
CoPE: Modeling Continuous Propagation and Evolution on
Interaction Graph

Yao Zhang
∗

yaozhang@fudan.edu.cn

Shanghai Key Laboratory of Data Science, School of

Computer Science, Fudan University

Shanghai, China

Yun Xiong
†

yunx@fudan.edu.cn

Shanghai Key Laboratory of Data Science, School of

Computer Science, Fudan University

Shanghai Institute for Advanced Communication and Data

Science

Shanghai, China

Dongsheng Li

Caihua Shan

Kan Ren

dongsli@microsoft.com

caihuashan@microsoft.com

kanren@microsoft.com

Microsoft Research Asia

Shanghai, China

Yangyong Zhu

yyzhu@fudan.edu.cn

Shanghai Key Laboratory of Data Science, School of

Computer Science, Fudan University

Shanghai Institute for Advanced Communication and Data

Science

Shanghai, China

ABSTRACT
Human interactions with items are being constantly logged, which

enables advanced representation learning and facilitates various

tasks. Instead of generating static embeddings at the end of training,

several temporal embedding methods were recently proposed to

learn user and item embeddings as functions of time, where each

entity has a trajectory of embedding vectors aiming to encode the

full dynamics. However, these methods may not be optimal to en-

code the dynamical behaviors on the interaction graphs in that they

can not generate “fully”-temporal embeddings and do not consider

information propagation. In this paper, we tackle the issues and

propose CoPE (Continuous Propagation and Evolution). We use an

ordinary differential equation based graph neural network to model

information propagation and more sophisticated evolution patterns.

We train CoPE on sequences of interactions with the help of meta-

learning to ensure fast adaptation to the most recent interactions.

We evaluate CoPE on three tasks and prove its effectiveness.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; Neural networks; • Information systems→ Recommender

systems.
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1 INTRODUCTION
Human interactions with other objects are constantly being logged

and collected. These interactions comprise rich information which

could facilitate a series of related tasks like anomalous activity

detection and future interaction prediction. Within these applica-

tions, representation learning [20, 26, 27] lays the foundation of

many recent state-of-the-art algorithms. Some methods [18] learn

low-dimensional vector representations, i.e., embeddings, for users

and items by matrix factorization. Considering that user-item inter-

actions can be organized as a timestamped bipartite graph called

interaction graph (Figure 1(a)), some methods utilize graph neural

networks (GNNs) [11, 22] to learnmore powerful representations by

capturing information from connectivities. Once we have obtained

the representations, probabilities of interacting can be computed

from the corresponding user and item representations with simple

functions, e.g., multi-layer perceptrons or inner product.

These methods assume user interests and item features are con-

stant and only assign static embeddings to users and items at the

end of training. This is contrary to the dynamic nature of the real

world, where interactions happen sequentially. As shown in the

literature [5, 9, 19], users and items are evolving over time. For

instance, the drifts of user interests can be reflected by items he/she

bought. Item features, e.g., popularity and seasonal variations, are

also changing over time. Therefore, evolution methods including
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Figure 1: An example interaction graph (a) and temporal em-
beddings of user nodes generated by differentmethods (b-d).
Circles on the curves represent discontinuity points where
interactions have direct impacts on the nodes. For illustra-
tion purposes, the embedding is viewed as thewillingness to
go outdoors. (a) An interaction graph is a user-item bipartite
graph with timestamped edges. (b) DeepCoevolve [5] gener-
ates piecewise constant embeddings. (c) JODIE [19] uses lin-
ear functions to estimate embeddings between observations.
These two models would not update embeddings until rele-
vant interactions occur. For example, Alice was still willing
to go outdoors even a pandemic outbroke at 𝑡2 since there is
no other interactions involving Alice. (d) We propose CoPE
utilizing an ordinary differential equation based graph neu-
ral network tomodel information propagation andmore so-
phisticated evolution patterns. (e) We annotate Alice’s em-
bedding in Figure 1(d) to illustrate the continuous evolution
and propagation on the interaction graph.

DeepCoevolve [5] and JODIE [19] are proposed to learn temporal

embeddings of users and items, i.e., embeddings that are functions

of time. As such, users and items could have trajectories of embed-

ding evolving over time, which encodes their full dynamics.

However, most existing methods fail to learn “fully” temporal

embeddings and do not consider information propagation. They

assume that an interaction would only influence the involved user

and item. For instance, DeepCoevolve [5] would not update a user’s

(or an item’s) embedding until a relevant interaction occurs, re-

sulting in piecewise constant embeddings as shown in Figure 1(b);

though JODIE introduces a linear projection operation (Figure 1(c))

trying to predict future embeddings, it has the same issue. The

embeddings produced by DeepCoevolve or JODIE follow the same

trend after the last relevant interaction even when the world may

have changed dramatically. For example, we may explain one di-

mension of embeddings as the willingness to go outdoors as shown
in Figure 1(b)-(c). Since there is no interaction after 𝑡1 for Alice,

she still wanted to go outdoors even a pandemic outbroke at 𝑡2.

Similarly, Bob would not know the pandemic was over at 𝑡3 and

kept the low willingness. For both DeepCoevolve and JODIE, a

node only involved in an earlier interaction would not be updated

anymore and can hardly be aware of how the world is going.

As pointed out by [13], people are influenced by others when

making decisions. Even without social networks, these connections

among users can be inferred from the interaction graph, on which

impacts of interactions would be spread. So an interaction would

eventually influence other users and items, i.e., information propa-

gation. On the other hand, the continuous evolution patterns are

more than linear in the real world. Take the embedding (i.e., willing-
ness to go outdoors) of Alice as an example as illustrated in Figure

1(e). After playing basketball at 𝑡1, Alice’s willingness was growing

steadily. But at 𝑡2 an pandemic outbroke, and Bob and Carl bought

masks and told Alice this information. Alice might underestimate

it but then realized the severity. At 𝑡3 the pandemic was over, and

Carl went camping. This information was propagated to Alice, and

Alice recovered her willingness. DeepCoevolve and JODIE fail to

capture these phenomena.

In this paper, we tackle the above issues and propose CoPE

(Continuous Propagation and Evolution). As the name implies, we

model both continuous propagation and evolution simultaneously

on the interaction graph as illustrated in Figure 1(d) and (e). Specif-

ically, the most important component of CoPE is the continuous

propagation and evolution unit. It utilizes an ordinary differential

equation (ODE) [4] based graph neural network, CGNN [33], to

evolve node representations and propagate information continu-

ously. Since the continuous nature is modeled by an ODE, we can

model more sophisticated patterns of evolution than linear ones in

JOIDE. Meanwhile, the propagation is also modeled thanks to the

graph neural network. As such, interactions like (Bob, Masks) and

(Carl, Masks) would gradually influence Alice.

