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Abstract

Confidence calibration is of great importance to the re-
liability of decisions made by machine learning systems.
However, discriminative classifiers based on deep neural
networks are often criticized for producing overconfident
predictions that fail to reflect the true correctness likelihood
of classification accuracy. We argue that such an inability to
model uncertainty is mainly caused by the closed-world na-
ture in softmax: a model trained by the cross-entropy loss
will be forced to classify input into one of K pre-defined
categories with high probability. To address this problem,
we for the first time propose a novel K+1-way softmax for-
mulation, which incorporates the modeling of open-world
uncertainty as the extra dimension. To unify the learning
of the original K-way classification task and the extra di-
mension that models uncertainty, we 1) propose a novel
energy-based objective function, and moreover, 2) theoret-
ically prove that optimizing such an objective essentially
forces the extra dimension to capture the marginal data dis-
tribution. Extensive experiments show that our approach,
Energy-based Open-World Softmax (EOW-Softmax), is su-
perior to existing state-of-the-art methods in improving con-
fidence calibration.

1. Introduction
Given the considerable success achieved so far by deep

neural networks (DNNs), one might be wondering if DNN-
based systems can be readily deployed to solve real-world
problems. On the one hand, DNNs can achieve high ac-
curacy if trained with large-scale datasets [15]. But on
the other hand, contemporary DNNs are often criticized
for producing overconfident predictions [14], which fail
to represent the true correctness likelihood of accuracy.
This has raised concerns over safety and reliability for
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using machine learning systems in real-world scenarios.
Having a confidence-calibrated system is critical. For in-
stance, in healthcare applications, the intelligence system
should produce low-confidence predictions when it is un-
certain about the input—say they differ significantly from
the training data—so the decision-making process can be
transferred to human doctors for more accurate diagno-
sis and safer handling. Research on confidence calibra-
tion for DNNs has received increasing attention in recent
years [14, 27, 19, 23, 27]. Since most classifiers are based
on softmax, a common practice to improve calibration is to
insert a temperature scaling parameter to the softmax func-
tion and adjust it in a validation set [14]. Besides, methods
like Smoothing labels [36, 28], which essentially combines
the one-hot ground-truth vector with a uniform distribution,
has also been shown effective in improving calibration.

However, most existing confidence calibration methods
have overlooked the underlying problem that causes neural
network classifiers to generate overconfident predictions,
i.e. the inability to model uncertainty in output probabili-
ties. We argue that the culprit for causing such a problem
is the closed-world nature in softmax [2, 34]. This is easy
to understand: during training the model is asked to classify
input into one of K pre-defined categories with high proba-
bility (due to the cross-entropy loss), and as such, the model
has no choice but to assign one of the K categories to any
unseen data, likely with high probability as well.

A potential countermeasure is to adopt a K + 1-way
formulation where the new category can represent uncer-
tainty about the input data. In this way, the K classification
scores might be better regularized, and hence better cali-
brated. However, learning such a classifier is challenging as
we do not have access to those data with the K + 1-th la-
bel, thus lacking supervision to teach the network when to
give low/high confidence. Furthermore, designing the extra
dimension is a non-trivial task as it is directly linked to the
formulation of the learning objective. It is also unclear how
such a dimension should be constructed, e.g., to design it as
another logit produced by the same network or an indepen-
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Figure 1. Comparison between (a) the conventional softmax and (b) our proposed Energy-based Open-World softmax (EOW-Softmax).
Our new formulation introduces an extra dimension to model uncertainty, which is supposed to produce high scores when the input deviates
from the training data distribution. In this way, the original K classification scores can be well calibrated.

dent branch that regresses to uncertainty.
In this paper, we propose Energy-based Open-World

Softmax (EOW-Softmax), a novel approach that introduces
a K + 1-way softmax based on energy functions [25].
Specifically, the neural network classifier is designed to pro-
duce K+ 1 logits, where the first K dimensions encode the
scores for the original K-way classification task, while the
extra dimension aims to model open-world uncertainty. See
Figure 1 for a comparison between a model based on the
conventional softmax and that based on our EOW-Softmax.
Besides, we resort to an energy-basedK+1-way classifica-
tion objective function to unify the learning of the K-way
classification task and the uncertainty modeling. Further
more, we theoretically justify that optimizing the proposed
objective function essentially forces the summation of orig-
inal K softmax scores (K + 1 scores in total) to be directly
proportional to the marginal density p(x), hence explain-
ing why our EOW-Softmax helps calibrate a model’s confi-
dence estimates.

