interaction function due to its
superiority in both accuracy and efficiency [23] while MLP
and other interaction functions can also work here.

Based on the above novel design, IGCN has the following advan-
tages: 1) incremental training. IGCN only needs to train a temporal
feature extraction module on the subgraph formed by recent inter-
actions, then retrain the temporal-aware feature fusion module for
users and items respectively to automatically fuse the new features
with features from last period of time. Both two modules are only
performed on new user-item interactions, i.e., the training of IGCN
is incremental; 2) temporal-awareness and global-awareness. After
training based on the most recent interactions, the temporal-aware
feature fusion module can automatically discover the most impor-
tant features to predict temporal user behaviors and item attributes
(temporal-awareness) by scanning over the entire user and item
feature trajectories (global-awareness). Therefore, IGCN can ad-
dress the temporal information lost issue in model retraining and
the “catastrophic forgetting” issue in RNN-based methods.

3.2 Historical Feature Generation Layer
Incremental model updates in a sequential way will raise two chal-
lenges: 1) Sparse data in each time period. Recommender systems
usually suffer from the data sparsity issue, which will be even

more severe when we only consider the ratings in a small period
of time; 2) New user or item issue. Users or items that only ap-
pear in the test time can not initialize their embedding reasonably
and traditional random or constant initialization often leads to
poor performance [27]. As shown in Algorithm 1, we propose to
leverage model agnostic meta learning (MAML) to initialize the
historical embedding when they are unavailable, which can also
help to achieve faster model adaptation even when there are very
few ratings in each subgraph.

Unlike traditional model training, which divides the dataset into
training, validation and test sets, MAML uses a task as the min-
imum unit of the dataset. For each task in MAML, we randomly
select some users with their interactions from the training set, and
divide them into a support set and a query set. These two sets are
used to calculate support and query losses respectively (line 1–5
in Algorithm 1). The model parameters 𝑒𝑢 and 𝑒𝑖 are randomly
initialized to start the MAML process (line 6), and are updated
multiple times until they converge (line 7–16). Specifically, in each
update, we first sample multiple tasks as a batch from the task set
(line 8). Then for each sampled task, we generate user historical
representations 𝐸𝑢 ∈ R𝑀′×𝑑 and item historical representations
𝐸𝑖 ∈ R𝑁

′×𝑑 by repeating 𝑒𝑢 ∈ R𝑑 𝑀 ′ times and 𝑒𝑖 ∈ R𝑑 and 𝑁 ′

times respectively, where𝑀 ′ and 𝑁 ′ are the number of users and
items in that task (line 9). Historical representations 𝐸𝑢 and 𝐸𝑖 are
trained with temporal-aware feature fusion module (which will be
introduced later) to learn user/item representations in the next pe-
riod and calculates the loss to update the parameter 𝑒𝑢 and 𝑒𝑖 using
gradient descent on the support set (line 10–11). We regenerate
new user and item historical representations from the updated 𝑒 ′𝑢
and 𝑒 ′

𝑖
, train 𝐸 ′𝑢 and 𝐸 ′

𝑖
, and calculate the loss on the query set (line

13). Finally, after all tasks have been used to update parameters, we



Algorithm 1MAML for model parameter pretraining
Input: User-item interaction data 𝐷 , number of tasks 𝐼 , size of
each task 𝐻 , number of sampled tasks 𝐾 , learning rates 𝛼 and 𝛽 .
Parameters: user historical representation 𝑒𝑢 and item historical
representation 𝑒𝑖 .
Output: Pretrained 𝑒𝑢 and 𝑒𝑖 .
1: TaskSet = ∅.
2: for 𝑖 = 1, · · · , 𝐼 do
3: Randomly sample 𝐻 users with their interactions from 𝐷 to

generate support set 𝑆𝑖 and query set 𝑄𝑖 .
4: TaskSet = TaskSet ∪ {(𝑆𝑖 , 𝑄𝑖 )}.
5: end for
6: Randomly initialize 𝑒𝑢 and 𝑒𝑖 .
7: while not done do
8: Sample 𝐾 tasks from TaskSet.
9: for 𝑘 = 1, · · · , 𝐾 do
10: Generate 𝐸𝑢 and 𝐸𝑖 using 𝑒𝑢 and 𝑒𝑖 respectively.
11: Train 𝐸𝑢 and 𝐸𝑖 on support set 𝑆𝑘 and compute loss 𝐿(𝑆𝑘 ).
12: Update parameter using gradient descent :

𝑒 ′𝑢 = 𝑒𝑢 − 𝛼∇𝑒𝑢𝐿(𝑆𝑘 ), 𝑒 ′𝑖 = 𝑒𝑖 − 𝛼∇𝑒𝑖𝐿(𝑆𝑘 ).
13: Train 𝐸 ′𝑢 and 𝐸 ′

𝑖
generated from 𝑒 ′𝑢 and 𝑒 ′

𝑖
on query set𝑄𝑘

and compute loss 𝐿(𝑄𝑘 ).
14: end for
15: Update parameter using gradient descent:

𝑒𝑢 = 𝑒𝑢 − 𝛽∇𝑒𝑢
∑𝐾
𝑘=1 𝐿(𝑄𝑘 ), 𝑒𝑖 = 𝑒𝑖 − 𝛽∇𝑒𝑖

∑𝐾
𝑘=1 𝐿(𝑄𝑘 ).

16: end while

sum the loss on the query set across all tasks to complete the final
update of parameter 𝑒𝑢 and 𝑒𝑖 (line 15).

Intuitively, MAML can help IGCN to better initialize user and
item representations by encoding some global information, e.g.,
which items are popular among users. When new users/items ap-
pear, their historical representations can be reasonably initialized
by MAML. In addition, when new user-item interactions are avail-
able, user/item representations can quickly adapt and converge to
the optimal ones.