Another important component is the discrete update unit mod-

eling immediate impacts of interactions, i.e., jumps at 𝑡1, 𝑡2, 𝑡3 in

Figure 1(d). The update rules in CoPE are different from previ-

ous methods in that we adopt graph convolution-like aggregation

rules to handle possibly concurrent interactions at a single time

point. Previous methods process interactions one after another and

heavily rely on the strict orderings of interactions. In addition to

immediate impacts, an interaction also establishes a new message-

passing channel between users and items. Then the model carries

on continuous propagation on the updated graph until we observe

the next interaction.

We train CoPE on interactions sequences with a temporal point

process based loss [5]. Due to the large number of interactions in

real applications, we resort to meta-learning techniques [25] to en-

able CoPE to adapt to recent interactions. Furthermore, considering

the difficulties in training neural ODEs [4], we also propose a fast

approximation to the closed-form solution to the ODE we used,

which dramatically improves the speed of CGNNs.

Overall, the contributions of this paper are as follows: (1) We

propose CoPE, which models continuous propagation and evolu-

tion on interaction graphs. (2) We use ODE based graph neural



networks as the continuous propagation and evolution unit. In-

stead of calling ODE solvers, we also propose a fast approximation

to the closed-from solution to the ODEs. (3) We propose the dis-

crete update unit to model immediate impacts of interactions. The

graph convolution-like aggregation rules enable CoPE to handle

concurrent interactions effectively. (4) To deal with long interaction

sequences, we use meta-learning techniques to train CoPE so it can

adapt to recent interactions. (5) We evaluate the proposed method

on item recommendation, future interaction prediction and user

state change prediction tasks and we show that CoPE outperforms

baselines by 17.42%, 14.16% and 2.02% on average on these tasks

respectively.

2 RELATEDWORK
2.1 Temporal (Interaction) Graph Embedding
Representation learning on graphs has been widely studied since

it can generate node embeddings for various downstream tasks.

Different from methods like Deepwalk [28] and node2vec [10] that

focus on static graphs, there are some recent works paid attention

to temporal networks, i.e., networks with timestamped edges. For

example, HTNE [40] treats neighborhood formation sequences as

Hawkes processes and learns node embeddings by maximum likeli-

hood estimation (MLE). CTDNE [24] generates node embeddings

by examining temporally increasing random walks. Interaction

graphs, as a special type of temporal networks, have special proper-

ties for better node embedding. By modeling temporal dependency

among node induced sequences, IGE [35, 36] could generate node

embeddings with two multiplicative neural networks. TigeCMN

[37] enhances this idea by incorporating memory networks. How-

ever, these methods fail to depict how nodes evolve in a temporal

network, since they only assign a static embedding to each node

at the end of training. They also have to be re-trained when new

edges are established.

Instead of learning static node embeddings, DeepCoevolve [5]

and JODIE [19] try to generate node embedding trajectories, i.e.,
node embeddings as functions of time. DeepCoevolve, JODIE and

the proposed method CoPE are all based on the observation that

users and items influence each other and co-evolve over time. Deep-

Coevolve formalizes interaction sequences as mutually exciting

point processes with two intertwined recurrent neural networks

(RNNs), and train the model with MLE. But DeepCoevolve will not

update node embeddings until an interaction occurs resulting in

piecewise constant embeddings as shown in Figure 1(b). To tackle

the issue, JODIE introduces a projection operation to estimate user

embeddings at any time as shown in Figure 1(c). The estimated

user embeddings are directly used to predict the next interaction.

However, as we point out in Section 1, DeepCoevolve and JODIE

fail to generate fully-temporal embeddings and overlook informa-

tion propagation on interaction graphs. We make a more detailed

comparison in Section 4.5.

2.2 Sequential Models
Some sequential modeling methods also explore dynamics in in-

teractions. Sequential recommendations try to predict what a user

would like to interact with given his/her historical interaction

records. In this way, advanced architectures like convolutional/recurrent

neural networks [12, 30], transformers [15, 21], etc., can be utilized

to exploit dynamic of a user within the session. But most existing

methods are user-centric and neglect items evolution. RRN [31]

introduces a pair of RNNs to model both user and item dynam-

ics. Another shortcoming is that most methods like GRU4Rec [12],

Caser [30] and SASRec [15] do not consider irregular time intervals

between interactions. Some methods like T-LSTM [1] and RRN treat

elapsed time as an extra feature in RNNs, but recent studies [6, 29]

have shown that these types of RNNs are inferior to ODE based

models when modeling irregular-sampled time series.

3 PRELIMINARIES
Given a user setU and an item set I, the sequential interactions
between users and items can be organized as an ordered set E =

{(𝑢𝑘 , 𝑖𝑘 , 𝑡𝑘 )}𝑛𝑘=1, where 𝑢𝑘 ∈ U, 𝑖𝑘 ∈ I and 0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤
· · · ≤ 𝑡𝑛 ≤ 𝑇 . Each interaction may be associated with a vector

𝒇 (𝑢𝑘 , 𝑖𝑘 , 𝑡𝑘 ), if it is attributed. Without loss of generality, we can

normalize the time range of sequential interactions into [0, 1], and
then we have 𝑡0 = 𝑡1 = 0 and 𝑡𝑛 = 𝑇 = 1.

These interactions can be represented by an interaction graph

[35, 36, 38] as illustrated in Figure 1(a).

Definition 1 (Interaction Graph). An interaction graph G =

(U ∪ I, E) is a user-item bipartite graph, where each edge 𝑒 =

(𝑢, 𝑖, 𝑡) ∈ E represents an interaction between user 𝑢 ∈ U and item
𝑖 ∈ I happened at time 𝑡 .

Definition 2 (Observable Graph). Given an interaction graph
G = (U ∪ I, E) with the ordered edge set E = {(𝑢𝑘 , 𝑖𝑘 , 𝑡𝑘 )}𝑛𝑘=1, the
observable graph at time 𝑡 is the subgraph with edges, i.e., interactions,
happened before time t. The adjacency matrix of the observable graph

at time 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1) is denoted by 𝑨𝑘 =

[
0 𝑩𝑘
𝑩⊤
𝑘

0

]
, where 𝑩𝑘 ∈

ℜ |U |×|I | is the bi-adjacency matrix. The element 𝑩𝑘,𝑢𝑖 denotes the
number of interactions between 𝑢 and 𝑖 before time 𝑡𝑘+1, i.e., 𝑩𝑘,𝑢𝑖 =
|{(𝑢 ′, 𝑖 ′, 𝑡 ′) ∈ E|𝑢 ′ = 𝑢 ∧ 𝑖 ′ = 𝑖 ∧ 𝑡 ′ < 𝑡𝑘+1}|.

Definition 3 (Temporal Embedding of Interaction Graph).

Given an interaction graph G = (U ∪ I, E), the goal of temporal
embedding is to learn a function 𝒙 : (U ∪ I) × [0,𝑇 ] → ℜ𝑑 that
reflects the continuous evolution of users and items over time. 𝒙 (𝑢, 𝑡)
and 𝒙 (𝑖, 𝑡) are the 𝑑-dimensional embeddings of user 𝑢 and item 𝑖 at
time t respectively.