The contributions of this paper are summarized as fol-
lows. 1) First, we overcome the closed-world softmax prob-
lem by transforming the conventional K-way softmax to a
novel K + 1-way formulation, where the extra dimension
is designed to model open-world uncertainty. 2) Second, a
novel energy-based objective function is developed to unify
the learning of the original K-way classification task and
the uncertainty modeling. 3) A theoretical proof is further
provided to explain why our learning objective can help the
network capture uncertainty. 4) Finally, we conduct exten-
sive experiments on standard benchmark datasets to demon-

strate that our method can lead to a better calibrated model
compared with other state-of-the-arts.

2. Related Works

Confidence Calibration With the emergence of deep
learning technologies and their wide successes, concerns
over whether they are reliable to be deployed in practice
have also arisen. This is because researchers have found
that contemporary deep neural networks (DNNs) often pro-
duce overconfident predictions [14], even on input images
that are totally unrecognizable to humans [32]. Many ap-
proaches for improving confidence calibration have been
developed. A widely used method is temperature scal-
ing [14, 27, 19], which inserts a scaling parameter to the
softmax formulation (called ‘temperature’) and adjusts it in
a validation set with a goal to ‘soften’ the softmax prob-
abilities. Regularization methods, such as label smooth-
ing [36] and Mixup [37], have also been demonstrated ef-
fective in improving calibration. In particular, label smooth-
ing modifies the ground-truth labels by fusing them with a
uniform distribution, essentially forcing neural networks to
produce ‘more flattened’ probabilities; whereas Mixup is
a data augmentation method that randomly mixes two in-
stances at both the image and label space, with a byproduct
effect of improving calibration. Bayesian methods have also
been explored for calibration. For instance, Monte Carlo
Dropout [7] applies dropout in both training and testing;
Deep Ensembles [23] uses as prediction the output averaged
over an ensemble of models. Adding adversarial perturba-



tions to the input has been found effective in smoothing the
output probabilities [23, 27]. In [26], a GAN model [11] is
trained to generate out-of-distribution (OOD) data and the
classifier is encouraged to produce low-confidence proba-
bilities on these data. Such an idea has also been investi-
gated in [16] where adversarial perturbations are utilized to
synthesize OOD data. In [12], a Joint Energy-based Model
(JEM) is proposed to improve calibration by learning the
joint distribution based on energy functions [25]. A recent
work [38] suggests that calibrating confidence across mul-
tiple domains is beneficial to OOD generalization [42].

Studies on why neural networks produce overconfident
predictions have also been covered in the literature. In [16],
the authors suggest that ReLU neural networks are essen-
tially piecewise linear functions, thus explaining why OOD
data can easily cause softmax classifiers to generate highly
confident output. In [30], the authors identify that data vari-
ance and model curvature cause most generative models to
assign high density to OOD data. The authors in [34] point
out that the overconfidence issue is related to the closed-
world assumption in softmax, and design a distance-based
one-vs-all (OvA) classifier as the countermeasure.

Two works related to ours are JEM [12] and the OvA
classifier [34]. Compared with JEM, our approach is much
easier to train because we only need to optimize a single
classification objective to achieve both discriminative clas-
sifier learning and generative modeling (see Sec. 3.3), while
JEM has to simultaneously optimize two separate objec-
tives. Moreover, JEM has ignored the closed-world softmax
issue, which is addressed in this work with an augmented
softmax. Compared with the OvA classifier, our approach is
significantly different: we endow the classifier with the abil-
ity to model open-world uncertainty, which is attributed to
the extra dimension in softmax learned via a novel energy-
based objective function to capture the marginal data dis-
tribution; in contrast, the OvA classifier converts the K-
way classification problem into multiple binary classifica-
tion problems.

Energy-Based Models (EBMs) have been widely used
in the area of generative modeling [41, 8, 1, 4]. The ba-
sic idea in EBMs is to learn dependencies between vari-
ables (e.g., images and labels) represented using energy
functions; and to assign low energies to correct configura-
tions while give high energies to incorrect ones [25]. How-
ever, training EBMs, especially on high-dimensional data
like images, has been notoriously hard due to sampling is-
sues [21, 13]. A widely used sampler is Stochastic Gradient
Langevin Dynamics (SGLD) [39], which injects noises to
the parameter update and anneals the stepsize during the
course of training. Following prior work [33, 6, 12], we
also leverage SGLD to optimize our energy-based objective
function.