3.3 Temporal Feature Learning Layer
Temporal feature learning layer consists of three modules, including
one temporal feature extraction module and two temporal-aware
feature fusion modules. Temporal feature extraction module is used
to extract temporal information from user-item interactions of
current period, while temporal-aware feature fusion modules are
used to capture the pattern on how user and item features are
changing over time. Next, we introduce temporal feature extraction
module and temporal-aware feature fusion module in detail, and
then we introduce temporal feature learning layer that combines
the above two modules to achieve incremental recommendation.
Finally, we analyze the efficiency of the temporal feature learning
layer.

3.3.1 Temporal feature extraction module. For each subgraph of
user-item interactions over a short period of time (e.g., one month),
we employ graph convolutional network to learn the temporal
feature of these users and items. The graph convolution layer aims
to extract features of interactions between users and items on graph

and enrich the representation learning of each node by aggregating
features from its neighboring nodes. Since the graph convolutions
for different subgraphs are in the same manner, we describe the
graph convolution operations for a specific time period 𝑡 without
loss of generality.

To ensure fast model training, we first pretrain the node embed-
ding of the subgraph at time period 𝑡 with matrix factorization [18].
Let U(𝑡 ) ∈ R𝑀𝑡×𝑑 and V(𝑡 ) ∈ R𝑁𝑡×𝑑 be the user feature matrix and
item feature matrix after pretraining in time period 𝑡 , respectively,
where 𝑀𝑡 and 𝑁𝑡 are the number of users and items who have
interactions during time period 𝑡 . The user-item interaction data
in time period 𝑡 can form a user-item bipartite graph𝐺𝑡 . To better
capture the neighborhood information, we stack multiple graph
convolutional layers to achieve more comprehensive feature aggre-
gation. Let u𝑙

𝑖
and u𝑙+1

𝑖
be user 𝑢𝑖 ’s feature vector in the 𝑙-th layer

and 𝑙 +1-th layer, respectively, then the 𝑙 +1-th graph convolutional
layer works as follows:

u𝑙
𝑁 (𝑖) = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ({v

𝑙
𝑗 ,∀𝑗 ∈ 𝑁 (𝑖)}), (1)

u𝑙+1𝑖 = 𝜎 (𝑊 𝑙+1 · (u𝑙
𝑁 (𝑖) ⊕ u𝑙𝑖 ) + 𝑏

𝑙+1), (2)

where u𝑙
𝑁 (𝑖) is the aggregated feature vector from 𝑢𝑖 ’s neighbors

and 𝑁 (𝑖) is the set of 𝑢𝑖 ’s neighbors. ⊕ is an element-wise addition
operation.𝑊 𝑙+1 and 𝑏𝑙+1 are the weight matrix and bias term in
𝑙 + 1-th layer and 𝜎 (·) is an activation function. 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (·) is an
aggregation function that aggregates features from the neighbors
of each node. There could be different options for the aggregation
function, such as the simple element-wise sum or mean. However,
simple sum or mean may lose the varying importance of different
neighbors, so that we propose an importance-aware aggregation
function as follows:

u𝑙
𝑁 (𝑖) =

∑
𝑗 ∈𝑁 (𝑖)

𝑐𝑖 𝑗 · v𝑙𝑗 , (3)

𝑐𝑖 𝑗 =
R∗
𝑖 𝑗√

𝐷 (𝑖) · 𝐷 ( 𝑗)
, R∗𝑖 𝑗 = R𝑖 𝑗 − R𝑖 , (4)

where R𝑖 𝑗 is the rating that user 𝑢𝑖 gives to item 𝑣 𝑗 and R𝑖 is the
mean of 𝑢𝑖 ’s ratings. We use R∗

𝑖 𝑗
to normalize R𝑖 𝑗 aiming to make

the GCN converge faster. 𝐷 (𝑖) and 𝐷 ( 𝑗) are 𝑢𝑖 ’s degree and 𝑣 𝑗 ’s
degree, respectively. The design of 𝑐𝑖 𝑗 is based on two intuitions: 1)
higher rating indicates stronger correlation between 𝑢𝑖 and 𝑣 𝑗 and
vice versa and 2) large node degrees indicates weaker correlation
between 𝑢𝑖 and 𝑣 𝑗 and vice versa, i.e., the node with larger degrees
should not be easily influenced by only one neighbor. For items, we
update their embeddings in the same way:

v𝑙+1𝑗 = 𝜎 (𝑊 𝑙+1 · (v𝑙
𝑁 ( 𝑗) ⊕ v𝑙𝑗 ) + 𝑏

𝑙+1) . (5)

v𝑙
𝑁 ( 𝑗) =

∑
𝑖∈𝑁 ( 𝑗)

𝑐 𝑗𝑖 · u𝑙𝑖 , (6)

𝑐 𝑗𝑖 =
R∗
𝑗𝑖√

𝐷 (𝑖) · 𝐷 ( 𝑗)
, R∗𝑗𝑖 = R𝑗𝑖 − R 𝑗 , (7)

where R 𝑗 is the mean of 𝑣 𝑗 ’s ratings. Based on the above graph
convolutional operations, we can iteratively update the user/item
embedding of a subgraph until convergence.



3.3.2 Temporal-aware feature fusion module. After learning the
temporal features of users/items in each subgraph, a feature fusion
module is required to aggregate the user/item features from dif-
ferent time periods to achieve accurate recommendation on most
recent user-item interactions. Since user interests may drift over
time [19], it is important to model the dynamic characteristics of
users and items in each period of time, i.e., the fused user/item
features should be temporal-aware.