We assume all vectors are row vectors throughout the paper. We

use 𝑿U (𝑡) ∈ ℜ |U |×𝑑 and 𝑿I (𝑡) ∈ ℜ |I |×𝑑 to denote stacked rep-

resentations of users and items respectively. And𝑿 (𝑡) ∈ ℜ |U∪I |×𝑑
denotes representations of all nodes in the interaction graph.

4 METHODOLOGY
In this section, we introduce our proposedmethodCoPE (Continuous
Propagation and Evolution). CoPE is composed of two basic units:

the continuous propagation and evolution unit Cont_Unit(·) and
the discrete update unit Disc_Unit(·). The former unit is utilized

to simulate continuous propagation on interaction graphs and evo-

lution of nodes between two consecutive interactions. The latter

is to update node representations to reflect the direct impacts of
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Figure 2: Illustrations of CoPE.

interactions. Thus we can obtain the following recurrent form:
𝑿 (0+) = 𝑬 ,

𝑿 (𝑡−
𝑘
) = Cont_Unit(𝑿 (𝑡+

𝑘−1), 𝑡𝑘−1, 𝑡𝑘 ) 𝑘 = 1, . . . , 𝑛,

𝑿 (𝑡+
𝑘
) = Disc_Unit(𝑿 (𝑡−

𝑘
), 𝑢𝑘 , 𝑖𝑘 ) 𝑘 = 1, . . . , 𝑛,

where 𝑬 ∈ ℜ |U∪V |×𝑑 is the initial representations of all nodes

(users and items), and 𝑿 (𝑡−) and 𝑿 (𝑡+) denote node embeddings

before and after the jump at 𝑡 . The initial representations 𝑬 can

be obtained from an embedding lookup table. We illustrate this

recurrent unit in Figure 2(a).

4.1 Continuous Propagation and Evolution
Unit

Assume thatwe have observed interactions (𝑢1, 𝑖1, 𝑡1), . . . , (𝑢𝑘 , 𝑖𝑘 , 𝑡𝑘 )
till time 𝑡𝑘 . The goal of the continuous propagation and evolution

unit is to answer the question: what 𝑿 (𝑡) (𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1)) will be
given 𝑿 (𝑡+

𝑘
) before we observe the next interaction.

To define continuous latent states between observations, early at-

tempts [3] tried to concatenate timestamps to the features and feed

them into neural networks. Another line of work [1, 39] assumed la-

tent states are following a simple exponential decay. Recent works

have shown that these methods are less effective than ordinary

differential equations (ODEs) based methods [6, 29].

By describing the change rates of functions, ODEs can naturally

reflect values at any time. So in this paper, we assume that evolu-

tion of nodes ,i.e., users and items, follows an ODE:
d

d𝑡
𝑿 (𝑡) =

ℎ𝑘 (𝑿 (𝑡), 𝑡), 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1), where ℎ𝑘 : ℜ |U∪V |×𝑑 × [0,𝑇 ] →
ℜ |U∪V |×𝑑 is a function depending on 𝑿 (𝑡). We can obtain node

representations at time 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1) with 𝑿 (𝑡) = 𝑿 (𝑡+
𝑘
) +

∫ 𝑡

𝑡𝑘
ℎ d𝜏 .

Now we need to define the function ℎ𝑘 . Recall that nodes evolve

as information propagates on the graph. So the function ℎ𝑘 also

need to take care of continuous propagation. A natural way tomodel

information flow on graphs is to use graph neural networks (GNNs)

[16]. By letting ℎ be a GNN-based function, we simultaneously

model continuous propagation and evolution on the interaction

graph. Specifically, we adopt the continuous graph neural networks

(CGNNs) [33].

Let us define the propagation matrix

𝑳𝑘 =
𝛼

2

(
𝑰 + 𝑫−

1

2

𝑘
𝑨𝑘𝑫

− 1

2

𝑘

)
, (1)

where 𝑨𝑘 is the adjacency matrix of the observable graph at time

𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1), 𝑫𝑘 is the degree matrix and 𝛼 ∈ (0, 1) is a parameter

controlling the spectral radius of 𝑳𝑘 . From another view, 𝛼 controls

how quickly a center node affects its neighbors. Thus it is plausible

to set 𝛼 for each node, i.e., using a diagonal matrix, and learn its

value from data. We use this strategy in the experiments, but we

still use Eq. 1 to facilitate the discussion.

Then we have the following CGNN [33]:

d

d𝑡
𝑿 (𝑡) = (𝑳𝑘 − 𝑰 )𝑿 (𝑡) + 𝑬 , 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1), (2)

where 𝑰 is the identity matrix. Compared to traditional GNNs,

CGNNs have the propagation rule free from feature transformation

and nonlinear activation, which have been shown less important

than neighborhood aggregation [11, 32]. Moreover, the 𝑬 in Eq. 2

prevents CGNNs from over-smoothing [17, 33].

4.2 Discrete Update Unit
As pointed out by previous studies, an interaction (𝑢, 𝑖, 𝑡) would
make an immediate impact on the involved user 𝑢 and item 𝑖 . So we

need to update the embeddings of users who took action at time 𝑡 :

𝚫𝒙 (𝑢, 𝑡) = 𝜎

(
𝒙 (𝑢, 𝑡−) ·𝑾1 +

1

𝐶𝑢,𝑡

∑
𝑖′∈N(𝑢,𝑡 )

𝒙 (𝑖 ′, 𝑡−) ·𝑾2

)
,

𝒙 (𝑢, 𝑡+) = 𝒙 (𝑢, 𝑡−) + 𝚫𝒙 (𝑢, 𝑡),
(3)

where 𝜎 is the activation function, 𝑾1,𝑾2 ∈ ℜ𝑑×𝑑
are weight

matrices, N(𝑢, 𝑡) = {𝑖 ′ | (𝑢 ′, 𝑖 ′, 𝑡 ′) ∈ E s.t. 𝑢 ′ = 𝑢 ∧ 𝑡 ′ = 𝑡} and
𝐶𝑢,𝑡 = |N (𝑢, 𝑡) |. Depending on the time granularity, there may be

multiple concurrent interactions at time 𝑡 . So we need to aggregate

information from all relevant interactions, i.e., summation in Eq. 3.