3. Methodology

According to [34], we argue that the culprit for causing
the overconfidence problem in most neural network classi-
fiers’ output is the closed-world nature in softmax. As a
result, a model trained by the cross-entropy loss has to pick
one of K pre-defined categories with high confidence. To
overcome this problem, we propose Energy-based Open-
World Softmax, or EOW-Softmax, to regularize the K-way
classification scores in such a way that allows their confi-
dence to be calibrated.

The main idea in EOW-Softmax is to re-formulate the
original K-way classification task as a novel K+1-way
classification problem, where the extra dimension is de-
signed to model open-world uncertainty. To learn such a
K+1-way classifier in an end-to-end manner, we propose
a novel energy-based objective function, which essentially
forces the extra dimension to be negatively correlated to the
marginal data distribution. In this way, the K classification
scores are automatically calibrated to be less confident over
input fallen beyond the training data distribution. See Fig-
ure 2 for an overview of our model architecture.

The rest of this section are organized as follows. In
Sec. 3.1, we provide a brief background on energy-based
models (EBMs), which are required by our approach to con-
struct the objective function. In Sec. 3.2, we discuss in de-
tail the design of EOW-Softmax. Sec. 3.3 gives a theoretical
insight on why EOW-Softmax can help calibrate a model’s
confidence estimates.

3.1. A Brief Background on EBMs

The main building block in EBMs is an energy function
Eθ : RD → R (parameterized by θ), which aims to map
a D-dimensional datapoint to a scalar.1 The learning is de-
signed in such a way that Eθ can assign low energies to ob-
served configurations of variables while give high energies
to unobserved ones [25]. With Eθ, any probability density
p(x) for x ∈ RD in an EBM can be written as

pθ(x) =
exp(−Eθ(x))

Z(θ)
, (1)

where Z(θ) =
∫
x

exp(−Eθ(x)) denotes the normalizing
constant, also known as the partition function. An EBM can
be represented by using any function as long as the function
can generate a single scalar given some input x. In this
work, we assume Eθ is represented by a deep neural net-
work. People usually adopt gradient estimation to optimize
an EBMs [21, 13] and sample data from it by Markov Chain
Monte Carlo (MCMC) methods [9, 10, 18, 39].

1When the input is an image, D can be understood as the length of the
flattened tensor.
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Figure 2. Model architecture of our approach EOW-Softmax. The extra dimension introduced in the augmented softmax (dashed) is learned
using an energy-based function to model open-world uncertainty, such that it can assign high uncertainty scores to abnormal input far away
from the training data distribution, which in turn lower the classifier’s confidence on the original K-way classification task. Note that the
sampling in SGLD is performed on the latent (feature) space rather than the input (image) space.

3.2. Energy-Based Open-World Softmax

Open-World Softmax As discussed before, conven-
tional softmax-based classifiers lack the ability to model
open-world uncertainty. To address this problem, we de-
sign a neural network classifier to output probabilities on
K+ 1 categories (see Figure 2), with the K+1-th score rep-
resenting open-world uncertainty—the network should be
able to produce high uncertainty scores to abnormal input,
which in turn can lower the confidence on the original K
categories’ prediction. Let fθ : RD → RK+1 be our neural
network model (excluding the softmax layer), which pro-
duces K + 1 logits, and fθ(x)[i] the i-th logit given input
x, with i ∈ {1, ...,K,K + 1}. The output probabilities can
then be obtained by passing these K + 1 logits to a softmax
normalization layer, i.e.

hθ(x)[i] =
exp(fθ(x)[i])∑K+1
j=1 exp(fθ(x)[j])

, (2)

where hθ is the combination of the neural network fθ and
the softmax normalization layer.