Existing work [12] leverage recurrent neural networks (RNNs)
to capture temporal dynamics, which often suffer from the “cata-
strophic forgetting” issue and may not work well over long se-
quences of interaction history. Convolutional neural networks
(CNNs) have recently shown promising performance on sequen-
tial data [28]. However, they cannot be directly applied due to: 1)
violation of sequential data by considering future features in the
prediction; 2) restricted receptive field that usually not capable
of capturing earlier historical information from users and items.
TCN [2] is a promising solution to address the above two issues
with a specific design of dilated and causal convolutions. As shown
in Figure 2, TCN can obtain the feature information of earlier peri-
ods and force the causality of the prediction results, which means
the prediction of current period is only related to the past time
periods, not related to the future time periods.

However, TCN is not optimal in the incremental recommenda-
tion problem. Firstly, TCN is an 𝑁 -to-𝑁 structure, which requires
the input representations from 𝑁 periods as a sequence at the same
time, and then outputs 𝑁 predicted representations. While in incre-
mental recommendation, it usually requires a 1-to-1 structure that
takes the input representation of the current period and outputs
the predicted representation for the next period. Secondly, TCN
requires to save all the historical data and the intermediate results
of the model, which greatly increases model storage consumption
in the training phase. Therefore, we design an incremental temporal
convolutional network (iTCN) –an improved version of TCN to
achieve incremental and temporal-aware feature fusion.

The details of the iTCN unit are illustrated in the middle part of
Figure 2. Compared with the TCN, iTCN simplifies the network ar-
chitecture, where the residual connection is removed and hierarchi-
cal multi-layer convolutions are simplified to a single convolution.
The simplification not only learns more accurate temporal-aware
features, but also reduces the storage consumption of the training
process. More detailed accuracy and efficiency comparison between
iTCN and TCN will be presented in Section 4.4. Similar to TCN,
iTCN ensures causality (future interactions are not leverage in cur-
rent time period) and large receptive field by dilated and causal
convolutions. In order to achieve 1-to-1 incremental recommenda-
tion, we design a storage unit for iTCN, which can be used to store
the historical data of a given length, based on the setting of the
current iTCN. Let 𝑑 and 𝑘𝑠 be the dilation and kernel size of current
iTCN, and the storage length is 𝑑 ∗ (𝑘𝑠 − 1). With the designed
storage unit, iTCN only needs to store a small amount of historical
data, therefore achieving much higher storage efficiency than TCN.

Formally, iTCN in time period 𝑡 and layer 𝑙 works as follows:

H𝑙𝑡 = 𝐶𝑜𝑛𝑣 (𝑐𝑜𝑛𝑐𝑎𝑡 ({X𝑙𝑡−𝑑 ·𝑖 |𝑖 = 0, 1, · · · , 𝑘𝑠 − 1})), (8)

X𝑙+1𝑡 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝜎 (H𝑙𝑡 )), (9)

where X𝑙+1𝑡 and X𝑙𝑡 are the output and input of iTCN in time period
𝑡 and layer 𝑙 , and in the first layer of iTCN (i.e. 𝑙 = 1),X𝑙𝑡 can be U

(𝑡 )

for user’s temporal-aware feature fusion module or V(𝑡 ) for item’s
temporal-aware feature fusion module.𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (·) and𝐶𝑜𝑛𝑣 (·) are
dropout and convolutional layers, respectively. 𝜎 (·) is an activation
function, which is chosen as ReLU in this paper. When the training
for time period 𝑡 is completed, X𝑙𝑡 will be added to the storage unit,
and X𝑙

𝑡−𝑑 · (𝑘𝑠−1) will be removed out of the storage unit, so the data

X𝑙
𝑡−𝑑 · (𝑘𝑠−1)+1:𝑡 in the storage unit will be used for the training in

time period 𝑡 + 1.
The temporal-aware feature fusion module shown in the right

part of Figure 2 is composed by stacking one or more iTCNs. An
identity mapping component is added to help to address the van-
ishing gradient problem when stacking multiple iTCNs. Thus, the
final output of the fusion module can be described as follows:

O𝑡 = 𝜎 (X𝐿𝑡 + X𝑡 ), (10)

where X𝑡 and O𝑡 are the input and output of the temporal-aware
feature fusion layer in period 𝑡 , X𝐿𝑡 is the output of the iTCN in the
last layer (i.e. 𝑙 = 𝐿) and 𝜎 (·) is an activation function.

3.3.3 Efficiency Analysis. In order to achieve incremental recom-
mendation, the main body of IGCN is made by recurring temporal
feature learning layer multiple times, each recurrence corresponds
to a time period. In terms of data storage, IGCN does not require
to store all the historical data to complete the training, but only
stores a small amount of historical data. When taking interactions
from a new time period, IGCN will update the stored historical
data with the new data at the same time. It is worth noting that
we set different𝑊 and 𝑏 for different periods in GCN in temporal
feature extraction module, instead of sharing the same parameters
among periods, so that the features extracted from the user-item
interaction network in each period with GCN are not affected by
the other periods, which can better represent the features of users
and items in that period. Regarding time efficiency, for each new
time period, IGCN only needs to execute one matrix factorization
operation, one graph convolution operation and a few convolution
operations to complete the interaction prediction in the next period,
so the training process is rather efficient. We will analyze the time
efficiency of IGCN in detail in Section 4.4.