For all users, the above update rule can be organized in a concise

matrix form:

𝚫𝑿U (𝑡) = 𝜎

(
𝑿U (𝑡−) ·𝑾1 + 𝑫−1U · 𝚫𝑩𝒌 · 𝑿I (𝑡−) ·𝑾2

)
,

𝑿U (𝑡+) = 𝑿U (𝑡−) +𝑴U (𝑡) ⊙ 𝚫𝑿U (𝑡),
(4)

where 𝚫𝑩𝑘 = 𝑩𝑘 − 𝑩𝑘−1 (here we assume 𝑡 = 𝑡𝑘 for notation

simplicity), 𝑫U ∈ ℜ |U |×|U | is a diagonal matrix constructed from

row summation of 𝚫𝑩𝒌 , and 𝑴U (𝑡) ∈ {0, 1} |U |×𝑑 is a masking

matrix. If 𝑢 takes action at time 𝑡 , then the corresponding row in

𝑴U (𝑡) is filled with all ones, otherwise zeros.



Similarly, we can define the update rule for items:

𝚫𝑿I (𝑡) = 𝜎

(
𝑿I (𝑡−) ·𝑾3 + 𝑫−1I · 𝚫𝑩

⊤
𝒌 · 𝑿U (𝑡

−) ·𝑾4

)
,

𝑿I (𝑡+) = 𝑿I (𝑡−) +𝑴I (𝑡) ⊙ 𝚫𝑿I (𝑡) .
(5)

Note that the diagonal matrix 𝑫I ∈ ℜ |I |×|I | is computed from

the column summation of 𝚫𝑩𝒌 . Eq. 4 and Eq. 5 can be regarded as

graph convolution layers with residual connections, but defined on

the difference of two consecutive graphs.

If interactions are attributed, we also can inject attributes into

the above update rules, for example, by modifying Eq. 3:

𝚫𝒙 (𝑢, 𝑡) = 𝜎

(
𝒙 (𝑢, 𝑡−) ·𝑾1 +

1

𝐶𝑢,𝑡

∑
𝑖′

(
𝒙 (𝑖 ′, 𝑡−) ·𝑾2 + 𝒇 (𝑢, 𝑖 ′, 𝑡) ·𝑾5

) )
,

where 𝒇 (𝑢, 𝑖 ′, 𝑡) is the attribute vector associated with the edge

(𝑢, 𝑖 ′, 𝑡), and𝑾5 is another weight matrix with appropriate dimen-

sions.

To summarize, CoPE defines the following hybrid dynamic sys-

tem:


d

d𝑡
𝑿 (𝑡) = (𝑳𝑘 − 𝑰 )𝑿 (𝑡) + 𝑬 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1), 𝑘 = 1, . . . , 𝑛 − 1,

𝑿 (𝑡+
𝑘
) = Disc_Unit(𝑿 (𝑡−

𝑘
)) 𝑘 = 1, . . . , 𝑛,

𝑿 (0+) = 𝑬 .
(6)

We illustrate the forward pass of CoPE in Figure 2(b).

4.3 Training CoPE with Meta-Learning
To train CoPE on sequential interactions, we follow previous meth-

ods [5, 40] and treat them as a multi-dimensional temporal point

process. We define the intensity function for each user-item pair as

𝜆(𝑢, 𝑖, 𝑡) = exp

(
FCU (𝒙 (𝑢, 𝑡−)∥𝒆(𝑢)) · FCI (𝒙 (𝑖, 𝑡−)∥𝒆(𝑖))⊤

)
,

(7)

where FCU and FCI are fully-connected layers for users and items

respectively, and ∥ denotes the concatenation operation. Note that

in Eq. 7 we make use of the initial embedding 𝑬 to capture static

features of users and items. The negative log-likelihood function is

given by

LMLE = −
𝑛∑

𝑘=1

log 𝜆(𝑢𝑘 , 𝑖𝑘 , 𝑡𝑘 ) +
∑
𝑢

∑
𝑖

∫ 𝑇

0

𝜆(𝑢, 𝑖, 𝑡) d𝑡, (8)

Byminimizing Eq. 8, we simultaneously maximize the probability of

happened interactions, and minimize the probability of non-events

[23].

However, the second term in Eq. 8 is hard to compute. We instead

use the noise contrastive estimation following [5, 40], where the

step loss at 𝑡𝑘 is defined as:

LNCE

𝑘
= − log 𝜆(𝑢𝑘 , 𝑖𝑘 , 𝑡𝑘 ) + log

∑
(𝑢,𝑖) ∈S

𝜆(𝑢, 𝑖, 𝑡𝑘 ),

where S ⊂ |U| × |I| is the set of negative pairs.
In some cases, we are required to predict whether a node would

change its state after taking action [19]. So we can compute the

prediction loss LPREDICT

𝑘
based on 𝑿 (𝑡+

𝑘
). This loss can be defined

according to properties of the downstream task. For example, we

use binary cross-entropy loss in the Experiment 3 (Section 5.3).

Algorithm 1 Meta-learning of CoPE (one epoch).

Require: Interactions (𝑢1, 𝑖1, 𝑡1), . . . , (𝑢𝑛, 𝑖𝑛, 𝑡𝑛), model parame-

ters 𝚯 (including 𝑬 ), meta-learning step size 𝜖

1:
˜
𝚯← 𝚯

2: Split interactions into chunks

3: for 𝑖 = 1, 2, . . . do
4: for 𝑗 = 1, . . . , 𝑖𝑛𝑛𝑒𝑟_𝑠𝑡𝑒𝑝𝑠 do
5: Compute the 𝑖-th chunk loss LTBPTT

with
˜
𝚯

6:
˜
𝚯← 𝐴𝑑𝑎𝑚(LTBPTT)

7: end for
8: if 𝑚𝑙_𝑠𝑡𝑒𝑝𝑠 divides 𝑖 then
9: 𝚯← 𝚯 + 𝜖 ( ˜𝚯 − 𝚯)
10:

˜
𝚯← 𝚯

11: end if
12: end for
13: Return 𝚯

Recall that we update the node embeddings when we observe

new interactions. To avoid dramatically distorting the embedding

manifold and make the training process smooth, we introduce the

jump loss as a regularization:

LJUMP

𝑘
= ∥𝑴U (𝑡𝑘 ) ⊙ 𝚫𝑿U (𝑡𝑘 )∥2𝐹 + ∥𝑴I (𝑡𝑘 ) ⊙ 𝚫𝑿I (𝑡𝑘 )∥2𝐹 , (9)

where ∥ · ∥2
𝐹
is the squared Frobenius norm.

Now we have the total loss as L =
∑
𝑘 LNCE

𝑘
+ LPREDICT

𝑘
+

𝛽LJUMP

𝑘
, regularized by the coefficient 𝛽 ≥ 0. Note that the term

LPREDICT

𝑘
is dropped if no node-level downstream tasks are in-

volved, e.g., Experiments 1&2 in Section 5. From Figure 2(a) we can

observe that these three losses come from different states of nodes.

To train the model on the sequence of interactions, we adopt

the truncated back propagation through time (BPTT). We split

the sequence of interactions into small chunks and each contains

𝑡𝑏𝑝𝑡𝑡_𝑙𝑒𝑛 interactions. Given a chunk ending with (𝑢𝑘 , 𝑖𝑘 , 𝑡𝑘 ), we
compute the total loss within the chunk and do back propagation.