Energy-Based Learning Objective Now the question is
how to design a learning objective that allows hθ(x)[K+1]
to encode uncertainty? Our idea here is to associate the
score of hθ(x)[K + 1] to the marginal data distribution.
Intuitively, when the input comes from within the training
data distribution p(x), the model is supposed to be confident
in its decision, and therefore, hθ(x)[K + 1] should be low
(conversely,

∑K
i=1 hθ(x)[i] should be high). If the input de-

viates from the training data distribution, the model should

become uncertain about whether its decision is correct. In
this case, hθ(x)[K + 1] should be high to indicate a higher
level of uncertainty, which naturally forces

∑K
i=1 hθ(x)[i]

to stay low (due to the softmax normalization).
However, directly training hθ(x)[K + 1] to capture the

marginal distribution p(x) (i.e. generative modeling) is dif-
ficult [30]. Instead, we propose a novel learning objective
with the help of EBMs [25]. First, we define our energy
function as

Eθ(x) = log hθ(x)[K + 1]. (3)

Then, our energy-based objective function is defined as

min
θ

Ep(x)

[
−log hθ(x)[y]

]
+λEpθ̄(x)

[
−log hθ(x)[K+1]

]
,

(4)
where λ > 0 is a hyper-parameter; the first term is the max-
imum log-likelihood objective for the K-way classification
task using the ground-truth label y; the second term can also
be seen as maximum log-likelihood objective—for recog-
nizing data sampled from pθ̄(x). Note that pθ̄(x) denotes
the model distribution with frozen parameters of pθ(x) of
current iteration (pθ̄(x) will always be the same as pθ(x)
but without the gradient calculation of θ since parameter θ
is frozen here and θ̄ should be regarded as a constant in each
updates). We will show later in Sec. 3.3 that optimizing
Eq. (4) can actually lead the summation of rest K softmax
scores of original classes to be directly proportional to the
marginal density p(x), which in turn can make theK+1-th
softmax score be negatively correlated to p(x).



SGLD-Based Optimization We approximate the expec-
tation in the second term in Eq. (4) using a sampler based
on Stochastic Gradient Langevin Dynamics (SGLD) [39].
Specifically, the SGLD sampling process follows

zt+1 = zt −
α

2

∂Eθ(zt)

∂zt
+
√
αε, ε ∼ N (0, I), (5)

where t denotes the SGLD iteration, α the step-size, and
ε a random noise sampled from a normal distribution. In
practice, α is usually fixed as a constant.

Most SGLD-based methods draw samples from the im-
age space. This forces the information to flow through the
entire neural network, which is computationally expensive.
Inspired by [4], we choose to draw samples from the la-
tent space (see Figure 2). Therefore, z in Eq. (5) repre-
sents features rather than an image. Such a design signif-
icantly accelerates the training since the information only
goes partially through the network model, which allows
much deeper architectures such as ResNet-101 [15] to fit
into limited resources. Moreover, the latent space is typi-
cally smoother than the image space [3], which facilitates
the estimate of gradients.

3.3. Theoretical Insight

In order to prove that our objective can force hθ(x)[K +
1] to be negatively correlated with p(x), i.e. representing
uncertainty, we tend to show that in theory, optimizing our
objective in Eq. (4) is equivalent to minimize the KL diver-
gence between p(x) and another EBM-modeled distribution
qθ(x)2, where qθ(x) is defined by energy function

E′θ(x) = − log

K∑
i=1

hθ(x)[i]. (6)

To this end, we introduce an extra objective

min
θ

Ep(x)

[
− log hθ(x)[y]

]
+ Eqθ̄(x)

[
log

K∑
i=1

hθ(x)[i]

]
,

(7)
Similar to Eq. (4), here θ̄ means the parameters are

frozen. We will show that optimizing Eq. (4) essentially
optimize Eq. (7) and optimizing Eq. (7) is an equivalent of
minDKL(p(x)||qθ(x)) in following Proposition 1 and The-
orem 1, respectively.

Proposition 1. Given two EBMs pθ̄(x) and qθ̄(x) with en-
ergy functions defined in Eqs. (3) and (6) respectively, the
optimization of Eq. (4) is actually equivalent to optimize
a combination of one K-way classification objective and
Eq. (7) with some suitable coefficient µ.

2It is worth noting that this qθ(x) is not the modeled EBMs pθ(x) in
Sec. 3.2.