3.4 Preference Decoder Layer
After fusing the user/item features in different time periods, we use
the dot product to predict user ratings on items using their feature
vectors in previous period as follows:

𝑟
(𝑡 )
𝑖 𝑗

= u(𝑡−1)
𝑖

· v(𝑡−1)
𝑗

𝑇
. (11)

u(𝑡−1)
𝑖

and v(𝑡−1)
𝑗

are 𝑢𝑖 ’s and 𝑣 𝑗 ’s feature vectors in time period

𝑡 − 1. respectively. Then, 𝑟 (𝑡 )
𝑖 𝑗

is the predicted rating in time period
𝑡 that 𝑢𝑖 may give to 𝑣 𝑗 . Other preference decoders, e.g., MLP, can
also be adopted, but we choose dot product due to higher efficiency
and comparable accuracy [23].
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Figure 2: The architecture of TCN layer (left part), iTCN (middle part) and temporal-aware feature fusion module (right part).

3.5 Model Training
3.5.1 Loss Function. For explicit feedback datasets, we choose the
commonly used mean square loss as follows:

𝐿 =
1
𝑁

𝑇∑
𝑡=1

∑
𝑖, 𝑗 ∈O (𝑡 )

(𝑟 (𝑡 )
𝑖 𝑗

− 𝑟 (𝑡 )
𝑖 𝑗

)2 . (12)

𝑁 is the total number of ratings in the training data. O (𝑡 ) is the set
of observed ratings in time period 𝑡 . 𝑟 (𝑡 )

𝑖 𝑗
is the true rating that 𝑢𝑖

gives to 𝑣 𝑗 in time period 𝑡 .
For implicit feedback datasets, we choose the commonly used

cross entropy loss as follows:

𝐿 = − 1
𝑁

𝑇∑
𝑡=1

∑
𝑖, 𝑗 ∈O (𝑡 )

(𝑟 (𝑡 )
𝑖 𝑗

log 𝑟 (𝑡 )
𝑖 𝑗

+ (1 − 𝑟 (𝑡 )
𝑖 𝑗

) log(1 − 𝑟 (𝑡 )
𝑖 𝑗

)). (13)

3.5.2 Training Process. The training process of IGCN works as
follows. In each time period 𝑡 , we use the interactions observed
during time period 𝑡 to train the model for multiple epochs. Rather
than directly using the parameters from the last epoch where model
may suffer overfitting problem, we select the parameters with the
lowest loss on the validation data and set them as the initial values
of the parameters in the training of time period 𝑡 + 1.

4 EXPERIMENT
4.1 Experimental Setup
4.1.1 Dataset. In the experiments, we use five well-known datasets
to evaluate the performance of IGCN. In the MovieLens 100K
dataset, we split all ratings into 8 time periods and use last 2 time
periods as test data. The Netflix Prize dataset is huge so that we
select a 4 months subset and keep top 1,000 users and their ratings,
then we use ratings from the first three month in training and the
last month for test. For the MovieLens 1M dataset, we choose a
dense 8 months period containing about 90% of ratings and then
use the ratings from the first 7 months in training and the rest in
test. In the Amazon Book dataset, we first choose the most dense 9
months period and keep the top 4,000 users and items, then we use
the ratings from the first 7 months in training and the rest in test.
In the Yelp dataset, we select a 7 years subset and keep top 15,000
users and 25,000 items, then we use ratings from the first six year

in training and the last year for test. Table 1 describes the detailed
statistics of the five datasets used in the experiments. It should
be noted that due to the sparsity of datasets, we set a large time
interval for each dataset. It is not necessary to set the interval to a
small value because the update of the model is too small. However,
in the industrial recommendation, a large amount of interactions is
generated every minute. In that case, we can specify a small value
for the time interval.

4.1.2 Metrcis. We compare IGCN with other methods in top-N
recommendation task, so that We choose three popular ranking
metrics to evaluate the model performance: 1) F1-score, which is
the harmonic mean of precision and recall; 2) Mean Reciprocal
Rank (MRR), which evaluates the performance by the ranking of
the first real item in the recommendation lists; and 3) Normalized
Discounted Cumulative Gain (NDCG), which evaluates the gap
between recommended item lists and optimally ranked item lists.
Note that we only use four-star or five-star ratings as positive ones
in top-N recommendation.

4.1.3 Baselines. IGCN is compared against the following eleven
state-of-the-art CF methods:

• BPR [22] is a classical CF algorithm, which minimizes a pair-
wise loss over positive and unlabeled data. In BPR, we use
MF to initialize users’ and items’ embedding.

• LambdaFM [37] combines LambdaRank and FM for recom-
mendation with pairwise loss function.

• IRGAN [30] expands GAN to discrete data in information
retrieval by introducing policy gradient and achieves good
performance on several tasks.

• LightGCN [14] is a GNN based CF algorithm which simplify
the structure of graph convolutional network by removing
feature transformation and nonlinear activation.

• RRN [34] uses two RNNs to model users’ and items’ temporal
feature respectively. In RRN, we omit stationary components
such as user profile and item genre for fairness comparison.

• GCMCRNN [9] uses GCMC [3] to learn spatial structure of
user-item subgraphs in all periods and then uses RNN to ex-
tract temporal feature. There are two variants — GCMCRNN
(sep) and GCMCRNN (inc) where data in each period are
split separately or incrementally respectively.



Table 1: The statistics of the five datasets. Here, time span is described by year and month, e.g., 97.09 means September 1997.

MovieLens 100K Netflix MovieLens 1M Amazon Books Yelp

# Users 943 1,000 6,040 4,000 15,000
# Items 1,682 13,104 3,706 4,000 25,000
# Ratings 100,000 605,108 892,982 73,408 1,025,124

Training time span 97.09–98.02 05.09–05.11 00.05–00.11 13.01–13.07 13.01–18.12
Test time span 98.03–98.04 05.12 00.12 13.08–13.09 19.01–19.12
# Training ratings 77,836 524,859 777,387 59,807 891,914
# Test ratings 22,164 80,321 115,595 13,601 133,210

Density 0.063 0.046 0.045 0.005 0.003

Table 2: Summary of the eleven compared methods: non-
deep learning method (ND), deep learning method (D),
non-temporal method(NT), temporal method (T), non-
graph based method (NG), graph based method (G), non-
incremental method (NI) and incremental method(I).