Then we pass 𝑋 (𝑡+
𝑘
) as an initial value to the next chunk, and

the gradients in the next chunk won’t back propagate through

𝑋 (𝑡) (𝑡 < 𝑡𝑘 ).
Compared to sentences in natural language processing, sequences

of interactions are much longer. For example, in LastFM dataset

(see Table 3), there are 1,293,103 interactions constituting a sin-

gle sequence. This brings difficulties in training with truncated

BPTT as parameters’ values and gradients would oscillate more

frequently across chunks. When encounter with a new chunk, the

model parameters are required to adapt to the chunk quickly. So

we novelly treat chunks as different tasks and train CoPE with

the help of meta-learning for fast adaptation. We regard consec-

utive 𝑚𝑙_𝑠𝑡𝑒𝑝𝑠 chunks as a task, and update model parameters

𝚯 = {𝑬 ,𝑾1,𝑾2, . . . } according to Reptile [25]. This also empowers

us to adapt to new interactions happened at inference phase. The

meta-learning of Cope is illustrated in Algorithm 1.

4.4 Fast Approximation of CGNNs
From Eq. 6 we can see that we need to repeatedly solve neural ODEs

with the following form:



Table 1: Comparison among different methods.

DeepCoevolve [5] JODIE [19] CoPE [This paper]

Embeddings at time 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1) the same as 𝑿 (𝑡+
𝑘
) a linear function of 𝑿 (𝑡+

𝑘
) defined by an ODE

Information Propagation no no yes

User embeddings at all times no yes (by linear projections) yes

Item embeddings at all times no no yes

Computation of 𝑿 (𝑡+
𝑘
) (𝑿 (𝑡+

𝑘−1), 𝑡𝑘 − 𝑡𝑘−1) → 𝑿 (𝑡+
𝑘
) (𝑿 (𝑡+

𝑘−1), 𝑡𝑘 − 𝑡𝑘−1) → 𝑿 (𝑡+
𝑘
) 𝑿 (𝑡+

𝑘−1) → 𝑿 (𝑡−
𝑘
) → 𝑿 (𝑡+

𝑘
)

Symmetry symmetric user-centric symmetric

Loss function point process based ℓ2 distance between embeddings point process based

Intensity of (𝑢, 𝑖, 𝑡) exp(𝒙 (𝑢, 𝑡 ′) · 𝒙 (𝑖, 𝑡 ′)⊤) (𝑡 − 𝑡 ′) - exp(𝒙 (𝑢, 𝑡−) · 𝒙 (𝑖, 𝑡−)⊤)
Evaluation phase adaptation no yes yes

Concurrent interactions sequential sequential aggregation

{
d

d𝑡
𝑿 (𝑡) = (𝑳 − 𝑰 )𝑿 (𝑡) + 𝑬 ,

𝑿 (0) = 𝒀 ,
(10)

where we drop all subscripts and superscripts for simplicity, and

assume the initial value is given at 𝑡 = 0.

To solve this neural ODE and meantime enable gradients flow,

researchers have developed the solver with the adjoint sensitivity

method [4]. But solving ODEs and training neural networks with

ODEs embedded are both tricky and time-consuming [8]. In this

paper, we try to use the analytic solution to the Eq. 10:

𝑿 (𝑡) = (𝑳 − 𝑰 )−1 ·
(
𝑒 (𝑳−𝑰 )𝑡 − 𝑰

)
· 𝑬 + 𝑒 (𝑳−𝑰 )𝑡 · 𝒀 . (11)

The difficulties in evaluating the above formula is how to com-

pute thematrix inverse (𝑳−𝑰 )−1 and thematrix exponential 𝑒 (𝑳−𝑰 )𝑡

efficiently. Luckily, from Eq. 1 we can notice that the spectral radius

of 𝑳 is 𝛼 < 1, which enables accurate approximations to these

operations.

For the matrix inverse, we resort to the Neumann series:

(𝑰 − 𝑳)−1 =
∞∑
𝑟=0

𝑳𝑟 ≈
𝑅inv∑
𝑟=0

𝑳𝑟 (12)

Since we have lim𝑟→∞ 𝑳𝑟 = 0, the series converges. We use the

truncated series as an approximation.

For the matrix exponential, we notice that 𝑒 (𝑳−𝑰 )𝑡 · 𝑬 = 𝑒𝑳𝑡 ·
(𝑒−𝑡𝑬) and 𝑒𝑳𝑡 is analogous to the graph heat kernel [7, 34] with

the scale parameter 𝑡 . Thus we use the Chebyshev polynomials to

approximate it:

𝑒𝑳𝑡 =

[
𝑒
˜𝑳𝑡
] ⌈𝑡 ⌉
≈


𝑅exp∑
𝑟=0

𝑐𝑟T𝑟
(
�̃�
)
⌈𝑡 ⌉

, (13)

where T𝑟 (�̃�) =


𝑰 𝑟 = 0

�̃� 𝑟 = 1

2�̃�T𝑟−1 (�̃�) − T𝑟−2 (�̃�) 𝑟 > 1

are the Chebyshev

polynomials. We scale the matrix �̃� = 𝑳𝑡
⌈𝑡 ⌉ to meet the domain

where Chebyshev polynomials are defined. The coefficients can

be computed by the Bessel function of the first kind 𝐽𝑘 (·) as 𝑐0 =
𝐽0 (i), 𝑐𝑟 = 2 · i𝑟 · 𝐽𝑟 (−i) (𝑘 > 0), where i is the imaginary unit.

The procedure to approximate Eq. 11 is concluded as follows:

�̃� ∥�̃� = 𝑒−𝑡 · (𝑬 ∥𝒀 ),

�̃� ∥�̃� ←
∑

𝑐𝑟T𝑟 (�̃�) · (�̃� ∥�̃� ), repeat ⌈𝑡⌉ times,

�̂� =
∑

𝑳𝑟 · (𝑬 − �̃�),

𝑿 (𝑡) = �̂� + �̃� .

Thanks to the recursive forms in Eq. 12 and Eq. 13, only sparse-dense

matrix multiplication is involved, and the procedure is analogous

to a (𝑅inv + ⌈𝑡⌉ ·𝑅exp)-layered graph neural network. We simply let

𝑅inv = 10, 𝑅exp = 2 throughout the experiments. We explain why

and show speedup in Section 5.6. Note that we have ⌈𝑡⌉ = 1 when

we normalize the range of interactions into [0, 1].

4.5 Comparison among DeepCoevolve, JODIE
and CoPE

In Table 1 we make a comparison against state-of-the-art interac-

tion graph embedding algorithms, DeepCoevolve and JODIE. From

the table and Figure 1 we can observe that only CoPE can model

continuous propagation and evolution on interaction graphs, and

thus can generate users and items embeddings with sophisticated

evolution patterns.