Proof. Since the first optimization term in Eq. (7) is iden-
tical with Eq. (4) as well as the objective of maximum log-
likelihood of K-way classification problems, we only need
to consider the second terms in both equations and prove
that they are equivalent to each other. Specifically, for the
gradient of the second term of Eq. (7), we have3

∂

∂θ
Eqθ̄(x)

[
log

K∑
i=1

hθ(x)[i]
]

(8)

=

∫
x

qθ̄(x)
∂

∂θ
log

K∑
i=1

hθ(x)[i] (9)

=

∫
x

K∑
i=1

hθ(x)[i]

Z ′(θ)
·

∂
∂θ

K∑
i=1

hθ(x)[i]

K∑
i=1

hθ(x)[i]

(10)

=
1

Z ′(θ)

∫
x

∂

∂θ

K∑
i=1

hθ(x)[i] (11)

= − 1

Z ′(θ)

∫
x

∂

∂θ
hθ(x)[K + 1] (12)

= − Z(θ)

Z ′(θ)

∫
x

hθ(x)[K + 1]

Z(θ)
·
∂
∂θhθ(x)[K + 1]

hθ(x)[K + 1]
(13)

= − Z(θ)

Z ′(θ)

∫
x

pθ̄(x)
∂

∂θ
log hθ(x)[K + 1], (14)

where Z ′(θ) and Z(θ) represents the partition functions of
qθ(x) and pθ(x) respectively. If we use µ to denote Z(θ)

Z′(θ) ,
we can restate the Eq. (14) as

µ
∂

∂θ
Epθ̄(x)

[
− log hθ(x)[K + 1]

]
,

which is exactly the gradient of Eq. (4)’s second term. As a
result, the objective of Eq. (4) and of Eq. (7) are same under
a suitable coefficient µ in each iteration. Further more, re-
membering that the first term of Eq. (4) is an equivalent of
the objective of maximum log-likelihood ofK-way classifi-
cation problems, we consequently conclude that optimizing
our objective of Eq. (4) essentially optimize Eq. (7) and a
K-way classification objective.

According to Proposition 1, we know that our learning
objective of Eq. (4) can optimize the discriminative K-way
classification objective and the generative modeling objec-
tive in a unified discriminative objective, which has never
been explored in existing confidence calibration work.

3The equality between Eqs. (9) and (10) holds because qθ̄(x) =

qθ(x) =

K∑
i=1

hθ(x)[i]

Z′(θ) and ∂
∂θ

log
K∑
i=1

hθ(x)[i] =

∂
∂θ

K∑
i=1

hθ(x)[i]

K∑
i=1

hθ(x)[i]

.



Moreover, if we can further prove that optimizing Eq. (7)
is de facto an equivalent of minimizing the KL-divergence
between p(x) and the distribution qθ(x), then our objective
of Eq. (4) could minimize this KL-divergence either due to
Proposition 1. To prove that, we need to recur to Lemma 1
based on [21], which shows how to efficiently compute the
gradient of the KL divergence between the real distribution
and an approximated distribution modeled via EBMs.

Lemma 1. Given a training dataset with data {x} sampled
from distribution r(x), and an energy model distribution
rφ(x) parameterized by φ and associated to an energy func-
tion Eφ(x), the objective of minimizing DKL(r(x)||rφ(x))
can be optimized by descending the following gradient w.r.t
φ,

E
x+∼r(x)

[
∂Eφ(x+)

∂φ

]
− E
x−∼rφ(x)

[
∂Eφ(x−)

∂φ

]
. (15)

The proof can refer [21]. By descending the gradient
in Eq. (15), the first term decreases the energy of samples
x+ drawn from the data distribution, while the second term
increases the energy of samples x− drawn from the energy
model distribution.

Based on Lemma 1, we can introduce following theorem
followed by a proof.

Theorem 1. Let p(x) denote the training data distribution,
and qθ(x) the energy model distribution represented by the
energy function E′θ(x) defined in Eq. (6), we can achieve
minimization of DKL(p(x)||qθ(x)) by optimizing Eq. (7).

Proof. According to Lemma 1, the KL divergence between
p(x) and qθ(x) can be optimized by descending the gradi-
ent in Eq. (15). We can replace the need of computing ex-
pectation over the parameterized density qθ(x) in Eq. (15)
by fixing the parameters θ, denoted by qθ̄(x) 4. As such,
Eq. (15) is converted to

Ep(x)

[
∂E′θ(x)

∂θ

]
− Eqθ̄(x)

[
∂E′θ(x)

∂θ

]
. (16)

Now we can optimize DKL(p(x)||qθ(x)) via an objective
Ep(x)

[
E′θ(x)

]
−Eqθ̄(x)

[
E′θ(x)

]
which holds a numerically

same gradient with regard to θ as Eqs. (16) and (15). Then

4only the numerical value of Eq. (15) matters in optimization process.

we have5

Ep(x)

[
E′θ(x)

]
− Eqθ̄(x)

[
E′θ(x)

]

= Ep(x)

[
− log

K∑
i=1

hθ(x)[i]

]
+ Eqθ̄(x)

[
log

K∑
i=1

hθ(x)[i]

]

≤ Ep(x)

[
− log hθ(x)[y]

]
+ Eqθ̄(x)

[
log

K∑
i=1

hθ(x)[i]

]
.