Baseline ND D NT T NG G NI I

BPR ✓ ✓ ✓ ✓
LambdaFM ✓ ✓ ✓ ✓
IRGAN ✓ ✓ ✓ ✓
LightGCN ✓ ✓ ✓ ✓

RRN ✓ ✓ ✓ ✓
GCMCRNN ✓ ✓ ✓ ✓
DeepCoevolve ✓ ✓ ✓ ✓
JODIE ✓ ✓ ✓ ✓

SPMF ✓ ✓ ✓ ✓
IncCTR ✓ ✓ ✓ ✓
SML ✓ ✓ ✓ ✓

• DeepCoevolve [7] uses RNN to model the intensity function
in point process to capture feature evolving over time on
the interaction graph. Note that we disabled their user/item
embedding updates in test phase due to fair comparison.

• JODIE [19] is a graph based algorithm that employs two
RNNs to learns the embedding trajectories of users and items
respectively. Note that we disabled the user/item embedding
updates in test phase due to fair comparison.

• SPMF [31] employs a reservoir to maintain historical data
and uses the data in the reservoir plus the new observations
to update the recommendation.

• IncCTR [33] uses a data module and a feature module to
construct training data and handle features respectively, and
uses a model module to fine-tune the model parameters.

• SML [38] is a state-of-the-art incremental CFmethod that em-
ploys a neural network-based transfer component to trans-
forms the old model to a new model during training.

Table 2 further summaries the categories of the compared state-
of-the-art collaborative filtering algorithms in the experiments.

4.1.4 Implementation Details. We use Adam optimizer with the
initial learning rates from [0.0005, 0.001, 0.005] in the training. For
all datasets, initial embedding size is fixed to 60. In meta-learning,
we tune the number of tasks from [5, 7, 10] and task size from [150,
200, 250, 300] for MovieLens and Netflix, and tune the number of
tasks from [10, 12, 14] and task size from [400, 500] for Amazon
Books and Yelp. In the GCN part of the temporal feature extraction
module, the number of layers is fixed to 3 and the embedding size
in each layer is fixed to 60. For iTCN, the kernel size is fixed to 3,
and dropout rate is searched from [0.45, 0.5, 0.55]. In the training
process of IGCN, the hyper-parameters in each period are kept the
same. We tune the hyper-parameters of all the methods (including
IGCN and the compared methods) according to the performance
on the validation set in the last time period of the training phase.

4.2 Accuracy Comparison
Table 3 compares the performance of IGCN with eleven state-of-
the-art CF methods in all five datasets, which shows that IGCN
significantly outperforms all the compared methods. Besides, we
have the following observations from the results.

1) Sequential methods outperform non-sequential methods. The
main reason is that non-sequential methods use all ratings to learn
static features while ignoring the dynamic features of user/items.
On the contrary, sequential methods can learn dynamic features
across different time periods, which can better capture the user
preference drifts and thus achieve better performance.

2) Adopting graph structure can help to improve recommenda-
tion accuracy as shown in the results, i.e., GCMCRNN, LightGCN,
DeepCoevolove and JODIE outperform the other baseline methods
in most cases. The main reason is that graph structure provides ad-
ditional information to CF algorithms, which can help users/items
to enhance their representations from their neighborhoods.

3) IGCN consistently outperforms all the state-of-the-art meth-
ods on all datasets. The main reasons are: a) the temporal-aware
feature fusion is achieved via CNN rather than RNNs, which can ad-
dress the “catastrophic forgetting” issue in RRN, GCMCRNN, Deep-
Coevolove and JODIE; b) the MAML-based parameter initialization
can further improve the performance especially on user/item with
few or even no ratings. Compared with RNN, iTCN enables each
user/item to enrich its own feature learning by extracting informa-
tion from its previous features in earlier time periods without any
forgetting mechanism, which can help to improve the performance.



Table 3: Accuracy comparison between IGCN and the state-of-the-art methods in five datasets. Note that JODIE cannot finish
training within a reasonable time on Yelp, so that the results are not reported here. The results on the other four datasets can
confirm the superior performance of IGCN compared to JODIE. Bold face indicates the highest accuracy.

Models MovieLens 100K Netflix MovieLens 1M Amazon Books Yelp

F1-score@5 F1-score@10 F1-score@5 F1-score@10 F1-score@5 F1-score@10 F1-score@5 F1-score@10 F1-score@5 F1-score@10

BPR 0.047 ± 0.001 0.064 ± 0.005 0.012 ± 0.002 0.016 ± 0.002 0.019 ± 0.000 0.027 ± 0.001 0.013 ± 0.000 0.013 ± 0.001 0.003 ± 0.000 0.004 ± 0.000
LambdaFM 0.035 ± 0.002 0.035 ± 0.001 0.008 ± 0.000 0.010 ± 0.000 0.020 ± 0.001 0.027 ± 0.002 0.003 ± 0.000 0.003 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
IRGAN 0.054 ± 0.008 0.073 ± 0.010 0.012 ± 0.002 0.018 ± 0.002 0.035 ± 0.001 0.049 ± 0.001 0.006 ± 0.001 0.007 ± 0.000 0.002 ± 0.000 0.003 ± 0.000
LightGCN 0.075 ± 0.012 0.108 ± 0.011 0.016 ± 0.001 0.025 ± 0.001 0.041 ± 0.001 0.061 ± 0.001 0.016 ± 0.001 0.018 ± 0.000 0.006 ± 0.000 0.008 ± 0.000