After observing interaction (𝑢𝑘 , 𝑖𝑘 , 𝑡𝑘 ), DeepCoevolve and JODIE
update node embeddings by the recurrent neural networks, whose

inputs are node embeddings at the last time step 𝑿 (𝑡−
𝑘−1) and the

elapsed time 𝑡𝑘 − 𝑡𝑘−1. CoPE instead generates 𝑿 (𝑡−
𝑘
) first by sim-

ulating continuous propagation and evolution, and then makes a

discrete update and produces 𝑿 (𝑡+
𝑘
). This process is more inter-

pretable and free from modeling elapsed time.

DeepCoevolve and CoPE treat user nodes and item nodes equally

and define symmetric models. But JODIE is a user-centric model:

the linear projection operations are only utilized for users, and

the loss function is defined as the ℓ2 distance between the item

embedding predicted from user embeddings and the true next item’s

embedding.

Speaking of the loss functions, CoPE follows DeepCoevolve and

adopts temporal point process based loss functions, which explain

why interactions happen, but also why other interactions did not

happen, i.e., non-events. The ℓ2 loss in JODIE is unable to explain

non-events. But intensity functions used by DeepCoevolve and



Table 2: Statistics of Recommendation Datasets.

# Users # Items # Interactions # Unique Times

ML-100K 943 1,349 99,287 49,119

ML-1M 6,040 3,416 999,661 458,254

Yoochoose 33,670 3,667 211,851 41,374

Garden 1,686 962 13,272 1,888

Video 5,130 1,685 37,126 1,946

Game 24,303 10,672 231,780 5,302

Table 3: Statistics of Interaction Datasets.

# Users # Items # Interactions # Unique Times

Wikipedia 8,227 1,000 157,474 152,757

LastFM 980 1,000 1,293,103 1,283,614

MOOC 7,047 97 411,749 345,600

CoPE differ. Since DeepCoevolve cannot generate representations

just before time 𝑡 , to express the intensity of new interaction (𝑢, 𝑖, 𝑡)
we have to make use of previous representations at time 𝑡 ′. Here 𝑡 ′

is the last time point where either𝑢 or 𝑖 took action. An extra linear

decay term is also involved tomodel elapsed times. But themanually

defined decay function may be inappropriate in some cases [6, 29].

In our proposed CoPE, we can generate node representations at all

times with an ODE. So we can directly model the intensity function

with 𝑿 (𝑡−) and we are free from designing decay functions. Here

we suppress FC(·) and 𝑬 parts in Eq. 7 for simplicity.

Considering the length of sequential interactions, JODIE also up-

dates model parameters during the evaluation phase, i.e., test-time

training. After making the prediction and logging the metrics of

some interaction, JODIE treats it as an seen interaction, then does

one step gradient descent with the corresponding step loss. How-

ever, it is possible JODIE forgets the previous interactions during

the test-time training process, i.e., catastrophic forgetting [14]. In

CoPE, we train the model with meta-learning (Algorithm 1) and

do fast adaptation, i.e., gradient descent, at evaluation phase. Now

CoPE’s training behaviors at training time and testing time would

be more consistent than JODIE’s, which also alleviates catastrophic

forgetting phenomena [14, 25].

Last but not least, DeepCoevolve and JODIE process interactions

sequentially with a pair of recurrent neural networks. So when

facing too many concurrent interactions, they would perform badly.

Our proposed CoPE utilizes graph convolution-like aggregation

rules Eq. 4 and Eq. 5 to update embeddings and can naturally handle

concurrent interactions. We show the superiority of this discrete

update unit with experiments.

5 EXPERIMENTS
In this section, we prove the effectiveness of the proposed CoPE

method by three groups of experiments.

The codes of CoPE are available at https://github.com/yzhang1918/

cikm2021cope. Datasets used in this paper are publicly available,

and we also attach download links in the repository. Statistics of

datasets are shown in Table 2 and Table 3.

Setting: We use the same experimental setting as JODIE’s [19].

We split the data by time: the first 80% interactions are for training,

the following 10% data for validation, and the next 10% data for

testing. For the third experiment, the split ratios are 60%:20%:20%.

The dimension of user/item embeddings is 128. All algorithms are

run for 50 epochs, and we report results on the testing set when we

obtain the best performance on the validation set. For Experiment

1 and Experiment 2, we report MRR (mean reciprocal rank) and

Recall@10 scores. For Experiment 3, we report AUROC scores.

5.1 Experiment 1: Item Recommendation
In this group of experiments we show whether our proposed CoPE

can accurately predict what items a user would interact with, which

is a typical application of interaction graphs.

We use four publicly available datasets. MovieLens
1
is a widely

used movie rating dataset. We use two versions of MovieLens: ML-

100K and ML-1M. Yoochoose
2
is the user buying dataset. Amazon

3

contains ratings on the e-commerce platform Amazon. We adopt 3

sub-datasets of Amazon: Garden, Video and Game. We follow the

same preprocessing pipeline in the literature [15, 30] that users and

items with fewer than 5 observations are discarded. The statistical

information is shown in Table 2 in Appendix. Please note that there

are many concurrent interactions in these datasets.

We compare CoPE with the following baselines: (1) LightGCN

[11] is the state-of-the-art collaborative filtering algorithm based

on GNNs. This method ignores time information. (2) Time-LSTM

[39] and (3) RRN [31] are sequential modeling algorithms that can

generate temporal user embeddings. We skip other methods like

Caser [30], GRU4Rec [12], SASRec [15] since they cannot handle

irregular time intervals between interactions. (4) DeepCoevolve [5]

and (5) JODIE [19] are state-of-the-art interaction graph embedding

algorithms that can generate temporal user and item embeddings.

We disable the test-time training trick used in JODIE, and denote

this variation as JODIE *. (6) CoPE trained with the standard trun-

cated BPTT without meta-learning is denoted by CoPE *. Since

other comparing methods would not update model parameters at

evaluation phase, we disable test-time training of JODIE and fast

adaptation of CoPE for a fair comparison.

The experimental results are shown in Table 4. Clearly, our CoPE

outperforms all baseline methods consistently. On average, CoPE

gains 17.58% improvements of MRR and 17.26% improvements of

Recall@10 against the best baselines. LightGCN performs worst

on most datasets. This is due to the way we split the sequences of

interactions: splitting by time results in many unseen users and

items in the test set. LightGCN, based on static embeddings, has no

knowledge of these nodes. One possible reason why the remaining

methods are inferior to our proposal is that these methods process

interactions one after another, but fromTable 2we can see that there

are many concurrent interactions. So there are no strict orderings

in these datasets. Our method uses graph convolution-like update

rules to simultaneously update all nodes’ embeddings and thus has

a better result.