(17)
Therefore, Eq. (7) is an upper bound of an equivalent variant
of the KL-divergence between p(x) and qθ(x).

Combing Proposition 1 and Theorem 1, we can
conclude that our objective of Eq. (4) can minimize
DKL(p(x)||qθ(x)). Therefore, once our objective con-
verged, we obtain p(x) ' qθ(x) =

exp(−E′θ(x))
Z′(θ) ∝

K∑
i=1

hθ(x)[i], which result in the summation of K softmax

scores of original classes to be directly proportional to the
marginal density p(x) and in turn make the K + 1-th soft-
max score be negatively correlated to p(x).

3.4. Experimental Setup

Settings We adopt three settings to evaluate our ap-
proach. 1) Confidence Calibration: This aims to evaluate
the effectiveness of a method in improving confidence cali-
bration. Following [40], we use four datasets: MNIST [24]
(MLP), CIFAR-10 [22] (VGG11 [35]), CIFAR-100 [22]
(ResNet50 [15]), and Tiny-ImageNet [5] (ResNet50). Net-
work architectures used for these datasets are indicated in
the parentheses. 2) OOD Detection: A ResNet50 classifier
is trained on CIFAR-100 and tested on the combination of
CIFAR-100’s test split and an OOD dataset, i.e. CIFAR-10
and SVHN [31]. The goal for the classifier is to assign low
confidence to as many OOD samples as possible. The accu-
racy is computed on predictions with confidence higher than
a threshold. 3) Robustness under Corruption: A classifier is
trained on CIFAR-100. Its calibration performance is evalu-
ated on CIFAR-100-C [17], where the images are perturbed
by 19 different corruptions with five intensity levels.
Baselines We compare our approach with nine base-
line methods: MC-Dropout [7], Temperature Scaling [14],
Mixup [37], Label Smoothing [36], TrustScore [20],
JEM [12], DBLE [40], and OvA DM [34].
Evaluation Metrics Following prior work [14], we use
two metrics to assess how well the confidence in a model’s
predictions is calibrated, namely Expected Calibration Er-
ror (ECE) [29] and Negative Log-Likelihood (NLL). The

5the inequality holds because of the fact ∀y ≤ K,
K∑
i=1

hθ(x)[i] ≥

hθ(x)[y].



Table 1. Comparison between our approach EOW-Softmax and nine baselines on four benchmark datasets. It is clear that our approach
generally leads to a better calibrated model than the baselines (lower ECE & NLL), while maintaining the accuracy. ↑: the higher the
better. ↓: the lower the better.

Method
MNIST (MLP) CIFAR10 (VGG11) CIFAR100 (ResNet50) Tiny-ImageNet (ResNet50)

Acc% ↑ ECE% ↓ NLL ↓ Acc% ↑ ECE% ↓ NLL ↓ Acc% ↑ ECE% ↓ NLL ↓ Acc% ↑ ECE% ↓ NLL ↓
Vanilla Training 98.32 1.73 0.29 90.48 6.30 0.43 71.57 19.1 1.58 46.71 25.2 2.95
TrustScore [20] 98.32 2.14 0.26 90.48 5.30 0.40 71.57 10.9 1.43 46.71 19.2 2.75
MC-Dropout [7] 98.32 1.71 0.34 90.48 3.90 0.47 71.57 9.70 1.48 46.72 17.4 3.17

Label Smoothing [36] 98.77 1.68 0.30 90.71 2.70 0.38 71.92 3.30 1.39 47.19 5.60 2.93
Mixup [37] 98.83 1.74 0.24 90.59 3.30 0.37 71.85 2.90 1.44 46.89 6.80 2.66
JEM [12] 97.23 1.56 0.21 90.36 3.30 0.34 70.28 2.46 1.31 45.97 5.42 2.47

OvA DM [34] 96.67 1.78 0.27 89.56 3.55 0.37 70.11 3.58 1.40 45.55 4.22 2.50
Temperature Scaling [14] 95.14 1.32 0.17 89.83 3.10 0.33 69.84 2.50 1.23 45.03 4.80 2.59