RRN 0.135 ± 0.016 0.140 ± 0.005 0.036 ± 0.004 0.045 ± 0.002 0.045 ± 0.004 0.050 ± 0.008 0.014 ± 0.000 0.012 ± 0.000 0.004 ± 0.000 0.005 ± 0.000
GCMCRNN(sep) 0.134 ± 0.010 0.130 ± 0.002 0.020 ± 0.001 0.028 ± 0.002 0.052 ± 0.003 0.079 ± 0.004 0.010 ± 0.000 0.013 ± 0.001 0.005 ± 0.000 0.006 ± 0.000
GCMCRNN(inc) 0.172 ± 0.013 0.142 ± 0.011 0.019 ± 0.001 0.028 ± 0.003 0.054 ± 0.001 0.078 ± 0.005 0.009 ± 0.000 0.014 ± 0.000 0.006 ± 0.000 0.006 ± 0.000
DeepCoevolve 0.080 ± 0.004 0.078 ± 0.006 0.012 ± 0.003 0.021 ± 0.002 0.064 ± 0.005 0.091 ± 0.010 0.006 ± 0.000 0.006 ± 0.001 0.006 ± 0.000 0.005 ± 0.000
JODIE 0.100 ± 0.002 0.092 ± 0.001 0.025 ± 0.001 0.039 ± 0.001 0.067 ± 0.002 0.092 ± 0.003 0.015 ± 0.003 0.016 ± 0.002 — —

SPMF 0.083 ± 0.001 0.092 ± 0.001 0.013 ± 0.000 0.014 ± 0.000 0.023 ± 0.001 0.021 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.003 ± 0.000 0.003 ± 0.000
IncCTR 0.091 ± 0.003 0.102 ± 0.001 0.012 ± 0.000 0.018 ± 0.000 0.021 ± 0.002 0.032 ± 0.004 0.003 ± 0.000 0.003 ± 0.000 0.002 ± 0.000 0.003 ± 0.000
SML 0.121 ± 0.003 0.123 ± 0.002 0.015 ± 0.003 0.026 ± 0.002 0.032 ± 0.002 0.050 ± 0.005 0.005 ± 0.000 0.006 ± 0.000 0.005 ± 0.000 0.006 ± 0.000
IGCN (Ours) 0.189 ± 0.001 0.185 ± 0.000 0.039 ± 0.002 0.048 ± 0.002 0.071 ± 0.002 0.101 ± 0.003 0.021 ± 0.002 0.023 ± 0.001 0.010 ± 0.000 0.012 ± 0.000

Models MovieLens 100K Netflix MovieLens 1M Amazon Books Yelp

MRR@5 MRR@10 MRR@5 MRR@10 MRR@5 MRR@10 MRR@5 MRR@10 MRR@5 MRR@10

BPR 0.176 ± 0.002 0.154 ± 0.008 0.073 ± 0.002 0.071 ± 0.005 0.115 ± 0.004 0.121 ± 0.005 0.025 ± 0.001 0.026 ± 0.002 0.011 ± 0.000 0.012 ± 0.000
LambdaFM 0.160 ± 0.007 0.131 ± 0.007 0.074 ± 0.005 0.071 ± 0.004 0.121 ± 0.007 0.116 ± 0.003 0.008 ± 0.001 0.008 ± 0.001 0.004 ± 0.000 0.004 ± 0.000
IRGAN 0.226 ± 0.034 0.205 ± 0.019 0.106 ± 0.005 0.111 ± 0.003 0.218 ± 0.012 0.203 ± 0.014 0.022 ± 0.003 0.020 ± 0.004 0.009 ± 0.000 0.011 ± 0.000
LightGCN 0.261 ± 0.020 0.239 ± 0.019 0.100 ± 0.004 0.104 ± 0.003 0.187 ± 0.003 0.184 ± 0.003 0.030 ± 0.001 0.032 ± 0.001 0.019 ± 0.001 0.022 ± 0.001

RRN 0.294 ± 0.032 0.265 ± 0.026 0.153 ± 0.018 0.139 ± 0.003 0.088 ± 0.006 0.101 ± 0.022 0.027 ± 0.001 0.023 ± 0.002 0.011 ± 0.001 0.014 ± 0.000
GCMCRNN(sep) 0.307 ± 0.040 0.216 ± 0.021 0.140 ± 0.011 0.147 ± 0.009 0.216 ± 0.003 0.200 ± 0.003 0.021 ± 0.001 0.025 ± 0.001 0.016 ± 0.000 0.016 ± 0.000
GCMCRNN(inc) 0.321 ± 0.068 0.239 ± 0.053 0.145 ± 0.014 0.141 ± 0.005 0.211 ± 0.008 0.202 ± 0.003 0.020 ± 0.000 0.029 ± 0.000 0.018 ± 0.000 0.019 ± 0.000
DeepCoevolve 0.200 ± 0.017 0.164 ± 0.024 0.069 ± 0.004 0.077 ± 0.002 0.155 ± 0.022 0.169 ± 0.020 0.017 ± 0.001 0.017 ± 0.004 0.016 ± 0.001 0.013 ± 0.000
JODIE 0.256 ± 0.003 0.268 ± 0.001 0.158 ± 0.001 0.163 ± 0.003 0.177 ± 0.003 0.209 ± 0.003 0.031 ± 0.009 0.030 ± 0.002 — —