1
https://grouplens.org/datasets/movielens/

2
http://2015.recsyschallenge.com/challenge.html

3
http://jmcauley.ucsd.edu/data/amazon/index.html

https://github.com/yzhang1918/cikm2021cope
https://github.com/yzhang1918/cikm2021cope


Table 4: Results on recommendation.

Garden Video Game

MRR Recall@10 MRR Recall@10 MRR Recall@10

LightGCN 0.025 0.087 0.019 0.036 0.015 0.026

Time-LSTM 0.038 0.134 0.028 0.044 0.014 0.020

RRN 0.072 0.152 0.033 0.068 0.018 0.029

DeepCoevolve 0.046 0.121 0.023 0.050 0.013 0.027

JODIE * 0.049 0.127 0.037 0.078 0.021 0.035

CoPE * 0.081 0.192 0.048 0.088 0.026 0.047

% improvement of CoPE 12.50% 26.32% 29.73% 12.82% 23.81% 34.29%

ML100K ML1M Yoochoosebuy

MRR Recall@10 MRR Recall@10 10×MRR 10×Recall@10

LightGCN 0.012 0.025 0.013 0.029 0.055 0.091

Time-LSTM 0.022 0.058 0.018 0.033 0.073 0.124

RRN 0.032 0.065 0.023 0.043 0.086 0.127

DeepCoevolve 0.029 0.069 0.018 0.030 0.054 0.106

JODIE * 0.034 0.074 0.020 0.035 0.095 0.179

CoPE * 0.038 0.081 0.025 0.049 0.113 0.191

% improvement of CoPE 11.76% 9.46% 8.70% 13.95% 18.95% 6.70%

Table 5: Results on future interaction prediction.

Wikipedia LastFM

MRR Recall@10 MRR Recall@10

Time-LSTM 0.247 0.342 0.068 0.137

RRN 0.522 0.617 0.089 0.182

LatentCross 0.424 0.481 0.148 0.227

CTDNE 0.035 0.056 0.010 0.010

DeepCoevolve 0.515 0.563 0.019 0.039

JODIE 0.746 0.822 0.195 0.307

CoPE 0.750 0.890 0.200 0.446

% improvement of CoPE 0.54% 8.27% 2.56% 45.28%

5.2 Experiment 2: Future Interaction
Prediction

The second task is similar to the previous one, but focuses on more

general interactions between users and objects.

We use datasets
4
released by the authors of JODIE: (1) Wikipedia

dataset contains one month of edits on Wikipedia pages. (2) LastFM

is a dataset containing one month of listening history of 1000

users. The statistical information is shown in Table 3 in Appendix.

Wikipedia is with attributed interactions. Compared to recommen-

dation datasets, these datasets have denser connections between

users and items, more repeated interactions but less concurrence.

We directly report results of baselines in JODIE’s paper since we

use exactly the same setting. JODIE is compared with two more

baselines: LatentCross [2], a sequential recommendation method,

and CTDNE [24], a temporal network embedding method.

4
http://snap.stanford.edu/jodie/

From Table 5 we can observe that CoPE achieves satisfying re-

sults. CoPE obtains more significant improvements with respect to

Recall@10. Especially on LastFM CoPE surpasses the best baseline

JODIE by 45.28%. Recall thatMRR is a global metric while Recall@10

only consider the top-10 recommendations. This result implies that

our method is prone to rank relevant items much higher. For de-

tailed analysis on baseline methods, please refer to the paper of

JODIE [19].

5.3 Experiment 3: User State Change Prediction
The third task requires models to predict whether a user would

change his/her state after taking action, i.e., being banned after

making a post.

We use (1) Wikipedia dataset with extra labels indicating banned

users and the corresponding interactions, where we have 217 bans

in Wikipedia. (2) MOOC dataset consists of attributed interactions

between students and online courses, among which 4,066 students

drop-out courses after certain interactions.

Again, We reuse the results of baselines in JODIE’s paper. From

Table 6we can see that our proposed CoPE outperforms all baselines.

This proves CoPE can capture features of interactions and change

the representations accordingly with the discrete update unit.

5.4 Ablation Study
We introduce the jump loss Eq. 9 to avoid distorting embeddings

too much after discrete updates. In Table 7 we show the results of

CoPE without this regularizer by letting 𝛽 = 0, which are slightly

inferior to CoPE with searched 𝛽 . This proves the effectiveness of

the jump loss.

To deal with long sequences of interactions, we resort to meta-

learning techniques in Section 4.3. Now we test if training with

meta-learning could help the model to adapt to recently observed

http://snap.stanford.edu/jodie/


Table 6: Results on state change prediction. AUROC scores
are reported.

Wikipedia MOOC

Time-LSTM 0.671 0.711

RRN 0.804 0.558

LatentCross 0.628 0.686

DeepCoevolve 0.663 0.671

JODIE 0.831 0.756

CoPE 0.858 0.762

% improvement of CoPE 3.25% 0.79%

Table 7: Ablation Study. Recall@10 scores are reported.

Wikipedia Garden Video

CoPE 0.890 0.313 0.254
CoPE w/o jump loss 0.871 0.292 0.233

CoPE * 0.806 0.192 0.088

JODIE 0.822 0.258 0.178

JODIE * 0.699 0.127 0.078

interactions and improve the performance. In Table 7 we compare

CoPE with CoPE *, and JODIE with JODIE*. Clearly, fast adaptation

during evaluation phase could significantly boost the performance

of CoPE. Though JODIE also gains a lot from test-time training, it

lacks theoretical supports and may suffer catastrophic forgetting.

Together from Table 4 and 5 we can note that even without meta-

learning, CoPE * beats all comparing methods. This proves that our

proposal itself is effective, and training with meta-learning could

further maximizes its potential.

5.5 Model Robustness
Now we test if our proposal is robust with respect to the size of

training data. We use the first 80% interactions as training data in

previous experiments. Now we vary this percentage from 10% to

80% and report the corresponding results in Figure 3. We omit most

baselines for their inferior performance. We can notice that both

CoPE and JODIE are robust w.r.t the size of training data, while

another comparing method, RRN, requires more data to achieve

better performance. Nonetheless, CoPE is always taking the lead.

5.6 Efficiency of Approximate CGNNs
In Section 4.4, we propose an approximation of CGNNs, where

we use the 𝑅inv-order Neumann series and the 𝑅exp-order Cheby-

shev polynomial. To reduce the interference of other components

of CoPE and to evaluate the efficiency and effectiveness of ap-

proximate CGNNs solely, we compare original CGNNs and our

approximate versions on the classic node classification task on the

Cora dataset [16]. In Figure 4 we show the training time versus

test accuracy curves for the original CGNN and our approximate

versions with different order pairs (𝑅inv, 𝑅exp). (Since we intend to

show how accurate and how fast our approximation is, we do not

tune hyper-parameters carefully.)
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Figure 3: Robustness of CoPE w.r.t the training size. Re-
call@10 scores on Wikipedia are reported.
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Figure 4: Time v.s. accuracy on Cora dataset. The blue line
represents the original CGNN [33], while the other lines rep-
resent approximate CGNN with orders (𝑅inv, 𝑅exp).