DBLE [40] 98.69 0.97 0.12 90.92 1.50 0.29 71.03 1.10 1.09 46.45 3.60 2.38
EOW-Softmax (ours) 98.91 0.88 0.15 90.24 1.57 0.25 71.33 1.08 1.03 46.97 3.45 2.22

Intensity Level of Corruption

Figure 3. Results on CIFAR-100-C. Each bar represents the mean ECE on 19 different corruptions, with the vertical line segment denoting
the standard deviation. In general, EOW-Softmax achieves the lowest ECE under five different corruption levels.

lower the ECE/NLL, the better the calibration performance.
Below we explain in detail how these two metrics are cal-
culated.

ECE approximates the expectation of the difference be-
tween accuracy and confidence (i.e. the likelihood on the
predicted label ŷ), which can reflect how well the predic-
tion confidence aligns with the true accuracy. Specifically,
the confidence estimates made on all test samples are par-
titioned into L equally spaced bins (following [14, 40, 34],
L = 15), and the difference between the average confidence
and accuracy within each bin Il is calculated,

ECE =

L∑
l=1

1

N
|
∑
x∈Il

p(ŷ|x)−
∑
x∈Il

1(ŷ = y)|, (18)

whereN denotes the total number of samples in the test set.
NLL computes the average negative log-likelihood on all

test samples,

NLL = − 1

N

N∑
m=1

log p(ŷm|xm). (19)

Implementation Details We use the SGD optimizer with
the learning rate of 1e-4, the momentum of 0.9, and the
weight decay of 5e-4. The batch size is set to 64. The num-
ber of epochs is 200. The learning rate is decayed by 0.1 at
the 100-th and 150-th epoch, respectively. For SGLD, we
use a constant step size of 2 and a standard deviation of 1e-3

(see Eq (5)). The number of updates in each SGLD round is
set to 100. To ensure that the results are convincing, we run
each experiment 5 times with different random seeds and
average their results. The source code for reproducing our
results will be released.

3.5. Main Results

Confidence Calibration We first evaluate the calibra-
tion performance on four standard datasets, namely MNIST,
CIFAR-10/100 and Tiny-ImageNet. The results are shown
in Table 1. In general, our approach EOW-Softmax obtains
the best overall calibration performance on most datasets.
Comparing with Vanilla Training, we observe that our
EOW-Softmax achieves a similar test accuracy, while sig-
nificantly improves the calibration performance in terms of
ECE, especially on the three challenging datasets with natu-
ral images—6.30%→1.57% on CIFAR-10, 19.1%→1.08%
on CIFAR-100, and 25.2%→3.45% on Tiny-ImageNet.
These results strongly suggest that our energy-based open-
world uncertainty modeling has great potential for real-
world applications as it shows a good balance between test
accuracy and calibration performance.

JEM and OvA DM are two related methods to ours.
JEM is based on joint distribution modeling while OvA DM
transforms the conventional softmax classifier to a distance-
based one-vs-all classifier. The comparison with these two
methods shows that our approach is clearly better in all met-
rics, which advocates our design of the K+1-way softmax



for modeling open-world uncertainty.
Compared with the top-performing baselines, i.e. Tem-

perature Scaling and DBLE, our EOW-Softmax is highly
competitive—it obtains the best ECE on all datasets except
CIFAR-10 where the performance is only slightly worse
than DBLE. Among these three methods, EOW-Softmax
performs the best in maintaining the original test accuracy,
whereas Temperature Scaling has to sacrifice the test accu-
racy in exchange for improvement on ECE. This is because
for fair comparison (all methods only have access to the
training set), Temperature Scaling has to separate a valida-
tion set out from the original training set for tuning its scal-
ing parameter, which reduces the amount of training data.

OOD Detection We follow [34] to simulate real-world
scenarios by training a classifier on CIFAR-100 and testing
on the combination of CIFAR-100’s test set and an OOD
dataset (CIFAR-10/SVHN). The classifier is required to as-
sign low confidence to OOD samples such that their predic-
tions can be rejected by a pre-defined threshold. The results
are reported in Table 2 where we compare our approach
with JEM and OvA DM (as these two methods are most
related to ours), as well as the vanilla training method. The
probability threshold is linearly increased from 0 to 0.75.
Only predictions with confidence higher than this threshold
are kept. From the results, we observe that EOW-Softmax
outperforms all baselines with clear margins in different
thresholds (except 0). This indicates that a classifier trained
with EOW-Softmax suffers much less from the overconfi-
dence problem than the competitors, and is thus safer to be
deployed in practical applications.