SPMF 0.187 ± 0.005 0.193 ± 0.004 0.076 ± 0.004 0.069 ± 0.002 0.105 ± 0.002 0.067 ± 0.001 0.007 ± 0.000 0.008 ± 0.000 0.018 ± 0.001 0.014 ± 0.000
IncCTR 0.215 ± 0.002 0.216 ± 0.003 0.074 ± 0.003 0.081 ± 0.002 0.094 ± 0.009 0.100 ± 0.011 0.009 ± 0.000 0.012 ± 0.000 0.013 ± 0.000 0.013 ± 0.000
SML 0.234 ± 0.009 0.203 ± 0.004 0.097 ± 0.003 0.108 ± 0.006 0.156 ± 0.004 0.154 ± 0.009 0.014 ± 0.000 0.016 ± 0.001 0.019 ± 0.003 0.017 ± 0.001
IGCN (Ours) 0.371 ± 0.010 0.320 ± 0.015 0.176 ± 0.008 0.171 ± 0.005 0.232 ± 0.002 0.229 ± 0.005 0.035 ± 0.001 0.036 ± 0.002 0.030 ± 0.002 0.035 ± 0.003

Models MovieLens 100K Netflix MovieLens 1M Amazon Books Yelp

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

BPR 0.203 ± 0.005 0.202 ± 0.011 0.087 ± 0.002 0.098 ± 0.005 0.130 ± 0.004 0.149 ± 0.005 0.031 ± 0.001 0.039 ± 0.002 0.014 ± 0.000 0.018 ± 0.000
LambdaFM 0.194 ± 0.006 0.184 ± 0.011 0.090 ± 0.004 0.099 ± 0.004 0.148 ± 0.009 0.160 ± 0.006 0.010 ± 0.001 0.012 ± 0.000 0.005 ± 0.000 0.008 ± 0.001
IRGAN 0.257 ± 0.028 0.277 ± 0.023 0.130 ± 0.008 0.155 ± 0.005 0.245 ± 0.007 0.256 ± 0.009 0.025 ± 0.003 0.028 ± 0.003 0.012 ± 0.000 0.016 ± 0.000
LightGCN 0.308 ± 0.026 0.342 ± 0.024 0.121 ± 0.005 0.141 ± 0.003 0.218 ± 0.003 0.233 ± 0.001 0.039 ± 0.001 0.051 ± 0.000 0.024 ± 0.001 0.034 ± 0.001

RRN 0.336 ± 0.037 0.339 ± 0.025 0.190 ± 0.019 0.202 ± 0.005 0.115 ± 0.004 0.141 ± 0.025 0.034 ± 0.001 0.034 ± 0.001 0.015 ± 0.001 0.020 ± 0.001
GCMCRNN(sep) 0.350 ± 0.031 0.302 ± 0.017 0.165 ± 0.012 0.190 ± 0.009 0.249 ± 0.003 0.259 ± 0.004 0.028 ± 0.001 0.038 ± 0.001 0.018 ± 0.000 0.019 ± 0.000
GCMCRNN(inc) 0.387 ± 0.049 0.338 ± 0.036 0.177 ± 0.014 0.195 ± 0.009 0.241 ± 0.010 0.256 ± 0.009 0.027 ± 0.000 0.044 ± 0.000 0.020 ± 0.000 0.024 ± 0.000
DeepCoevolve 0.233 ± 0.011 0.222 ± 0.019 0.089 ± 0.006 0.115 ± 0.003 0.198 ± 0.024 0.242 ± 0.024 0.020 ± 0.000 0.023 ± 0.004 0.020 ± 0.000 0.019 ± 0.001
JODIE 0.332 ± 0.002 0.344 ± 0.002 0.183 ± 0.002 0.204 ± 0.003 0.238 ± 0.002 0.247 ± 0.005 0.042 ± 0.012 0.054 ± 0.008 — —

SPMF 0.227 ± 0.004 0.252 ± 0.003 0.089 ± 0.003 0.101 ± 0.003 0.145 ± 0.009 0.119 ± 0.004 0.009 ± 0.000 0.011 ± 0.000 0.018 ± 0.000 0.017 ± 0.001
IncCTR 0.235 ± 0.007 0.284 ± 0.011 0.096 ± 0.003 0.118 ± 0.003 0.123 ± 0.006 0.149 ± 0.004 0.012 ± 0.001 0.012 ± 0.001 0.015 ± 0.000 0.017 ± 0.000
SML 0.241 ± 0.022 0.278 ± 0.007 0.104 ± 0.004 0.131 ± 0.003 0.183 ± 0.005 0.197 ± 0.004 0.020 ± 0.000 0.024 ± 0.001 0.023 ± 0.001 0.023 ± 0.002
IGCN (Ours) 0.433 ± 0.006 0.409 ± 0.013 0.202 ± 0.006 0.211 ± 0.003 0.265 ± 0.004 0.288 ± 0.003 0.046 ± 0.001 0.056 ± 0.001 0.037 ± 0.003 0.049 ± 0.004

Table 4: Ablation study on IGCN. “Seen” or “Unseen” means
users are observed or not during training, respectively.

Setting Models MovieLens 1M
F1-score@Top5 MRR@Top5 NDCG@Top5

Seen IGCN w/o GCN 0.054 ± 0.007 0.143 ± 0.009 0.180 ± 0.006
IGCN w/o MAML 0.057 ± 0.003 0.203 ± 0.001 0.234 ± 0.002
IGCN w/ GRU 0.065 ± 0.000 0.225 ± 0.002 0.257 ± 0.001
IGCN 0.071 ± 0.002 0.232 ± 0.002 0.265 ± 0.004

Unseen IGCN w/o MAML 0.050 ± 0.001 0.633 ± 0.002 0.657 ± 0.003
IGCN w/ MAML 0.052 ± 0.001 0.653 ± 0.001 0.683 ± 0.003

4.3 Ablation Study
4.3.1 The importance of GCN. We first conduct ablation study to
verify the importance of GCN to IGCN on MovieLens 1M dataset,
and the results are shown in Table 4. Due to the space limitation,

we only show the top5 recommendation results, and the top10
recommendation results have the same trends and thus are omitted.
From the results, we find that IGCN (with GCN) achieves the best
performance, which shows that GCN is important for IGCN. GCN
enables users and items to enrich their own representations from
their neighborhoods. Meanwhile, with the help of GCN, the user
features and item features can complement with each other, which
can help to improve the recommendation accuracy. Therefore, IGCN
with GCN can achieve better accuracy than IGCN w/o GCN.