We can observe that our approximation can achieve near 10x

speedup. The order of Neumann series for approximating the ma-

trix inverse should be large, so we use 𝑅inv = 10. The order of

Chebyshev polynomials for approximating the matrix exponential

is not sensitive, and 𝑅exp = 2 gives satisfying results.

6 CONCLUSION
In this paper, we introduce our proposed method CoPE to generate

temporal embeddings of users and items from sequential interac-

tions. The continuous unit utilizes an ODE based GNN to model

continuous evolution of nodes and information propagation on

graphs. The discrete unit uses graph convolution-like update rules

to model immediate impacts of interactions. We propose an efficient

approximation of CGNNs and train the model with meta-learning.

Extensive experiments prove the effectiveness of our proposal.

As for future work, we will consider how to extend our method

to learning embeddings of general temporal networks. Besides, we

will explore if introducing extra social networks or item similarity

graphs is helpful.

ACKNOWLEDGMENTS
This work is funded in part by the National Natural Science Founda-

tion of China Projects No. U1936213, No. U1636207, and the Shang-

hai Science and Technology Development Fund No. 19DZ1200802.



REFERENCES
[1] Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu Zhou. 2017.

Patient subtyping via time-aware lstm networks. In KDD. 65–74.
[2] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H

Chi. 2018. Latent cross: Making use of context in recurrent recommender systems.

In WSDM. 46–54.

[3] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan

Liu. 2018. Recurrent neural networks for multivariate time series with missing

values. Scientific reports 8, 1 (2018), 1–12.
[4] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018.

Neural ordinary differential equations. In NeurIPS. 6571–6583.
[5] Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. 2016. Deep coevolu-

tionary network: Embedding user and item features for recommendation. arXiv
preprint arXiv:1609.03675 (2016).

[6] Edward De Brouwer, Jaak Simm, AdamArany, and Yves Moreau. 2019. GRU-ODE-

Bayes: Continuous modeling of sporadically-observed time series. In NeurIPS.
7379–7390.

[7] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning

structural node embeddings via diffusion wavelets. In KDD. 1320–1329.
[8] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. 2019. Augmented neural

odes. In NeurIPS. 3140–3150.
[9] Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S. Yu.

2021. Continuous-Time Sequential Recommendation with Temporal Graph

Collaborative Transformer. In CIKM.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD. 855–864.
[11] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. In SIGIR. 639–648.
[12] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2016. Session-based Recommendations with Recurrent Neural Networks. In

ICLR.
[13] Jen-Hung Huang and Yi-Fen Chen. 2006. Herding in online product choice.

Psychology & Marketing 23, 5 (2006), 413–428.

[14] Khurram Javed and Martha White. 2019. Meta-learning representations for

continual learning. arXiv preprint arXiv:1905.12588 (2019).
[15] Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Recom-

mendation. In ICDM. 197–206.

[16] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[17] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-

dict then propagate: Graph neural networks meet personalized pagerank. In

ICLR.
[18] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[19] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-

bedding trajectory in temporal interaction networks. In KDD. 1269–1278.
[20] Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, and Hao Peng. 2020.

Alleviating the Inconsistency Problem of Applying Graph Neural Network to

Fraud Detection. In SIGIR.
[21] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S. Yu. 2021. Augmenting Sequential

Recommendation with Pseudo-Prior Items via Reversely Pre-training Trans-

former. In SIGIR.
[22] Zhiwei Liu, Mengting Wan, Stephen Guo, Kannan Achan, and Philip S Yu. 2020.

BasConv: Aggregating Heterogeneous Interactions for Basket Recommendation

with Graph Convolutional Neural Network. In SDM. 64–72.

[23] Hongyuan Mei and Jason M Eisner. 2017. The neural hawkes process: A neurally

self-modulating multivariate point process. In NeurIPS. 6754–6764.
[24] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.

In WWW. 969–976.

[25] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-

learning algorithms. arXiv preprint arXiv:1803.02999 (2018).
[26] Nima Noorshams, Saurabh Verma, and Aude Hofleitner. 2020. TIES: Temporal

Interaction Embeddings For Enhancing Social Media Integrity At Facebook. In

KDD. 3128–3135.
[27] Martin Pavlovski, Jelena Gligorijevic, Ivan Stojkovic, Shubham Agrawal, Shab-

hareesh Komirishetty, Djordje Gligorijevic, Narayan Bhamidipati, and Zoran

Obradovic. 2020. Time-Aware User Embeddings as a Service. In KDD. 3194–3202.
[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD. 701–710.
[29] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. 2019. Latent ordinary

differential equations for irregularly-sampled time series. In NeurIPS. 5320–5330.
[30] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation

via convolutional sequence embedding. In WSDM. 565–573.

[31] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.

2017. Recurrent recommender networks. In WSDM. 495–503.

[32] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying Graph Convolutional Networks. In ICML. 6861–
6871.

[33] Louis-Pascal AC Xhonneux, Meng Qu, and Jian Tang. 2019. Continuous Graph

Neural Networks. In ICML.
[34] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. 2019. Graph

wavelet neural network. In ICLR.
[35] Yao Zhang, Yun Xiong, Xiangnan Kong, Zhuang Niu, and Yangyong Zhu. 2019.

IGE+: A Framework for Learning Node Embeddings in Interaction Graphs. TKDE
(2019).

[36] Yao Zhang, Yun Xiong, Xiangnan Kong, and Yangyong Zhu. 2017. Learning node

embeddings in interaction graphs. In CIKM. 397–406.

[37] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhao Li, and

Can Wang. 2020. Learning Temporal Interaction Graph Embedding via Coupled

Memory Networks. In WWW. 3049–3055.

[38] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. 2020. A data-driven

graph generative model for temporal interaction networks. In KDD. 401–411.
[39] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng

Cai. 2017. What to Do Next: Modeling User Behaviors by Time-LSTM.. In IJCAI,
Vol. 17. 3602–3608.

[40] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.

Embedding temporal network via neighborhood formation. In KDD. 2857–2866.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Temporal (Interaction) Graph Embedding
	2.2 Sequential Models

	3 Preliminaries
	4 Methodology
	4.1 Continuous Propagation and Evolution Unit
	4.2 Discrete Update Unit
	4.3 Training CoPE with Meta-Learning
	4.4 Fast Approximation of CGNNs
	4.5 Comparison among DeepCoevolve, JODIE and CoPE

	5 Experiments
	5.1 Experiment 1: Item Recommendation
	5.2 Experiment 2: Future Interaction Prediction
	5.3 Experiment 3: User State Change Prediction
	5.4 Ablation Study
	5.5 Model Robustness
	5.6 Efficiency of Approximate CGNNs

	6 Conclusion
	Acknowledgments
	References