Robustness under Corruption We also evaluate our ap-
proach on corrupted images, i.e. CIFAR-100-C, and com-
pare with JEM and OVA DM. Specifically, there are five
different intensities of corruption as defined in [17], each
with 19 different corruption types. Under each intensity
level of corruption, we test a model’s ECE on images of
all corruption types, and report their average result and the
standard deviation. The comparison is illustrated in Fig-
ure 3. Overall, EOW-Softmax performs favorably against
JEM and OVA DM, as well as the vanilla training baseline.
Though both EOW-Softmax and JEM are based on energy
models for generative modeling, JEM clearly has a larger
variation in performance among different corruption types.
This is because JEM is more difficult to train—it optimizes
the log-likelihood of distribution independently from the
classifier learning. In contrast, the ‘generative modeling’ in
EOW-Softmax is seamlessly integrated into the K+1-way
classification task, which has a better training stability.

3.6. Ablation study

Hyper-parameter Recall that λ in Eq. (4) balances
between the standard K-way classification loss and the

Table 2. Test accuracy on the combination of in-distribution and
OOD test set using ResNet50 trained on CIFAR-100.

OOD dataset Method
Probability threshold

0 .25 .5 .75

CIFAR10

Vanilla Training 37.24 42.31 47.67 58.90
JEM [12] 42.55 46.88 0.53 63.21

OvA DM [34] 39.78 48.54 54.31 65.20
EOW-Softmax 37.65 50.11 57.32 69.00

SVHN

Vanilla Training 20.24 21.33 24.38 26.90
JEM [12] 19.87 22.57 26.22 30.75

OvA DM [34] 20.08 23.99 26.08 30.32
EOW-Softmax 20.21 25.58 28.13 32.68

Table 3. Ablation study on the impact of λ in Eq. (4).

Model λ
CIFAR10

Acc% ↑ ECE% ↓ NLL ↓

VGG11
1 89.81 2.11 0.28

0.1 90.24 1.57 0.25
0.01 90.11 3.37 0.36

Model λ
CIFAR100

Acc% ↑ ECE% ↓ NLL ↓

ResNet50
1 70.26 1.33 1.24

0.1 71.33 1.08 1.03
0.01 71.51 2.31 1.31

Table 4. Ablation on where to apply the SGLD sampling.

Position Acc% ↑ ECE% ↓ Second/Iter ↓
Pixel space 73.94 1.89 25.15

Feature stage 1 73.21 2.09 10.31
Feature stage 2 73.48 1.73 5.21
Feature stage 3 73.05 2.17 2.37

energy-based loss for uncertainty modeling. We experiment
with different values (1, 0.1, and 0.01) on CIFAR-10/100 to
see the impact of this hyper-parameter. The results in Ta-
ble 3 show that λ = 0.1 leads to the best calibration perfor-
mance (lowest ECE values) on both datasets.

Where to Apply the SGLD Sampling? In our approach,
SGLD sampling is applied to the latent feature space rather
than the pixel space as in most EBMs. To justify this design,
we experiment on CIFAR-100 with different variants of our
approach where the SGLD sampling is applied to different
positions, including the pixel space, stage-1, stage-2, and
stage-3 (in the neural network). In addition to the test accu-
racy and the ECE, we also report the training speed (second
per iteration) measured using a Tesla K80 GPU. Table 3
shows that applying the SGLD sampling to the pixel space
incurs huge computation overhead, while shifting the sam-
pling to the latent space significantly improves the training
speed without sacrificing the calibration performance.



4. Conclusions

This paper has addressed the closed-world problem in
softmax that causes neural network classifiers to produce
overconfident predictions. Specifically, a novel K + 1-
way softmax formulation was introduced, where the extra
dimension was designed to model open-world uncertainty.
This endows the classifier with the ability to identify input
that deviate from the training data distribution by assign-
ing them higher uncertainty scores, which in turn lower the
original K classification scores to calibrate the predictive
confidence. A novel energy-based objective function was
proposed to end-to-end learn theK+1-way classifier, along
with a theoretical proof to justify the design. Extensive ex-
periments on standard benchmark datasets and comprehen-
sive ablation studies have been provided to demonstrate the
effectiveness of our approach for improving confidence cal-
ibration.
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