4.3.2 The importance ofMAML. Weverify the importance ofMAML
to IGCN through two different settings on MovieLens 1M dataset: 1)
parameter initialization (seen), in which we use 𝑒𝑢 , 𝑒𝑖 trained from
MAML to initialize the parameters of IGCN; 2) new users (unseen),
in which we sample 680 new users who don’t appear in the training
phase for test. For the new users, 5% of their interactions are used



Table 5: Accuracy comparison between IGCN w/ TCN and
IGCN w/ iTCN.

Models MovieLens 1M
F1-score@Top5 MRR@Top5 NDCG@Top5

IGCN w/ TCN 0.070 ± 0.003 0.226 ± 0.005 0.259 ± 0.007
IGCN w/ iTCN 0.071 ± 0.002 0.232 ± 0.002 0.265 ± 0.004

to fine-tune users’ historical embedding and the rest interactions
are used to verify the effectiveness of MAML. The first setting can
verify whether MAML can help to achieve better representation
learning on seen users while the second setting can verify whether
MAML can address the new user issue in test time.

The results are summarized in table 4, in which we only present
the results for top 5 recommendation due to space limitation and
the top 10 recommendation results have the same trends. Note that
IGCN w/o MAML means IGCN use random initialization instead of
using MAML. We have the following observations from the results:
1) the initialization from MAML is significantly better than random
initialization; 2) the pretrained user embedding from MAML can in-
deed help to address the new users/items issue in test time. Overall,
the two experiments confirm that meta learning can help to address
both the parameter initialization issue and the new user/item issue
in recommendation tasks.

It should be noted that the comparison should only be done
within the same setting. It is reasonable for the MRR and NDCG in
the “Unseen” setting to be higher than those in the “Seen” setting,
because the rated items of each user in the “Unseen” setting is more
than those in the “Seen” setting, resulting in higher chance of being
ranked high. However, F1-score is not high due to small recalls.

4.3.3 The importance of iTCN. In this experiment, we verify the
effectiveness of iTCN on the MovieLens 1M dataset. We replace
iTCN to GRU in IGCN and keep IGCN w/ GRU incremental. By
comparing IGCN w/ GRU and IGCN w/ iTCN, we can verify the
effectiveness of iTCN. From the results shown in Table 4, we can
see that IGCN w/ iTCN has better prediction accuracy than IGCN
w/ GRU, which shows that the proposed iTCN can achieve better
performance than RNN-based method in our incremental recom-
mendation task. By reasonably setting the values of kernel size
and dilation, iTCN can remember more information than GRU and
ensure high accuracy by temporal-aware feature learning.

4.4 iTCN vs. TCN
To verify if iTCN is superior to TCN, we first compare the accuracy
of IGCN using iTCN and TCN, respectively. As shown in Table 5,
IGCN with iTCN achieves higher accuracy than IGCN with TCN in
all cases. The main reason is that iTCN only adopts one convolution
layer to extract feature from the raw input but TCN adopts hierar-
chical convolution layers so that part of the raw information may
be lost after multiple layers. In addition, TCN requires zero padding
at each convolution layer, which may also introduce information
loss, but iTCN requires only one padding. In summary, compared
to TCN, iTCN can avoid the information loss caused by excessive
padding and stacking multiple convolutional layers.

Figure 3: Efficiency comparison between IGCN and other in-
cremental CF algorithms. Here, IGCN w/ TCN means that
we replace the iTCN from IGCN with TCN.

We also compare the efficiency between iTCN and TCN. Note
that we implement TCN in an incremental form in this experiment,
but keep the original TCN structure. As shown in Figure 3, iTCN is
faster than TCN due to simplified structure. Although the overall
efficiency improvement seems small (∼3.6%), the time reported here
actually contains the time for training all components. If we only
compare the computation of iTCN and TCN, the improvement of
iTCN is as high as 53.4%. Due to higher accuracy and efficiency, we
believe iTCN is superior to TCN in our task.

4.5 Efficiency of Incremental Training
To compare the efficiency of IGCN against other incremental CF
algorithms, we conduct the efficiency analysis experiment on the
MovieLens 1M dataset, and show the training time of IGCN and the
other incremental algorithms for model updating in each new time
period in Figure 3. As we can see from the results, SML achieves
the highest efficiency. The training time of IGCN is comparable
with that of SML, which is over 2X more efficient than IncCTR and
SPMF. In addition, IGCN can achieve much higher recommendation
accuracy compared with the other incremental CF algorithms as
shown in Table 3. Thus, we claim that IGCN is more desirable
than the other state-of-the-art incremental CF algorithms due to
competitive efficiency and higher accuracy.

5 CONCLUSION
Incremental training of GNN models are challenging in collabora-
tive filtering and existing retraining or RNN-based methods cannot
optimally address this issue. This paper proposes the incremental
graph convolutional network, which leverages both GCN and incre-
mental temporal convolutional networks to perform incremental
GNN training with high accuracy and efficiency. MAML is adopted
to initialize the user/item embedding to speedup model adapta-
tion and alleviate cold-start issue. Experiments on five real-world
datasets show that IGCN can outperform state-of-the-art CF meth-
ods in sequential recommendation tasks. In addition, IGCN exhibits
competitive efficiency compared with incremental CF methods.
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